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In order to discuss communication processes consistently for a Gaussian input with a Gaussian 
channel on an infinite dimensional Hilbert space, we introduce the entropy functional of an input 
source and the mutual entropy functional for a Gaussian channel and show a fundamental 
inequality for communication processes. 
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Introduction 

A Gaussian measure on a Hilbert space is studied and applied to communication 
processes by several authors [1,4, 15, 26]. Particularly Baker [1] introduced a mutual 
information for a Gaussian channel based on a work by Gelfand-Yaglom [2]. In a 
usual communication theory, one takes the differential entropy as the definition of  
the entropy (information) carried by an input source. However, for an input 
Gaussian measure, we understand by a simple consideration that the differential 
entropy for an input source is not compatible with the mutual information mentioned 
above in Shannon's communication theory, so that the differential entropy is not 
good at discussing the Gaussian communication process. The main purpose of  this 
paper is to introduce two functionals, say the entropy functional and the mutual 
entropy functional, for an input Gaussian source a n d a  Gaussian channel, and prove 
a fundamental inequality for the communication process. Our formulation of  these 
entropy functionals are based on a formulation of  quantum mechanical information 
theory given in [9]. 

w 1. Gaussian Measures on a Hilbert Space 

Let ~ be a real separable Hilbert space with inner product ( . ,  �9 ) and :~ be the 
Borel a-¡ of  9f ~. p i s  a Borel probability measure on 9~ satisfying 

f llxll2d#(x) < oo. 
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Further, we define the mean vector mu ~ ~ and the covariance operator R u of  # 
such as 

(xa, mj,) = f~v (x~, y)#(dy) 

(x i ,  R~,x2) = fJe (x i ,  Y -  mu)( Y -  m#, x2)#(dY) 

for any xa, x2, Y ~ W. We denote the set of  all bounded linear operators on ~ by 
B(W) and denote the set of all positive self-adjoint trace class operators on W by 
T(W)+ ( -  {p ~ B(W), p >0, p*=p, t r p <  oo}). A Gaussian measure # in W is a Borel 
measure in W such that for each x ~ or there exist real numbers m x- and ax (>0 )  
satisfying 

f a  1 - (t - mx)2/2ax dt q  _oo 2x/~e 

Then the characteristi'c function of  # is given by 

ft(x)=exp{i(x, mx)- l(x ,R~x)} ,  

where R, is an element of  T(o~)+. It is known [7] that a Gaussian measure # with a 
mean vector 0 one-to-one corresponds to a covariance operator of #. The notation 
# = [m, R] means that # is a Gaussian measure on o~ with a mean rector  m and a 
covariance operator R./~ ~> v means that v is absolutely continuous with respect to #. 
Furthermore we denote (1) la ~ v ir # is equivalent to v, that is/~ ,> v and v ~> #; (2) # �91 v 
if # is singular to v. The relation # ~ v or q �91 vis  satisfied for any pair of  Gaussian 
measures # and v ([181). 

Before closing this section, we remember the relative entropy of  two probability 
measures ir and v. This entropy (Kullback-Leibler information) is defined by [2, 6] 

C dv dv S(v[.)=Jje~-.~log-d-~d# when #~>v, 

=oo when # ~ v ,  

where dv/d# is the Radon-Nikodym derivative of  v w.r.t. #. 

w 2. Gaussian Channel 

Let (Jr ~1) be an input space, (or ~z)  be an output space and P~) be the 
set of all Gaussian probability measures on (g k ,  ~k) (k = 1, 2). We call mapping 
2: Ygl x ~ 2 ~ [ 0 ,  1] a Gaussian channel from the input space to the output space 
if 2 satisfies the following conditions: 

(1) 2(x, .)~p~z)_~ for each fixed x~3r 
(2) 2(.,  Q) is a measurable function on ( g l ,  ~1) for each ¡ Q e ~ z .  
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pro be a Gaussian measure of the input space and - m  Let & ~ - ~  ~ ~ r ~  be a 
Gaussian measure indicating a noise of the channel. Then, the Gaussian measure 
~ ~  ut2j obtained in the output system can be expressed by the channel 2 such as 2 ~--G 

#2(Q) = f.,~l 2(X, Q)#I(dx) (2.1) 

2(x, Q ) -  #0(QX), 

Q X - - - { y e ~ 2 ; A x + y ~ Q } ,  xe3ffl, Q ~ ~ 2 ,  

where A is a linear transformation from ~ x  to ~ 2 .  

