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We shall investigate topological properties of a uniquely determined compact set K such that K =  
~a~Afx(K), where eachfx is a weak contraction of a complete metric space and A = { 1, 2, " ', m} 
or A = N. Such a set K is said to be self-similar. Many classical peculiar sets can be represented 
in this form. We shall also discuss the interesting problem presented by R .  F. Williams. 
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1. Introduction 

The notion of"fractals" was introduced by Mandelbrot [30] in the description of 
Nature. A set S is said to be a fractal provided that the Hausdorff dimension of S 
strictly exceeds the topological dimension of S. For example, Cantor's ternary set is a 
typical example of fractals. Of course, it is a classical problem to investigate such 
fractal sets in Mathematics. Indeed, measure theory is a fundamental and powerful 
tool to analyse fractals. See Rogers [45], Falconer [13] and the references given there. 

On the other hand, as is pointed out by Mandelbrot, "self-similarity" is very 
important in the study of such sets. Actually, most classical fractal sets constructed 
by many mathematicians have the self-similarity in some sense. 

The aim of this paper is to investigate various topological structures of self- 
similar sets, whose definition will be given later, and to analyse many classical 
pathological sets and curves through the notion of self-similarity. With this for- 
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mulation, one can easily create and handle self-similar fractals. 
Let X be a separable complete metric space with a metric d. A mappingf :  X ~ X  

is said to be a contraction provided that the Lipschitz constant 

d(f(x), f (  y)) 
Lip{f)=sup (1.1)

x*r d(x, y) 

satis¡ Lip(f)  < 1. Every contract ionfhas a unique fixed point Fix(f)  in X. Recently 
Hutchinson [22] considered the non-empty subset K c  X satisfying 

K=f~(K) wf2(K) w " .  Ufm(K) (1.2) 

where m >2 and {f/}l _<i_<m is a given finite family of contractions. 
On the other hand, Williams [54] studied the following set 

U of,, o (1.3)K=closure  Q <,,. . . . , , .<, F i x ~ ,  ' o f~.)) 
n_>l 

toward a study of generic properties of the action of free (non-abelian) groups on 
manifolds, He proved essentially that there exists a unique compact solution of (1.2); 
it is therefore given by (1.3). This result was also proved by Hutchinson in a different 
way. Several properties of K on geometric measure theory were proved in [22]. 
Mattila [32] strengthened some of them. 

In this paper, the equation (1.2) will be generalized to weak contractions and the 
solution K will be regarded a s a  fixed point of some set-dynamical system. 

For another method to describe self-similar fractals using endomorphisms of 
words in free groups, see Dekking [9]. 

The author would like to thank Prof. M. Yamaguti for his usefui comments. 

2. Preliminaries 

We begin with some definitions. Let X be the same space as in the previous 
section. 

DEFINITION 2.1. A mappingf:  X ~ X i s  said to be a weak contraction provided 
that Os (t)= lims~ , + co: (s) < t for any t > 0, where co: is the modulus of continuity of f :  

coI(s)= sup d(f(x),f(y)). (2.1)
d(x,y)_<s 

Obviously f2:(t) is non-decreasing and right-continuous. Note that every weak 
contraction f i s  uniformly continuous in X and has a unique fixed point Fix(f) in X. 
The regularity of co: may depend on the space 2". indeed, if X is compact, co: is right- 
continuous; that is, f2: = co:. If X is a closed convex subset of a Banach space, then co: 
is concave, therefore Os = co: is continuous. For  example, let X be the unit interval 
with the Euclidean distance. Then the funct ionflx)=x/(1 +x)  is a weak contraction 
with co: =f ,  while f is n o t a  contraction since Lip(f)  = 1. 
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The power set 2 x of  all subsets of X forms a poset under set-inclusion in a natural 
way; x < y  means x is a subset ofy.  Moreover, 2 x is a complete lattice with operations 
" + "  (join, set-union) and " . "  (meet, set-intersection). See Birkhoff [4] for lattice 
theory. 

Let cg(X)c 2 x be the set of  all non-empty compact subsets of X. cg(X) is n o t a  
lattice but a join-semilattice. It is known that cg(X) is a complete metric space 
equipped with the Hausdorff  metric: 

du(x, y)=max(inf{e>O; N~(x) > y}, inf{e>0; N~(y) > x}) , (2.2) 

where N,(x) is an e-neighborhood of the set x. Michael [33] proved that if X is 
compact, then ~g(X) is also compact. Note that the mapping i: X--* cg(X), which maps 
a point p i n t o  the set consisting of the single point p, is an isometry. *) 

We now give a remark. Let {x.},>l be a Cauchy sequence in cg(X). Then we will 
denote by lim.~| x, the unique limit of  {x.} in cg(X); this means lim,~~ x, = 
(]  m_>l closure (U,->,, x.) in the usual notation. Therefore, an infinite sum Z L 1  y,, if it 
exists, means the set closure ([.),>_1Y,). 

For  any continuous mapping f :  J(~X, we can define the induced mappingf*: 
~(X)--* cg(X) by f * ( x ) = f ( x )  in a natural way. 

DEFINITION 2.2. A set K e  cg(X) is said to be self-similar provided that the set 
K can be expressed in the form 

K= ~ f*(K),  (2.3) 
�9 2 ~ A  

where {f~}X~A is a set of weak contractions of  X and the index set A is { 1, 2, �9 �9 ", m}, 
m >2, or N. 

(2.3) means that the set K consists of a ¡ or an infinite number of  miniatures 
of  K itself. Thus our terminology will be justified in a sense. Note that Hutchinson's 
definition of self-similarity differs from ours; he required some separation conditions 
in addition. 

A mapping F: c~(X)--*c~(X) is said to be isotone provided that x < y  implies 
F(x)<_F(y); a join-endomorphism provided that F(x + y)=F(x)+ F(y) for any 
x, y e  cg(X). Let ~(cg(X)) be the set of all isotone join-endomorphisms (not nec-
essarily continuous) defined on c~(X). Obviously every induced mapping belongs to 
~-(c~(X)) and is further continuous. Again ~(cg(X)) becomes a join-semilattice; F <  G 
means F(x)< G(x) and F +  G means (F+  G)(x)=F(x)+ G(x) for any x ~ cg(X). The 
following properties on the induced mappings were proved by the author [19]. 

LEMMA 2.3. I f  f is a weak contraction of  X, then f*  is also a weak contraction of 
~(X) with f2:,=f2:. Moreover, if  {fj}l_<~_<,, is a finite set of  weak contractions of)(, 

mthen F = ~ j = l f  ~ is also a weak eontraction of  c~(X) with f2•(t)<maxl xj<m f2:s(t)" 

�9~Throughout this paper we shall make no distinction in notation between the point p and the set 
consisting of the single point p. 
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3. Existence and Uniqueness 

In this section, we shall discuss the equation (2.3) and generalize the results of 
Williams and Hutchinson mentioned in Section 1. In addition, we shall discuss 
different types of set-equations. 

By Lemma 2.3 we get a generalization of Hutchinson's result immediately. 

THEOREM 3.1. Suppose that {fj}l_<~_<m, m>2 ,  is a finite set o f  weak con-
tractions of)( .  Then there exists a unique compact subset K = K ( f l  , �9 �9 �9 satisfying 
the equation (2.3) with A = {1, 2, . . . ,  m}. Moreover, for any compact subset Q ~ qr 
we have 

Flm F~(Q)= K ( f  l, . . ",fin), (3.1) 
n---~ oo 

where F= ~~ 
m 
=1 f~ ~ ~r( qr 

To investigate the structure of the set K(f~, �9 .. ,fin), it is convenient to introduce 
the one-sided symbol space Z = {1, 2 , - - . ,  m} N on m symbols. Endowed with the 
metric 

d~(~, ti) = ~ 2-"z(~ n, fin) for ~ = (~n), t i= (fin) ~ Z ,  (3.2) 
n > l  

where z(i , j)= 1 if i ~ j  and z(i,j)=O if i=j,  Z becomes a compact metric space. Then 
we have 

THEOREM 3.2. Suppose that {fj}x_<j_<~, m > 2 ,  is a finite set o f  weak con-
tractions o f  X. Then there exists a continuous onto mapping ~b : Z~KOCl, �9 �9 �9 ,fin) such 
that the following diagram is commutative: 

Z aJ 'Zot 1, 
K~K  

where a~ is the right-shift operator: ej(ele2 "" ")=(jexe2 "" " ) fo r  any l <_]<_m. In 
partkular, Williams" formula (1.3) holds true. 

Proof. Let ~(t)=maxx_~i_~m~:j(0 for brevity. First we will show that the 
sequence defined by pn(e) =f~, of~~ . . . . .  f,,(Po), n > 1, is a Cauchy sequence in X. To 
show this, for any e > 0, define a sufficiently large integer N =  N(O such that 

~ N ( M ) < e - - ~ O  where M =  max d(po, fj(po)). 
1 <_jNm 

Then d(ps(~),pN+l(~))<_f2S(M)<_e-f2(O<e for any a~Z.  Suppose now that 
d(ps(~),ps+j(ot))<e for any 1 <_j<_k and ~6~.  Then it follows that 

d(pN(~), PN + k + 1(~)) < d(PN(Ot), PN +1 (0~)) "q- d(p s + 1 (ot), PN + k + l(Ot)) 

  ( )+ 	 ((PN(),P~+k(~)))<e	 
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where �91 3 "" "). Hence d(pN(ct),pN+~(ct))<e for any j > l  by induction and 
therefore {pn(~)} is a Cauchy sequence. It is easily seen that p~(ct)=lim,~~ p,(~) is 
independent of the choice of Po. 

Now define ~k(~)=p~(~) for a ›  Since d(poo(~),pN(ct))<e, the set r is 
bounded and therefore ~k is continuous. Thus ~k(Z) is a compact subset satisfying the 
equation (1.2). Therefore we have K(f l ,""  ",fin)= r by Theorem 3.1. [] 

For a ¡ weak cont rac t ionfof  X, let ~/r ()0 be the set ofall  weak contractions 
g satisfying rio(t)<_ O:(t) for any t >0. # ' : (X)  is endowed with topology of uniform 
convergence on compact sets. Then we have 

THEOREM 3.3. Suppose that f is a weak contraction of  X. Then the mapping 

K: ~ s ( X )  x . . .  x ~ s ( X )  , ~e(x), 

which maps (fl,  "'" ,fin) into the set K(fl ,  "", f in),  is continuous. 

Proof  Suppose that g~.~)~gs as n--.oo in $/::(X) for l<j<_m. Put d*=  
diam(K(gl, " ",9~)) for brevity. Let G] be the closure of {(x,y); e<x<_d*, y =  

sI 2 : ( x ) > x - 6 }  for e, 6>0.  Then it follows that for any ¡ e>0,  Go-~b for a 
sufficiently small 6 = 6(e). Thus there exists n(e) such that/-P(d*) < ~ for any n > n(e) 
where H(x) = f2:(x) + 6. 

On the other hand, there exists N=N(e)>n(e)  such that 

supd(g~")(x),gj(x))<5(e) for any l <_j<m, n > N  
x~Q 

where Q = K(g 1, . . . ,  g,,) ~ ~(X). Then 

d ( g •  o ~ tu) . . . .  , g ~ ,  o g , ~  . . . .  ) 

~d(g(~)oat~)o �9 o~~~176 o ...)+d(g(~)og~~ . . . .  ,g~,~ o . . . )  

- -< oa a f \ r t,4t,,(')o �9 �9 � 9  g a t  2 o . . . ) ) + 5 ( ~ ) = H ( d ( g ( ' )  . . . . . . .' g a 2  o )) .   

Continuing in this way, we arrive at d(g(~;)o .. ., g~, . . . .  )</T'(d*)_<e for n>_N; 
therefore dn(K(gŸ .. ., g(~)), K ( g l , . . . ,  g,,))<_~. Since e is arbitrary, this completes 
the proof. [] 

For the case A = N, we have 

THEOI~EM 3.4. Suppose that {f,},>_l is a family of  weak contractions of  X 
satisfying limn_.oof2:,(t)=O for  any t>0.  Suppose further the set U,>_I Fix(f,)  is pre- 
compact. Then there exists a unique compact subset K = K ( f l , f 2 , " "  ") satisfying the 
equation (2.3) with A =N.  Moreover, for any compact Q ~ cd(X), we have 

lira F"(Q) = KOc~, f2, " " ") (3.3) 
n- -*  oo 

where F= ~,,>_lf* ~ ~(c~(X)). 

Proof. We first show that the operator F = ~ , , z  ~ f *  is well-defined. It suffices to 
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show the set U,_>lfn(x) is pre-compact for any x~ cr We denote by ?(M) 
Kuratowski's noncompactness measure [26, p. 412] of a bounded subset M of X. For 
any fixed x~ cs put Q =~n_>x Fix(fn) ~ cg(X) and d* =sup{d(p, q);p~x,  q~Q} for 
brevity. Then, for any e>0,  there exists N=N(e)  such that d(Fix(f,), 
f,(p)) < f2:,(d(Fix(f,), p)) < f2:.(d*) < ~ for any p ~ x, n > N. This implies f,(x) c N~(Q) 
and therefore 

Since e is arbitrary, it follows that U , z l f , ( x )  is pre-compact. 
Now define f2*(t)=sup,>_lO:.(t) for any t>0.  Evidently we have Or(t)< 

f2*(t). Also ir is easily verified that f2* is a non-decreasing right-continuous 
function satisfying f2*(t)< t for t > 0. This implies that F is a weak contraction of 
cr this completes the proof. [] 

Note that the symbol space 2; = N  N is complete (not compact) with the metric (3.2). 
Then we have 

THEOREM 3.5. Suppose that {f,},_>l satisfies the same conditions as in Theorem 
3.4. Then there exists a continuous mapping ~~o : NN ~ K ( f l , f z ,  " " )  such that 

K(fa, f E , ' '  ") = closure(~b ~(NN)) 

=closure ( U FiXOŸ o " " " of/.)). (3.4) 
i l , "   " " , i n > l  

n > l  

The proof is similar to that of Theorem 3.2 and easily verified. 
We now remark that it is quite interesting to take off the restriction that 

{fj}l _<~<_m is a set of weak contractions in the equation (2.3). As an example, consider 
a rational function R(z) on the Riemann sphere C. The Julia set J of R(z) is defined by 
the set of C where the family of the iteration {R"(z)} is not normal. It is well-known 
that J is a closed, perfect and completely invariant set under R; that is, J =  R(J)= 
R-I(J)  (see e.g. Brolin [5]). On the other hand one can easily show that a set Y is 
completely invariant under R if and only if the set Y satisfies 

Y = R ( r 3 +  R - ' ( r 3 .   (3.5) 

Then we conclude that the Julia set is the smallest closed solution of (3.5) which 
contains a repulsive periodic point, since Julia showed that J is the elosure of the set 
of all repulsive periodic points. (This will correspond to Williams' formula (1.3).) 

A s a  second example, consider the action in C' of a discrete subgroup G of 
M6bius transformations. For simplicity, we suppose that G = (A, B) is not elemen- 
tary. Then the limit set L of G is defined by the closure of the set of points fixed by 
some elements of G. It is well-known that L is a perfect and G-invariant set; that is, 
L = V(L) for all V in G (see e.g. Beardon [1]). In other words, L is the smallest non- 
empty closed set satisfying 
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L = A(L) + A - ~(L) + B(L) + B-  I(L).  (3.6) 

Finally we will give an interesting example of a set-equation different from (2.3). 
Let X be the unit interval [0, 1] with the usual Euclidean distante. Then we consider 
the set-equation 

K =f~ (K- A,) +f2(K. A2) ,  (3.7) 

where A 1 =[0, a], A 2 =la,  1] and fl(s) = l +b(s -a) ,  f•(s)=b(s-a) with two param- 
eters 0 < a < l ,  0 < b < l  (Fig. l(a)). The equation (3.7) originates in the study of 
some discontinuous dynamical system done by the author [16]. In fact, the attractor 
of the dynamical system becomes a compact solution of (3.7) for almost all 
parameters. Moreover the uniqueness of such a solution follows from the fact that 
the attractor is minimal. If(a, b) belongs to the domain D, numbered by n in Fig. l(b), 

1 

b 

Y 
0 A~ a A2 1 0 a 1 

(a)  (b) 
Fig. 1. 

the solution K of (3.7) consists of n points. On the other hand, if (a, b) belongs to the 
remainder set R - ( 0 ,  1)2-~,_> 213,, K becomes a Cantor set with zero Hausdorff 
dimension. Note that the mapping F(x)=f*(x 'AO +f*(x.  A2) t} for x ~ cg(X) belongs 
to ~-(~(X)), while it is discontinuous in cg(X). We will give a generalization of the 
above fact as follows: 

THEOREM 3.6. Suppose that X consists of m>__2 closed convex subsets 
Aa,'" ", Aro of R p with the usual Euclidean distance. Let fj: A~~X  be a weak 
contraction for 1 y Then the equation 

K = ~ f i (K 'A  i) (3.8)
j=l 

has the maximal compact solution K~a; that is, every compact solution K of (3.8) 
satisfies K< KM. I f  in addition Km" A," A~ = c~ for any i~j,  th› KM is a unique compact 
solution of (3.8) i f  and only if KM is minimal; that is, 

t) Of course, we adopt the rulef*(~)= tk. 
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KM= I'I Z FJ({q}) for any qeKM, (3.9) 
i>_l j>_i 

where F(x) = ~j~= 1 f*(x. Aj) e ~ (  qf(X)). 