q : noise 

The compound measure #x2 derived from the input measure & and the output 
measure #2 is given by 

#12(Q1 x Q2)= fe~( x, Q2)#l(dX), (2.2) 

for any Q1 e �91 and Q2 ~ ~2. Then, the mutual entropy (information) w.r.t. & and 2 
is defined by the Kullback-Leibler information sur as 

I(&; 2)= 8(]./12 I#l (~,t�91 �9 (2.3) 

w A Modei 

For simplicity, we put ~ 1  = ~ 2  = R2 in this ser Let two Gaussian measures 
& and #o be given by #1 = [0, R1], #o = [0, Ro] with 

111 T o 

O 
Ro= RI= 48 

1 
0 

(Remark that we have many other choices of the covariance operators R 1 and Ro. ) 
We take the linear transformation A used in (2.1) as 

A =  ~/24 

0 23 " 

Under these settings, the covariance operator R 2 of the output measure #2 becomes 
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R 2  = ~ 

0 

From Proposition 2 of  [1], we obtain an operator V-R~q * R21/2 as 

0 23 " 

by which the compound measure #x2 is determined. Further, the mutual entropy 
w.r.t. #t and the channel 2 determined by q o is calculated as 

I(#1; 2) = S(#~2 ] #~ | = log 24. 

Now, if we use the differential entropy as the definition of entropy (information) for 
an  input Gaussian measure (this definition is often used in literature dealing with 
communication theory), then 

S ( # , ) = -  I d#logd#dm 
.J ~~ dm dm 

=log(ne), 

where m i s  a Lebesgue measure of R 2. Therefore, the mutual information I(/21; 2) 
becomes larger than S(pl), which is a contradiction to the usual Shannon's theory 
[2, 6, 14, 16]. Thus, the differential entropy is not suitable for the definition of entropy 
for an input Gaussian measure. 

By the way, if we take 

as the definition of entropy for an input Gaussian measure a sa  straight extension of 
the Shannon entropy for a discrete probability distribution (where ~(N2) is the set of 
all finite partitions of N2), then it is easily seen that S(~1) is infinite. In this case, the 
mutual entropy is smaller than S(~x), but it is difficult to comprehend the physical 
meaning of the fact that every input Gaussian measure carries infinite information. 
Moreover, it is impossible to distinguish an input Gaussian state from other Gaussian 
states only by using the entropy S(# 0, as it is always infinite. Therefore we had better 
find some other expressions (quantities) characterizing a Gaussian state a n d a  
Gaussian channel so that we can discuss the Gaussian communication process 
consistently. 
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w 4. A New Formulation of the Mutual Entropy 

In order to discuss a dynamical change of states in quantum systems, a quantum 
mechanical channel is useful and is studied in various aspects [8, 9, 11,21, 22, 23]. This 
quantum mechanical channel is generally defined as follows: 

A mapping A*from T ( ~ I ) + ,  1 to T(~2)+, 1 (where T(~k)+, 1 --{pe T(Jr176 t r p =  1} 
(k=  1, 2)) is said to be a channel i f  its dual map A from B(~2) to B (~ I )  satisfies the 
following three conditions: (i) A is completely positive (i.e., ~,[,j=l A~A(B~Bi)Ag is 
positive for any Ak ~ B(gf~I), B1 ~ B(~~ff2) and for any n~N),  (ii) AI 2 =11 (where Ik is the 
identity operator on ~ k  (k = 1, 2)) and (iii) A is normal (i.e., A(A,) T A(A) for any 
{A,} c B(,~2) with A. T A). 

A typical example of a channel is the conditional expectation of a set of 
observables to its subalgebras which plays quite an important role in quantum 
probability theory [21,22, 23]. 