Proof. It is known that there exists a retraction r i : RV~A i such that Lip(ri) < 1 
for 1 < j  < m. Hence the extension~ =f j  o r i off j  becomes a weak contraction of X. Put 
Q = K(f~,--- ,  fin) for brevity. Then 

i=1 j=l  

and thercfore there exists Q oo =lim.~o~ Q. = lim._o~ FN(Q)~ ~(X) since F is isotone.  
Wc now show Q~ satisfies the equation (3.8). One can easily show that (i) if  
Q~'Ai=ck, then QN.A~=qb for some N; (ii) if Q~.Ai~4~, then Q,'Af-*Qoo'A ias 
n~oo in c6(X). Hence Q,+~=F(Q~)=~f*(Q,'Ai)~~f*(Q~'Ai)=F(Qoo) as 
required. 

Put ff=~j"=l f*- Then for every compact solution K of (3.8), we have 

p(~)= ~. 7*(K)__ ~ S*(K.Ai)--K,
j=l j = l  

and therefore Q = lim,~ | ff"(K) > K by Theorem 3.1. Hence 

Qo~ = lira F"(Q)> lim F"(K)=K.
n~~3 n---b oo 

Thus KM= Q~ is the maximal solution of (3.8). 
We now show the second part of the theorem. It suffices to deduce the 

minimality from the uniqueness of KM. For any fixed q eKM, put Q~ =lim, o oo Q" 
where Q~ =~j~_~ Fi({q}). Then we have 

F(Q ~) = f~(Q A j) , fj(Q| "Ai) = F(Q~) as n ~  
j = l  j = l  

since {Q"} is a decreasing sequence in c~(X). Hence F(Q~)>~j~,+I FJ({q})=Q ~+1 
and therefore F(Q~ ~. Since Q~176 M, {Q~'Ai}l<_i<_,, are pairwise disjoint 
compact subsets by assumption, Therefore F(Q~)<Q ~ and we get Q~=Ku by 
uniqueness. This completes the proof. [] 

REMARK. 0ne  can easily construct an example for which the set KM is a unique 
compact solution of (3.8) and satis¡ KM" A~'Ai~ ck for some i~j, while KM is not 
minimal. 

4. Connectedness 

In this section, we will discuss the connectedness of self-similar sets. Throughout 
this paper, dimr(Q) denotes the (topological) dimension of a set Q in the Menger- 
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Urysohn sense (see e.g. Hurewicz-Wallman [21, p. 24]); W(n) denotes the set of  all 
finite words with length n on symbols {1, 2, . . - ,  m}. First of  all, we have 

THEOREM 4.1 (Williams [54]). Suppose that {f~}x_~~_<m is a finite set of 
contractions of  X satisfying ~j"= 1 Lip(fj) < 1. Then K =  K ( f  l, . . . ,  f,,) is totally discon- 
nected and therefore dimT(K) = 0. 

It will be interesting to considera higher dimensional version of  this theorem; is 
m . pit true or not that, if ~j=~ (Llp(fj)) < 1, then d i m r ( K ) < p - 1 7  In connection with 

this, we have 

THEOREM 4.2. Suppose X c R  p and {fj}l _<j_<m is a finite set o f  contractions of  X 
satisfying ~~=1 (Llp(fj)) "~ " P<1. Then Riemann's p-dimensional outer area of  the set 
K(fa, �9 �9 �9 ,fin) is zero. In particular, ir also holds true for the p-dimensional Lebesgue 
measure. 

Proof Considera  closed ball B = R  p containing the set K=K(f~,  �9 .. ,f,,). The 
outer area in the sense of  Riemann o f  a bounded set Q will be denoted by g(Q). Then 

s-(K)< ~ g(fw(K))<_ ~ s-(fw(B))<5(B) Z (LiP(f*)) p 
w~ W(n) w~ W(n) w~ W(n) 

g(B,( ~ P a s  n---}cx3 , (Lip(fi ,))" ~0 
k , j =  1 

where fw=f~,,o . . . .  f~,. for any w = ( w l . . . w . ) ~ W ( n ) .  Hence g(K)=O as 
required. [] 

Using the mapping g, : Z ~ K ( f l ,  �9 �9 �9 ,f,~) de¡ in Theorem 3.2, we can get two 
theorems concerning the topological structures of  the set K for weak contractions. 

THEOREM 4.3. Suppose that {fj}l_<j_<,, is a finite set of  one to one weak 
contractions of X. Suppose further that Fix(f)  # Fix ( f  i) for some i #j .  Then the set K= 
K(fl ,  "' ' , f in) is perfect and therefore K is uncountable. 

Proof Suppose, on the contrary, that 0(ct) is an isolated point of  K for some 
ct =(ct,)~ 2;. By the continuity of  g,, there exists a 6 > 0 such that q/(ct)= g,(fl) for any 
fl ~ Nn(a). Put a = (cta . . .  e N i i i . . .  ) and ~ = (~q . . .  aNJJJ'' ') for a sufficiently large N. 
Then O(a)=~p(a)=0(~) implies Fix(f/)=Fix(fj) ,  contrary to the assumption. [] 

THEOREM 4.4. Suppose that {fj}l_<j'_<m is a finite set of  one to one weak 
contractions of Av. Suppose further that {fj(K)}l <j<_,, are pairwise disjoint where K= 
K(fl ,  "'" ,fin)" Then the set K is totally disconnected and perfect (therefore d imr (K)=  0 
and K is uncountable). 

Proof By assumption, it easily follows that ~ is one to one. Hence g, becomes a 
homeomorphism and the conclusion follows from the fact that 27 is totally discon- 
nected and perfect. []  

EXAMPLE. Let X =  [0, 1] with the usual Euclidean distance and 
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f l ( x ) = a x  and f 2 ( x ) = b ( x - 1)+ 1 , (4.1) 

where 0 < a <  1 and 0 < b <  1 are two parameters. If  a + b <  1, the set K=K( f l , f 2 )  is 
totally disconnected and perfect by Theorems 4.1 and 4.3. This also follows from 
Theorem 4.4. In particular, i fa  =b  = 1/3, then K becomes Cantor's ternary set. On the 
other hand, if a+b > l, it is clear that K--[0, li and therefore dimr(K)= 1. 

REMARK 1. There exist two weak contractions f~, f2 of X=[0, 1] such that 
Lip(fl) =Lip(f2)= 1 and K(f~,f2) is totally disconnected and perfect. For example, 
put 

2 - x  
x and f2(x)=~-L-~x, (4.2)fa(x)-- 1 + 2x 

and apply Theorems 4.3 and 4.4. One can also construct f x, f2 for which K(f~,fz) is 
totally disconnected, perfect and of positive measure. 

REMARK 2. There exists a finite set of contractions {fj}l _<j_<,,, m _> 3, satisfying 
~~"=i Lip(fj)< 1, for which the set K(f~, . ' .  ,fin) is totally disconnected and perfect, 
and the mapping ~:  X ~ K  is not a homeomorphism. For example, let X=[0, 1] and 

=x,~_ x 3 x 3 
fl(x) f 2 ( x ) = ~ - + ~ - and fa(x)=-~-+~- .  (4.3) 

In fact, K(fl ,f2,fa) has the required properties by Theorems 4.1 and 4.3, while ~ is 
not a homeomorphism since Fix(f2)--Fix(fa of~). One can easily construct such an 
example for any m_>3. This gives a counter-example for Williams' Theorem D. 
Indeed, m = 2 is the only correct case and its proof will be given later. 

We now state our main theorem in this section. We need some definitions. 

DEFINITION 4.5. A set Q c X is said to be locally connected at p �9 Q provided 
that for any neighborhood U of p, there exists a neighborhood V ofp  such the Q. v 
lies in a single component of Q. U containing p. A set Q which is locally connected at 
every point of Q is said to be locally connected. A finite sequence of points 
{Pi, " " ", Pn} is said to be an e-chain joining Pi and Pn provided that d(p i, Pi + 1) < e for 
any 1 < i_< n -  1. A set Q c X is said to be well-chained provided that for any e > 0, any 
two points p, q � 9  can be joined by an e-chain of  points all lying in Q. A finite 
sequence of subsets {Q1, " " ,  Q,} is said to be a finite chain joining Qa and Q, 
provided that Q~.Q~+~ v~(b for any 1 < i < n - 1. 

THEOREM 4.6. Let {fj}l _<j_<,, be a finite set of  weak contractions of  X. Then the 
set K = K ( f  1, . . . ,  f~,) is a locally connected continuum if  and only i f  for any 1 <_ i <j  <_ m, 
there exists a sequence {rl, . . . ,  r,} ~ { 1, 2, " ", m} such that {li(K), f~l(K), . . . ,  f~,(K), 
fj(K)} is a finite chain. 

Proof It suffices to show the condition is sufficient. Let K(w)= 
fw, . . . . .  fw.(K)�9 ff(X) for any w=(w a . . .  w , )�9  W(n). We first prove the following 
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proposition by induction on k; for any finite words uvLve W(k), there exists a 
sequence {w 1, " ", w"} c W(k) such that {K(u), K(wl), . . . ,  K(w"), K(v)} is a finite 
chain. By assumption, this holds true for k - -  1. Suppose next that this holds true for 
k =/ .  Then we must show this is also valid for k = l +  1. Suppose, on the contrary, that 
there exist u ~  v e W( l+  1) for which there are no finite chains joining K(u) and K(v). 
Put W' = {w e W(l+ 1); there exists a finite chain joining K(u) and K(w)}. Then u e W' 
and ve  W " =  W( l+  1 ) -  W'. Thus we have a separation 

K = ~, K(w) + ~, K(w)=- K' + K " .  (4.4) 
W ~  W ~ w E  W "  

Therefore there exists a word w* e W(l)  satisfying K(w*). K' r c~ r K(w*). K".  Since 
K(w*)=K(w* o l ) +  . . . + K(w* om) •), there exist i # j  satisfying K(w* oi). K' r 
c~r o j ) .K" .  Now let {K(/), K ( r O , ' " ,  K(r,), K(j)} be a ¡ chain joining 
K(i) and K(j). Then it is clear that {K(w* o i), K(w* o rl), . ' . ,  K(w* o r,), K(w* o j)} is 
a finite chain. This implies w* ~  W' and therefore K(w* o j ) e K "  K",  contrary to 
(4.4). This completes the proof  of  our proposition. 

Now for any p, q e K, there exist w p, wqe W(n) such that p e K(w p) and q e K(wq). 
Then by our proposi t ion,  there exists a finite chain {K(wP), K(wa), �9 �9 ", K(w"), K(wq)}. 
Choose a ¡ sequence of  points {sj} satisfying s leK(wP) .K(wl ) ,  . . . ,  
Sn+l e K(w")" K(wq). Since diam(K(w))_<t2"(diam(K)) for any w e W(n) where f2(t)= 
maxl<j<mf2ij(t), the sequence {p, si, " " ,  s ,+l,  q} becomes an e-chain for a suf-
ficiently large n. Since e is arbitrary, K is well-chained and therefore K is connected 
(Whyburn [53, p. 15]). Note that K(w) is also connected and for any e >0,  the set Kis  
the sum of a finite number  of  connected sets each of  diameter less than e. Hence K is 
locally connected [53, p. 20]. This completes the proof. []  

REMARK 1. The structure matrix for the set K =  K(f l ,  �9 �9 ",fin) is defined by the 
m x m non-negative symmetric matrix S=(si j )  where si j=  1 if f (K) . f~ (K) r  ~b and 
sij=O otherwise. Then the above theorem runs as follows: K ( f ~ , . .  ",fm) is a locally 
connected continuum if and only if S is irreducible. 

REMARK 2. I f  the set K = K ( f ~ , ' " , f m )  is connected, K has the following 
further properties: (i) K is semi-locally-connected; that is, for any p e K and any e >0,  
there exists a neighborhood U o f p  of diameter less than e such that K -  U. K has only 
a finite number of  components [53, p. 20]; (ii) K is arcwise eonnected; that is, any 
p, q e K can be joined in K by a simple arc [53, p. 36]; (iii) there exists a continuous 
onto mapping H :  [0, 1 ] ~ K  (Hahn-Mazurkiewicz theorem [53, p. 33]). 

REMARK 3. There exists a set of  contractions {f,},z 1 of  X =  R 2 for which the 
set K(f l , f2 , ""  ") is not locally connected. For  example, let Q =Qo +~,>_x K,, where 
Q0 is the square with vertices (0, 0), (1, 0), (1,'1) and (0, 1), and K, is the straight line 
interval from (1/n, 0) to (l /n,  1) for n _> 1 (Fig. 2). Then one can easily construct" 

*) For any finite words u = (ul �9 �9 �9 u,) ~ W(r), v = (vi �9 �9 �9 vs) E W(s), the composite word u o vis defined by 
(u~ .. �9 u, v~ .. .  vs) ~ W(r + s). 
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K a K2 K1 

Fig. 2. 

{f~),>_x such that Q = K ( f l , f 2 , " "  ") using compositions of a dilation, a rotation, a 
translation and f lx,  y) =xi2. 

Theorem 4.6 raises the following question: is it true or not that for any locally 
connected continuum Q c x,  there exists a finite set of weak contractions {fj}x zj_<m 
of X such that Q = K(fx, �9 "" ,fm)? In other words, is it possible to characterize locally 
connected continua by the self-similarity defined by (2.3)? 

Note that for a fixed m > 2, there exists a locally connected continuum Q c R '~ for 
which Qv~K(fl , . .  ",fin) for any m weak contractions {fj} of R m. For example, an 
(m-1)-dimensional sphere in R r" has the required property by the Lusternik-
Schnirelman-Borsuk theorem (Granas [15, p. 50]). 

Finally, combining Theorems 4.1 and 4.6, we have immediately 

COROLLARY 4.7 (Williams' Theorem D for m=2).  Let f t and f 2 be one to one 
contractions of X satisfying Lip( f l )+Lip( f2)<  1 and Fix(fl)~Fix(f2).  Then the 
mapping ~k : E ~ K ( f l , f 2 )  is a homeomorphism. 

5. Cut Points, End Points and Simple Links 

To state further properties of self-similar sets, we need some definitions. 

DEFINITION 5.1. A point p of a connected set Q is said to be a cut point of Q 
provided that Q - p  is the sum of two mutually separated sets; an end point of Q 
provided that there exist arbitrarily small neighborhoods of p in Q each of whose 
bounda¡ consists of  a single point. Two points p, q of a connected set Q are said to 
be conjugate provided that no points separate p and q in Q. I fp  is neither a cut point 
nor an end point of  a connected set Q, the set consisting o fp  together with all points 
of Q conjugate to p is  called a simple link of Q. A continuum Q is said to be an acyclic 
curve provided that it is locally connected and contains no simple links. 

It is known that any simple link of a continuum Q is a nondegenerate continuum; 
that is, it contains more than one P0int ([53, p. 64]). Every point of Q is either a cut 
point, an end point o r a  point of a single simple link of Q. We now state our main 
theorem in this section. 
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THEOREM 5.2. Suppose that {fj}l_<~_<m is a finite set of  one to one weak 
contractions of  X such that Fix(f/) # Fix(fj) for some i # j .  Suppose further that the set 
K = K ( f l ,  �9 �9 ",fin) is ah acyclic curve. Then either K is a simple arc of K has ah infinite 
number of  end points. 

Proof. Put K(w) =fw, o . . . .  fw,(K) for any w = (w 1 . . .  w,) ~ W(n). Suppose that 
K has a finite number of end points, say e 1, e 2, �9 �9 -, e N. Then it suffices to show N = 2, 
since a continuum is a simple arc if and only if it has exactly two non-cut points 
([53, p. 54]). Suppose, on the contrary, that N_> 3. The remainder of the proof is 
devoted to demonstrating a contradiction. 

1st Step.  There exists a finite word w ~ W(n) for some n for which every point o f  K(w) 
is a cut point o f  K. 