When an input state is given by a density operator p ~ T(.J~~)+,I, von Neumann 
introduced [25] the entropy of the input state p such as 

S(p) = - tr p log p .  (4.1) 

We now denote a Schatten decomposition [17] of p such as 

p = F, ,~kEk, (4.2) 
k 

where Ek is the projection from Jgl to the one-dimensional subspace of ~r generated 
by an eigenvector Xk associated to the eigenvalue 2 k, that is, E k = I Xk)(Xk I in the Dirac 
notation. In (4.2), the eigenvalue of multiplicity n is repeated precisely n times. Note 
that this decomposition is not unique unless every eigenvalue is nondegenerate. Then 
a compound state expressing the correlation existing between an initial state p and 
the final state A*p is defined on the tensor product Hilbert space ~rg~ | such as 

61~ = 2 )'kEk| ' (4.3) 
k 

where we use the index E because this compound state depends on the choice of E =  
{Ek}. This compound state is introduced in [9, 10] and plays an essential role in 
studying the dynamics of state change [10, 12] and quantum information theory 
discussed in [3, 5, 9, 19]. In particular, the mutual entropy (information) with respect 
to the input state p and the communication channel A* is given by [9] 

I(p; A*) = sup S(tr E I ir0) , (4.4) 
E 

where % is a trivial compound state 

% = p|  (4.5) 

and s(a~l ~o) is the relative entropy [23] of tr E w.r.t, tr o 
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S(a E 1%) = tr ae(log a E -  log %) .  (4.6) 

Let P(k!x be the set {# = [0, R] D(k) �9 r o ; tr R = 1 } (k = l, 2). We assume that A*A = 
(1 - t r R o ) I  1 holds for the covariance operator R O of po. We define a transformation 
F* from P(~!x to P~!I associated with the Gaussian channel 2: 

(F*#1)(Q) = f~rl 2(x, Q)#1(dx) (4.7) 

,(1) and any Q�9237 (4.7) can be expressed as for any ~�91 �9  

F*(#I) = [0, AptA* + Rol (4.8) 

for any pa =[0, Pi] e P~!I. There exists a bijection ~=* from P~!~ to T(~k)+, 1 #ven by 

=~~(#k)Ak= f (�91 Ak�91 (4.9) tr 
k 

�9 ,(k) ( k =  1, 2). We further define a map from for any AkeB(,,Ugk) and any # k e r o ,  
T(o,~#I)+, 1 to T(~2)+ .  1 such as 

A'pi = ~* o F* o ( ~*)-lP1 (4.10) 

for any p~ �9 T(M'0+.~. (4.10) can be expressed as 

A*px = AplA* + RO (4.11) 

for any Pi e T ( , , ~ l ) + ,  1. 

F *  n(1) .  D(2)  
_r'G, a ~, -rG, 1 

~=*[ A* [-=* 
T(M'I) +, I ,. T(M'2) +, 1 

A is the dual map of  A* from B(oaf~ to B(gx) ;  that is, 

tr Pi A(A2 ) = tr A*(pl)A2 (4.12) 

for any A 2 e B(g2 )  and any Pi e T(Yg0+,,. Therefore A is written as 

A(Q) = A*QA + (tr ROQ)I 1 (4.13) 

for any Q �9 B(~~f'2). 

THEOREM 1. A* is a quantum mechanical channel from T ( , J ~ l ) + ,  1 to T(a'fr 1. 

Proof From the definition of quantum meehanical channel, we have to show 
the following three properties of the mapA from B(Yf2) to B(~ffl) given in (4.12): 
(1) Completely positivity of  A; (2) A(I2)=I1; (3) Normality of A. 
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Proof of (1). 
have 

For any {Qi}~=, c B ( ~ I )  and any {Rj}7= 1 t:::: B(aar161 with neN, we 

Q*A(R*Rj)Qj= ~ Q~(A*R*R~A+(trnoR*Rj)I,)Qj 
i,j,-- 1 i,j= 1 

= ~ Q*A*R*RjAQj+ ~ (trROR*Rj)Q*Qj 
i,j=l i,j=l 

Let {Ym} be any CONS in ~~  and put C=~7= 1 R,AQi. Then the above equality is 
identical to 

C'C+ ~ ~ (Xk, RjR1/2ym>(Ym, 1/2 * * Ro Ri xk>Q, Qj 
i,j= 1 k,m 

= C ' C +  ( Y m ,  R /2R*Xk (Xk, R j R  )Qj 
i 

= C* .)('k, Ri ~2ira Xk, Rj ]2y m j 
[ "= 

= C* Xk, R i /2y m i * Xk, Rj /2y m j 
i "m 

:C*C'~-k~,m(i~=l <Xk, R iR l /2ym>Qi)*~=~ 1 <Xk, RjR1/2ym>Qj)~>O, 

This inequality holds for any n e N ,  so that A is a completely positive map f f o m  

B ( ~ 2 )  to B ( ~ , ) .  