Proof. Suppose, on the contrary, that K(u) contains at least one of the end 
points of K for any u ~ W(n), n _> 1. Take a sufficiently large integer n so that 

1
diam(K(u)) < tY'(diam(K)) < -  min d(e i, e J),  (5. l) 

- 2 i , j  

for any ueW(n)  where f2(t)=maxl<~<mf2yj(t ). Obviously (5.1) contradicts the 
connectedness of K. Thus there exists a word w e W(n) possessing the requited 
property. Put F=f~  1 o . . . .  f~,  and p =Fix(F) for brevity. Evidently F(K)=K(w) has 
exactly N end points {F(ea)}. Note that p is n o t a n  end point of F(K). For otherwise, 
p =F(ea) for some j; hence p=ea,  contrary to the above definition of  K(w). 

2nd Step. There exists a simple arc Ajo in ing  ea and p for 1 <_j < N such that A i . A j =p  
for any i # j .  

Proof. Since F(ea) is a cut point of K, we have a separation 

K -  F(ea) = P(j) + Q(j),   (5.2) 

where /~(j)" Q(j)= P(j)" Q(j) = ~b and P(j) contains the connected set F(K)-F(ea). 
Then there exists a non-cut point qJ of  Q(j) such that qJ # F(ea) since Q(j) = Q(j) + 
F(ea) is a nondegenerate continuum. Evidently q1 is an end point not only of Q(j) but 
also of K. We also have qi # qj for any i ~ j  since Q(t). Q(j) = ~b for any i #j .  Therefore 
Q(j) has exactly two end points q~ and F(ea); hence Q(j) is a simple arc. Thus this 
enables us to define the permutation rt on the set { 1, 2, �9 �9 N} such that e a = q~(~) (Fig. 
3(a)). 

Now we define 

Si(n ) = Q(rt(j)) + F(Q_.(rtz(j))) + . . .  + F" -  '(O(="(j))). (5.3) 

Then (5.3) implies that Si(n) is a simple arc joining ea and F"(e""u)), and that 
S~(1)<Sj(2)<. - �9 (Fig. 3(b)). Put A~=lim,.~o Si(n) in cg(X). We first show that the 
set A~ is a simple arc. For otherwise, p e Q(/) for some i; hence p i s  an end point of 
F(K), contrary to the result in 1st Step. We next show that A i . A j = p  for any i # j .  For 
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e j 

(a) 

F(e~(J)) 

n 1 / Fiel(J)) 

(b) 
Fig. 3. (a) F(K) is the heavy r The cnd points of K and F(K) are indicated by 

�9 and (3 respectively. 
(b) Simple arc Si(n). 

otherwise, there exist two integers r > s  satisfying 

F ~- 1 (Q(Ÿ F ~- 1 (O(~( j ) ) )  ~ ~b. (5.4) 

Since Q(•'(0)" Q(Tff(j)) = ~b, we have r > s; hence F ' - ' ( O ( r g ( 0 ) ) .  Q(rc'(j)) ~ q~. Then it 
follows that  F(e ~s~ ~ F" - ~(Q(rg(i))) since F(e ~s(j)) = F(K).  Q(r?(j)). Hence  r - s = 1 and 
r c ' - l ( t ) = ~ ( j ) ,  con t ra ry  to iv~j. Thus  Ai .A j=  p for any ivLj as required. Note  that  
A i + A j  is a simple arc jo ining e i and e j th rough  the point  p. 

3rd Step. We are n o w  ready to prove  our  theorem. Let  f~ be one o f  the weak 
contract ions {f~} satisfying p ~ Fix(fs). No te  tha t  every point  o f  f ,  o F(K) is a cut point  
o f  K s incef ,  : K ~ K ( s )  is a homeomorph i sm.  By the same a rguments  as in 1st and 2nd 
Steps, we conclude tha t  for  any iv~j, there exists a simple arc jo ining e i and e j through 
the point  p '  = Fix(fs  o F) # p .  

Consider  now three end points  e 1, e 2 and e 3. Since Ai .A i=  p for  any  i# j ,  there 
exist at  least two simple arcs, say A 1 and A2, such that  p '  r A 1 + A 2. Thus  we have two 
different simple arcs joining e ~ and e 2. This  contradicts  the fact tha t  a locally 
connected con t inuum is an acyclic curve if and only if there exists a unique simple arc 
joining any two points  ([53, p. 89]). This completes  the proof .  [ ]  

A finite sequence o f  sets {Q1, Q2, " " ", Q,} is said to be a regular chain provided 
that  Qi- Qi § 1 consists o f  exactly one point  for  any 1 < i < n -  1 whereas  Q~. Qj = ~b if 
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I i - j ]   > 1. Then we have 

THEOREM 5.3. Let {fi}1 <_j<_,, be a finite set of  one to one weak contractions of  X 
satisfying F i x ( f ) # F i x ( f  i) for some iv~j. Let Kj=f~(K( f l , . .  ",fin)); l < j < m ,  for 
brevity. For any i# j ,  suppose that the set K~.Kj consists of  at most one point and that 
there exists a unique regular chain joining Ki and Kj. Then either K = K ( f l ,  "~ " ,f~) is a 
simple arc of K has an infinite number of  end points. 

Proof By Theorems 5.2, it suffices to show that  K is acyclic. Suppose, on the 
contrary,  that  K has a simple link. Since any two conjugate points o f  a locally 
connected cont inuum lie together  on a Jordan closed curve [53, p. 79], there exists a 
Jo rdan  closed curve J in K such that J< K(w) and J'fw(K'~)v~ c~ v~ J.fw(K'~) for  some 
w~W(n)  and some r~s ,  where K Ÿ  i. Hence J '= fw l ( J )  satisfies 
J ' .  K~ ~ ~b ~ J ' .  K~, cont rary  to the assumption. [ ]  

EXAMPLE 1. Let  X =  C with the usual Euclidean distance and put  

fz(z) = ce~ and f~(z) = [ ce 1~ + (1 - [  ce [z)e,  (5.5) 

where ce is a complex parameter  satisfying [ ce I < 1, [ 1 - ce ] < 1 and Im ce # 0. Then it is 
easily seen that K =  K(f~, f2) is not  a simple arc and that  K~ .K~ = Ice [z; hence K has an 
infinite number  o f  end points (Fig. 4(a) and (b)). 

Ÿ 

(a) ~ = L +   x/3  i.  
2 6  

. ~ '~~�91 . 

(b) ~=0.3 +0.3i.  (c) L› curve. 
Fig. 4. 

EXAMPLE 2. There exist two contract ions f~, fz such that  the set K =  K(f~,f2) 
has an infinite .number o f  simple links. For  example, let X = C  and put  

f l (z )=cez  and f z ( z ) = ( 1 - c e ) z + c e ,   (5.6) 

where ce is a complex parameter  satisfying I ce I < 1 and ] 1 - ce J < 1. It was pointed out  
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by L› [28] that for ~=  1/2+i/2, the measure of K is positive and that the set of 
multiple points of  K is uncountable and dense in K (Fig. 4(c)). 

6. Parameterization 

In this section, we will discuss the parameterizations o f  self-similar sets using 
some kind of  functional equations. First of  all, we have 

THEOREM 6.1 (de Rham [42]). Let f l  a n d a  be two contractions o f  X = R  p. Then 
the functional equation 

[ fl(G(2t)) for O<t <_ 1 , 
(6.1) 

G(t) = [ f2(G( 2t _ 11)) for ~ < t < l ,  

has a unique continuous solution if  and only i f  

f~ (Fix(fz)) =f2(Fix(ft)) �9 (6.2) 

Note that de Rham's theorem gives a parameterization of  the set K(f~,f2) if the 
condition (6.2) is fulfilled. Indeed, we have 

and therefore G([0, 1]) =K(f~,f2) by Theorern 3.1. 

We now generalize de Rham's Theorem 6.1. The following definitions are 
essentially taken from Milnor-Thurston [35]: 

DEFINITION 6.2. A continuous function h of la, b] is said to be piecew#e-
monotone provided that the interval [a, b] is subdivided into finite subintervals so that 
the restriction of  h to each subinterval is strictly monotone. 

DEFINITION 6.3. For any function H:  [0, 1]--,[0, 1], define the mapping vu: 
[0, 1]--,2; by setting 

vn(t) = (A(t), A(H(t)), . . ., A(tP(t)),  . . . ) (6.3) 

where A(t) = [mt] + [1 - ti for 0_< t <_ 1. vn(t) is called the itinerary of a point t under H. 

Note that VIl is discontinuous for any H sinee Z is tota!ly disconneeted. 
However, for some kind of H, the mapping v n is 'almost continuous' in the following 
sense. 

LEMMA 6.4. Let hi: [( j -1) /m,j /m]~[O, 1] be piecewise-monotone for any 
1 <_j<_m. Put H(t)=h,~to(t)for brevity. Then there exist the limits VIl(S• in Z f o r  any 
0 < s <  1. Moreover v n is continuous on 
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F u = {t E [0, 1];/-P(t) ~j /m for any n >0 and 1 < j < _ m -  1 },  (6.4) 

which is a dense set of[O, 1]. 

Proof For  any fixed se (0 ,  1) and N > I ,  there exists a sufficiently small e > 0  
such that each o f  the functions 

H(t), H2(t), . . .  , HN(t) (6.5) 

is strictly monotone ,  either increasing or decreasing on (s, s + e) and that  each of  

A(t), A(H(t)), . . ., A(HN(t)) (6.6) 

is independent  o f  the choice o f  t E (s, s + e). Obviously this implies that  vn(s +)  exists. 
Similarly v u ( s - )  exists for  any 0 < s <  1, Suppose now s e F w Then  it follows that  
each o f  the functions (6.6) is cont inuous in a sufficiently small ne ighborhood  of  s. 
Therefore  v u ( s + ) = v u ( s - ) = v n ( s ) ;  hence vu is cont inuous at s. Since each hi is 
piecewise-monotone,  the set ~,,j = { t;/-/"(t) =j/m} is finite; hence FH = [0, 1] -- ~,,~ 7.,j 
is obviously dense in [0, 1]. [ ]  

Using this lemma, we can prove the following generalization o f  Theorem 6.1. 

THEOREM 6.5. Let  {fj}l_<j_<., be a finite set o f  weak contractions o f  X and 
{hj}l <_j<_m be the same functions as in Lemma 6.4. Then the functional equation 

1
fa(G(hl(t))) for O<_t <_--, 

m 

c , ( t )  = (6.7) 

m - 1  
fm(G(hm(t))) for <_ t <_ 1, 

m 

has a unique continuous solution G: [0, 1]-~X i f  and only ir 

~ov~(~+)~~~v~(~ ) ~o, an~ ~~~~m~ ,68, 
where ~ : ~ ~ K(ft ,  "" ",fin) is the mapping defined in Theorem 3.2. I f  in addition each hi 
is onto, the continuous solution G of(6 .7)  satisfies G([0, 1 ] )=K(f l ,  " ' "  ,fin). 

Proof  Obviously the condit ion (6.8) is necessary, since we have 

G(t) =JATO ~ G o H(t) =fArO ~ ~ = ~bo vu(t) .  (6.9) 

We now show the sufficiency. Put  F(t) = ~ o Vu(t ) for  brevity. Then F is cont inuous on 
Fu by Lemma 6.4. The condi t ion (6.8) implies F((j/m) + ) = F((j/m) - )  for  1 _<j_< m - 1. 
Since F(t)=fAt o o F(H(t)) for  any t, it follows that  F(s+)  as well as F ( s - )  is equal to 
one offats~ ~ F((j/m)+_) for  any se71.j. Therefore  F ( s + ) = F ( s - ) .  Similarly one can 
show that  F ( s + ) = F ( s - )  for  any sET,.j, n_> 1. N o w  define f f(t)=F(t) if t e  F H and 
f f ( t )=F( t+)  otherwise. Then  it is easily seen that  P i s  cont inuous on [0, 1]. Since 
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H(Fn) c Fn, we have 

P(t)=fj(P(hj(t))) for t~F  H �9 (-Jm 1 j ) 
m 

Hence ff is a continuous solution of (6.7) since Fn is dense in [0, 1]. The uniqueness of  
such a solution follows from (6.9). It is obvious that G([0, 11) = K(f~, �9 �9 ifeach hi 
is onto for the continuous solution G of (6.7). This completes the proof. [] 

Applying the above theorem to the case h~=mt- j+  1, we have 

COROLLARY 6.6. Let {fi}l_~j_~,~be a finite set of weak contractions of X. Then 
the functional equation 

fl(G(mt)) for 0 < t <_--, 
m 

G(t) = (6.10)f 1  
fm(G(mt-m+l)) for m - l < t < _ l ,  

m 

has a unique continuous solution if and only ir 

f2(Fix(f~ )) =f~ (Fix(f/)) , .  �9 f,,(Fix(f~ )) =fin - .1 (Fix(fm)) �9 (6.11) 

The continuous solution G of (6.10) gives a parameterization of  K(f~, . . .  , f / )  since 
each h i is  onto. The conditions (6.11) are frequently referred to as the D-conditions. 

As applications of  this kind of functional equations, Denny [10] gave an example 
of  a uniformly continuous funct ionf:  Rm~(o, 1) which is almost everywhere one to 
one; the author [18] showed the existence of  periodic solutions of  a certain functional 
equation, which are continuous and of bounded variation. 

EXAMPLE. Consider the contractions defined by (5.5). Since f2(Fix(f2))= 
f2(Fix(fl)), it is easily seen that the continuous solution G of (6.7) for 

h l ( t ) = l - I ( 2 + x / 2 ) t - 1 1  and h2(t)=2t-1 (6.12) 

gives a parameterization of  the set K =  K(f~, fE) illustrated in Fig. 4(a) and (b). Note 
that hi has two fixed points (Fig. 5) and the set G(Zn>_O H - n 0 ) )  giyes all end points 
of K. 

1 

i / "  

0 1 

Fig. 5. 
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Finally we will study the case where G is a homeomorphism. Compare with 
Theorem 5.3. 

THEOREM 6.7. Let {fj}l _<j_<m be a finite set o f  one to one weak contractions of  X 
satisfying F ix ( f )  # Fix(ffi for  some i # j .  Suppose that the set { K~, . . . , Km} is a regular 
chain where K~=f~(K(fl, "" , fm) )  for l < j < m .  Then the set K = K ( f l ,  " ' ' , f r , )  is a 
simple arc if  and only i f  there exist linear homeomorphisms h~: [ ( j -  1)/m,j/m]~[O, 1], 
1 < j < m ,  such that ~b o v n satisfies the condition (6.8). 

Proofi We first show the condition is necessary. Suppose K is a simple arc. 
Since each K s is also a simple arc, the point Ki.Ki+l is an end point of both K i and 
Ki+l.  Let gr: [0, 1]--}Kj be a homeomorphism satisfying gs(1)=g~+~(O) for 
l < j < m - 1 .  Then G(t)=g.4t , )(mt-A(t)+ 1): [0, 1 ]~K becomes a homeomorphism. 
Define 

hj(t)=G - l o f f l o G ( t )  for j - l < t < j " "  
m m 

Then obviously h~: [(/'-1)/m, flm]~[O, 1] is a homeomorphism and G satisfies the 
equation (6.7); hence ~ o v n satisfies the condition (6.8). It is obvious that each h~ can 
be replaced by a linear homeomorphism/~j such that 

~ ' j ( ~ - ~ ) = h s ( - ~ )  and f[ ( J  ~ h ( J  ~J\m/= ~\m/ 
We now show the sufficiency. It suffices to show the solution G of (6.7) is a 

homeomorphism. Suppose, on the contrary, that G(tl)=G(t2) for some t~ <t  2. Let 
S = {(s, t); G(s)= G(t) for 0 <s, t < 1 }. Without loss of generality, we can assume 

[ t l - t • [ =  max [ s - t i .  (6.13)
(s,t)eE 

Then A(tl)<A(t` For  otherwise, we have (H(tl), H(t2))~ =- and I H ( t l ) - H ( t 2 ) I =  
m I t i  - t2 I, contrary to (6.13). Since {K1, �9 �9 Era} is a regular chain, i t  fol lows that 
A ( t l ) = A ( t 2 ) - l ,  say l. Thus G(t l)=G(t2)=G(1/m)=Kz.Kt+ t. Then (t 1, l/m)E =- im-
plies (ht(tx), ht(l/m)) ~ =- and I h l ( t l ) - h ~ ( l / m ) l = m l  ti -1/m I; hence t=- t~ >_ l -m h. 
Similar ly (t 2, l /m)~ E implies (hl+l(t2), hz+l(l/m))~ S and Iht+ l ( t2)-ht+l ( l /m) l  = 
m lt  2 - l / m  I; hence t 2 - t~  > t o t 2 -  l. Combining two inequalities, we have t I _> l/m for 
m >3,  contrary to A(t~)=L For  the case m = 2 ,  i t  is easily seen that t~ + t 2 = l and 
F i k ( f l )  =F ix ( f2 ) ,  contrary to the assumption. This completes the proof. [ ]  

REMARK. The condition of the above theorem for m = 2 takes the following 
form: {fx,f2} satisfies at least one of the following four conditions: 