Proof of (2). 

A(I2) = A*IzA + (tr ROI2)I1 = A*A + (tr Ro)I , = (1 - tr RO)I, + (tr RO)I 1 = 11. 

Proof of (3). For any increasing net {B~} ( c  B(~~t~2)) ultrastrongly converging 
to BeB(3r and for any sequence {x.} (~  ~~VI) satisfying ~ .  ][xj2 < oo, we have 

li (A(B) - A(B~))x. ii z = ~ II A(B - B,)x. II 2 
n n 

= Z II {A*(B- B~)A + (tr Ro(B - B~))I~ }x .  [12 
n 

< ~ IIA*(B- B~)Ax.[Iz + ~,[ tr Ro(B- B~) I 2 IIx.[I 2 
n n 

< li A* 112 ~ II(B - B~)Ax. [I 2 + i tr Ro(B - B~) 12 ~ [I x .  li 2. 
n n 

Since ~ .  II.4x.1[2 < IIAI[2 ~ .  IIx.l[ 2 < oo is satisfied and Ro is a trace class operator, then 
A(B~) ultrastrongly converges to A(B). Q.E.D. 
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In order to introduce new functionals for a consistent treatment of  the Gaussian 
communication process, we first p rovea  theorem for the Gaussian measure with the 
covariance operator tr n. Let us define two probability measures fit and/~2 on ~,aV 1 and 
~~~a 2 respectively such as 

ftk(A) = fA II r II 2d/2k(�91 

for any A ~ ~k and any #k ~ P~~I" 

THEOREM 2. The Gausskm measure ~ = [0, trE] is a compound state (measure) 
derived from the input measure #1 =[0, ~*(#~t)] on J f  l and the output measure #2 = 
[0, A* o 2"(#1)] on ~ 2  in the sense that 

q ) =/~(A | for any subspace A in ~1 , 

fi2(B) = ft(~/f 1 | for any subspace B in ~ 2 .  

Proof. From (4.9), we have 

/ y A ) =  tr ~*(Pk)PA, 

where PA is the projection operator from ~,af~ k on the subspace A in ~k- 
Hence 

/~(A | ~vf 2 ) = tr trEP A | 12 

=t rpPA 

= t r  ~*(#l)Pa 

=/~I(A). 

Similarly, 

/~2(B)=/~(~I|  for any subspace B in ~2" Q.E.D. 

From (4.4), we define a functional (say the mutual entropy functional) with 
respect to the input Gaussian measure #1 and the Gaussian channel 2 as 

T(Pl; 2)=sup S(aE I ao) 
E 

= sup tr a~log aE- log %), (4.14) 

where tre is a compound state given by (4.3) for a density operator ,..~~~(]A1) and a o is 
~*(#1)|  o ~*(#1). Another functional (say the entropy functional) of  the input 
Gaussian measure #1 = [0, ~*(Pl)] expressing certain "information" of  pi is given by 

S(#1) = - t r  ~Ÿ log ~*(Pl) �9 

By the following result, we understand that the above functionals play the same 
role as the entropy and the mutual entropy in Shannon's communication theory. 
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�9 ,(x) andfor some Gaussian channel 2, we obtain THEOREM 3. For any #1 ~ rG.l 

o__<r(~q; 2)__<~(~0. 
Proof This theorem has been essentially proved in ref. [9]. However, we here 

sketch the proof for completeness of this paper. After some calculation, we obtain 

s(~~ } Oo) < E ~.s(E. { z*(~O) 
n 

= ~ 2.(tr E. log E. - tr E. log ~*(#0) 
n 

= - tr ~ X,E, log Z *(#1) = - tr -= *(#1) log E*(#I) 
n 

=3(~1). 
where E={E.} of the Schatten decomposition ~*(#1)=~.2 .E . .  Taking the su- 
premura over E, we get 0 <I(#1; 2)< S(/~1). Q.E.D. 

For the model discussed in w 3, we calculate the entropy functional S(#,) and the 
mutual entropy functional T(/~I; 2) concretely: 

T(/~ 1; 2) = log 2 = S(#1 ).  

Consequently, the difficulty appearing in a model of w 3 is resolved in our for- 
mulation. Besides mathematical formulation, our functionals classify the Gaussian 
inputs and might be useful to analyse the Gaussian communication process in detail, 
upon which we are still working. 
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