(a) A(Fix(A)) =A(Fix(fl)); 
(b) fl of~(Fix(f0) =f2(Fix(f~)); 
(c) fŸ =A oA (Fix(f2)); 
(d) f~(Fix(fxof2))=f2(Fix(f2oA)). 
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EXAMPLE. Let X = C  with the usual Euclidean distance and 

f l (z )=~Z and f2(z)=(1-~)z+~, (6.14) 

where cr is a complex parameter satisfying I ~ I < 1 and I 1 - ~ I < 1. Since {f~, f2} 
satisfies the D-condition (6.11) and 1(1"1(2=~ for any [ ~ - 1 / 2 1 <  1/2, i t  follows that 
K = K ( f l , f 2 )  is a simple arc by Theorem 6.7; hence dimr(K) = 1. Note that Riemann's 
outer area of  K is always zero by Theorem 4.2. Compare with the examples given by 
Osgood [39] and by Besicovitch-Schoenberg [2], which are simple arcs with positive 
area. On the other hand, i f l ~ -  1/21 > 1/2, it is clear that K ( f ,  f2) is a closed triangle 
with vertices 0, 1 and ~ (Fig. 6(a)); therefore d imr(K)= 2. It was pointed out by de 
Rham [42] that for ~ = 1/2 + x/3-i/6, the solution G of (6.10) gives the curve studied by 
von Koch [25] (Fig. 6(b)) and that for ~ = 1/2 +e~~ G gives the space-filling curve 
studied by P£ [41]. 

Xm ~ 
l Peano curves 

-- " ~ Re  
0	 1	 0	 I	 

(a)	 (b) 
Fig. 6.  

7. Regularity of G	

In this section, we will discuss the regularity of the continuous solution G of 
(6.10). Throughout  this section let X be a closed subset of  a Banach space E and 
{fj}l<_j_<,. be a finŸ set of weak contractions of X satisfying D-conditions (6.11). 
First of all, we have 

THEOREM 7.1. The solution G is H6lder-continuous with exponent ~= 
- log 6/log m, where fi = maxl < i <,. Lip(fj). 

Proof For  any t 4: s, let n be an integer such that m-  ~- 1 < [ t -  s I _< m-".  Then it 
is easily seen that G(t), G(s)~K(w)+K(w' )  with K(w).K(w')v~ck for some 
w, w' ~ W(n). Therefore [I G(t) - G(s)11<- diam(K(w)) + diam(K(w')); hence 

llC4O- c-(s) 11 
< 2m = diam(KXam=)" < 2m = diam(K). []

q ~ 



401 On the Structure of Self-Similar Sets 

A mappingf :  [13, 1]---,E is said to be of  boundedp-variation provided that 

where the supremum extends over all subdivisions A: 0 = t  o < h  < ' " < t n =  1 of 
[0, I]. For p =  1, we usually say that f is of  bounded variation. Note that every 
H61der-continuous mapping with exponen te  is of  bounded 1/e-variation. Then 

THEOREN 7.2. Supposethat each f j is one to one and Fix(f~)r  I f  { f  j} 
satisfies for some ~ > O, 

(L ip ( f f  1))-~ > 1, (7.2) 
j = l  

then the solution G is not o f  bounded ot-variation. 

Proof Let v(n, j) -- [[ G(j/mn) - G( (j - 1)/m~)[[, 1 < j < m  ~, n >  1 for brevity. Then 
it is easily verified that 

(v(n,j))'>_ (Lip(f f l ) )  -~ �9 ~ ( v ( n - l , j ) ) ' .
i=1 i = 2  

Therefore, by (7.2), it follows that G is not of  bounded ~-variation, since v(0, 1)= 
IIFix(f0-Fix(fm)ll #0 .  [ ]  

We now turn to the differentiability of G. In this respect, we have the following 
theorem by applying the same method as in Lax [27]. 

THEOREM 7.3. Suppose that {fj} satisfies 

Ira/Lip(fj) < m -'~. (7.3) 
j = l  

Then the Fr› derivative DG(t) of  the solution G is equal to zero for almost every t. 

Proof. Since alrnost every number is normal in the scale of m (Billingsley [3, p. 
34]), it suffices to show that DG(t)=0 for every normal number t ~ [0, 1]. Let s #  t be 
an arbitrary number and let t = ~~_> 1 tnm- ~ and s = ~~ >_ 1 s~m- ~. Let N > 1 be the 
smallest integer such that tN # s N and let M > N be the smallest integer such that t u > 1 
or tu < m - 2  according to whether t > s o r  t < s respectively. Then it is easily veri¡ 
that 

m - U < l s - t l < m  -N+~ and M = N + o ( N )  as N ~ o o .  (7.4) 

Note that (7.4) implies s--,t if and only if N ~ o o .  
On the other hand, we have from the equation (6.10), 

IIG(s)-G(t)ll <diam a J , (7.5) 
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where aj=Lip(f~) and r i=#{l  <_i<_N- I; t~=j} for I <_j<m. Since r j = N / m + o ( N )  as 
N--)~,  we have from (7.5), 

C,(s)- G(t) 
_<diam(K)exp l ~  mm 1-1 aj +o(N)  . 

s - - t  \ m  \ j=l 

Since m m l-I~m= x aj < 1, it follows that DG(t) = 0. This completes the proof. [] 

COROLLARY 7.4. Suppose that each f ~ is a strictly monotone increasing function 
and Fix(f0 < Fix(f,,). Suppose further that {fj} satisfies (7.3). Then the solution G is a 
strictly monotone increasing and purely singular function. 

Proof  Since {f~} satisfies (6.11), it is clear that the set K =  [Fix(f0, Fix(fm)] and 
{K~} is a regular chain. Hence G is a homeomorphism by Theorem 6.7; therefore it is 
strictly monotone increasing. Also it follows from Theorem 7.3 that G'(t)= 0 almost 
everywhere. [] 

EXAMPLE. Consider the contractions defined by (4.1). If  a + b = 1 (this is also a 
special case of (6.14)) and a r  1/2, { f ,  f2} satisfies the conditions of Corollary 7.4; 
therefore Ga(t)= G(t) is a strictly monotone increasing and purely singular function 
witia a parameter a. This function was studied by Salero [47]. Ir is known that Ga(t) is 
the distribution function for the Bernoulli trials of unfair coin tossings. See also 
Lomnicki-Ulam [29] and de Rham [42, 43]. 

Concerning the non-differentiability of G, we have 

THEOREM 7.5. Suppose that each f j  is one to one and that {fj} satisfies 

f i  Lip(/71) < m m . (7.6) 
j = l  

Then the solution G is not Fr› differentiable at almost every t. I f  in addition 
L i p ( f 7 1 ) < m  for any 1 <_j<_m, then G is nowhere differentiable. 

Proof  We first show the non-differentiability of G at every normal number t. 
Let t=~'. ,>lt,  m-".  For any N > I ,  take a suitable number Su~[0, 1] such that 
liG(sN) -- G(HN(t))II >- (1/2) diam(K) where H(t) = t o t -  A(t) + 1. Put t (m = ~Ÿ 1 tjm - j  + 
SNm -u. Then from the equation (6.10), 

1
11G(t<N))- G(t) l[ >~-diam(K) f i  b~J, (7.7) 

j = l  

where bj=(Lip(fTt) ) -~  and rj=#{l<_i<_N; ti=j} for l<j<_m. Since 
I t ~m - t [ < 2m- N, we have 

N " 
t~--(N~-- t - - 4  k m \ j= l 

Hence (7.6) implies that G is not differentiable at t. 
Next assume that mbj> 1 for 1 <_j<_m instead of (7.6). Then the same argument 
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as above can be applied to an arbitrary t, since 

f i  hrJ>h; v 

where b,  = mini <j<m bj > I/m; hence 

[ G(t~m) -G( t )  > I . . . . . . . .  N  
] _-4-alam(/,Q[mo.) . 

This completes the proof. []  

EXAMPLE. Consider the contractions defined by (6.14). Then, by Theorem 7.1, 
the solution G~(t)=G(t) of (6.10) has H61der-exponent 

log max(I ct 1, I 1 - ct [) 
log 2 

In particular, Koch's curve (~= 1q is H61der-continuous with exponent 
log 3/log 4, which can not be replaced by any larger value by Theorem 7.2. For almost 
every t, G'~(t)= 0 of G~(t) is not differentiable according to whether ]c t(1 - c 0 l <  1/4 of 
> 1/4 by Theorems 7.3 and 7.5. Note that the boundary curve I~(1-~t) I--1/4 is a 
lemniscate (Fig. 7). Moreover, ir I~l> 1/2 and 1 1 - a l >  1/2, then G~(t) is nowhere 
differentiable, as shown by de Rham [43]. For P£ case (ct = 1/2 + el~161the above 
results were shown by Lax [27]. 

Im 

Fig. 7. 

8. Reversed Equations 

Recall that in Section 6 we obtained the continuous solution G of (6.7) using the 
diagram: 
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[0, 1] G ~ K ( f l ,  �9 �9 ",f . , )  
(8.1) 

Of course, such a solution does not exist if K =  K(f l ,  �9 �9 . , f , , )  is not connected. Here 
we will discuss the existence of a non-trivial continuous mapping R which maps 
K(f~, . . .  , f . ,)  into [0, 1]. Let {gj}x s j z "  be a finite set of weak contractions of X=[0, 1] 
with the usual Euclidean distance and 4"  =qJ : 2;~K(g~, �9 �9 ", gr,). Then the desired 
mapping R will be obtained by the diagram: 

R 
K ( f .  . . . , f . , )  , K ( o .  . . , •.,) = [0, 1] 

(8.2) 

Indeed, we have 

THEOREM 8.1. Let {fj}l_<j_<., and {gj}a_<j_<., be two finite sets o f  weak con-
tractions o f  X and [0, 1] respectively. Then the functional equations 

{ R ( f l  (x)) = g x (R(x))  
(8.3) 

.R(fm(x)) = g.,(R(x)) 

have a unique continuous onto solution R:  K(fa, . . .  , f , , )~K(ga ,  " " ,  9.,) i f  and only i f  
ql*( ~) = ~0 "([3) whenever ql( ~) = ~O(fl). 

Proof. It is clear that the condition is necessary, since 

R ( q 4 ~ ) )  = R ~ ~ qJ(~(~))  = 0~1 o q 4 ~ ( ~ ) )  = ~=, o g~2 . . . .  = qJ*(~) (8 .4 )  

for any ~e2;, where a :  2;~2; is the left-shift transformation. 
We now show the sufficieney. Define the mapping R: K(f~,." ",f,,)--* 

K(g l , ' "  ", g,,) by R(~b(a))=~O*(~). The condition of the theorem implies that R 
is well-defined. Then it is clear that  R satisfies the equations (8.3). We must show 
the continuity of R. Suppose, on the contrary, that R is discontinuous at ~0(~r for 
some ~ ~ 2:. Then there exists a sequence {a (")} in Z such that 

I qJ*(~)- qJ*(~(")) I _> 6 > o (8.5) 

and qJ(cr as n ~ ~ .  Without loss of generality, we can assume :r191 as 
n~oo.  Then we have ~O(~)=~(~) and therefore ~b*(~)=qJ*(:r contrary to (8.5). The 
uniqueness of such a solution is obvious from (8.4). [] 

As a corollary, we have immediately 

COROLLhRY 8.2. Let {f~}lsj_<., be a finite set o f  weak contractions o f  X such 
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that {fi(K)}l_<j_<mare pairwise disjoint where K = K ( f l , "  ",fin)" Then for any weak 
contractions {9j}1 <-S<-m of[O, 1], the reversed equations (8.3) have a unique continuous 
onto solution R" K(fl, " " , f m ) ~  K(91, " " ,  9m)" 

EXAMPLE 1. Consider the contractionsf~,f2 defined by (4.1) and put 

+ 1 (8.6)gx(t)= 2 and g2(t)=t2 

If a+b< 1, the mapping ~b: S.~K(ft , f2 ) becomes a homeomorphism by Theorem 
4.4. Then there exists a unique continuous onto solution R, ,b=R:  
K(fl,f2)--*K(gl, g2)=[0, 1] by Corollary 8.2. Note that Ra, bis monotone increasing 
and there exists a unique extension/~a,b : [0, 1]~[0, 1] of Ra, b, which is also monotone 
increasing and satisfies the equations (8.3) for any x~ [0, 1]. In particular, if a=b= 
1/3, Ra, b(t) is the well-known Cantor function. The functional equations for the 
Cantor function were studied by Sierpifiski [48]. Note that, if a = b ( < 1/2), it is easily 
seen that 

La(t)=-f~eitXdRa,a(t)=eti/2�98 ) . (8.7) 

It is known that La(t) is not absolutely continuous (Kershner-Wintner [24]). 
Carleman [6, pp. 223-226] has shown that L,(t ) does not tend to 0 as I t [~  oo, if a = 
q- l ,  where q=3 ,4 ,  5 , - . . .  Kershner [23] has shown that La(t)=O((loglt]) -~) if 
a =p/q, not the reciprocal of an integer, while fl is a positive function ofp  and q. Note 
that this gives an example of a continuous function which is not absolutely 
continuo¨ and satisfies the Riemann-Leb'esgue lemma. See also Erd6s [12]. 

EXAMPLE 2. De Rham [44] gave an example of a C 1-function flx, y) with two 
variables such that the set 

f ( { ( x '  Y); ~ x = ~ y = ~  

contains an interval, which is analogous to Whitney's example [52]. De Rham's 
funct ionf is  an extension of the solution R of (8.3) for certain affine contractions of 
the plane satisfying the condition of Corollary 8.2. 

EXAMPLE 3. If the continuous solution G of (6.7) is a homeomorphism and 
each h i  ~ is a weak contraction of [0, 1], then it is clear that R=G -1" 
K(fl, "" ",fm)~[0, 11 satisfies the equations (8.3) for oj=hf  1, 1 <_j<_m. For example, 
let X=[0, 1] with the usual Euclidean distance and put 

x 1 
- ( 8 . 8 )fl(x) 1 + x a n d  f2 (x )  = 2 - x 

Then it is easily seen that the solution R=G - 1  [0, 1]--}[0, 1] of (8.3) exists for the 
contractions 0~, 02 de¡ by (8.6), which is known as Minkowski's function [36]. It 
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was proved by Denjoy [8] that R(t) is purely singular. See also Salem [47]. 

9 .  S p a c e - F i l ¡  C u r v e s  

In this section, we will discuss various properties of the classical space-filling 
curves, which will be obtained by the continuous solution G of the equation (6.7) for 
certain simple affine contractions. 

We denote by q the p-dimensional cube given by [0, 1]v. The following theorem 
is a standard result. For the proof, see Vitushkin-Khenkin [51]. 

THEOREM 9.1. Suppose that p < q and f :  lP--*lr an onto H6lder-continuous 
mapping with exponent cc Then ~t<p/q. Moreover, there exists an onto H61der-
eontinuous mapping f : lV ~I~ with exponent p/ q - e  for any e>0. I f  in addition p divides 
q, then one can take e to be zero. 

EXAMPLE 1. In 1890, Peano [40] gave the first example of a continuous planar 
curve Pi(t) filling the unit square q with vertices 0, 1, 1 + i  and i. It is easily seen that 
P~(t) is a continuous solution of (6.10) for the nine affine contractions: 

" f l ( z )=3", f2(z)= - 3  ql+i3 f a ( z ) = 3  + ~ - ;, 2i 

f 4 ( z )=3  q 1 +3i" z 2+2 i .  3 1 +i  (9.1)- ~ - - - ,  f s ( z ) = - ~ - + ~ ~ - - ,  f6(z)---- +---~-, 
Z 2 . - -

fT(z)=~-+~- ;  f s ( z ) = - 3  -q ' f9(z)=3-{2+2i3 

Then, it follows that Pi(t) is nowhere differentiable by Theorem 7.5 and satisfies 

[IPl(t)- Pl(s) ll < 3x/5-- I t - s  i1/2. (9.2) 

Note that the exponent 1/2 in (9.2) can not be replaced by 1/2+e for any e>0 by 
Theorem 9.1. This also follows from Theorem 7.2. Ces~tro [7] gave the analytic 
formula for PI and Moore [37] discussed a generalization of P1 by geometrical 
observation. Using Moore's construction, Milne [34] gave an example of a mapping 
f :  i i~q which is H61der-continuous with exponent p-1 and measure-preserving, 
that is,/~p(A) = Pi (f-I(A)) for any Borel subset A of P' where pp is the usual product 
measure on F. 

EXAMPLE 2. In 1891, Hilbert [20] gave a simpler example of a continuous 
planar curve P2(t) ¡ q It is easily seen that P2(t) is a continuous solution of 
(6.10) for the four affine contractions: 

i z i 
fx(z)=~-z; f2(z)=T+5- ; 

(9.3) 
z 1+i  i 2+ i  

/ 3 ( z ) = T + - - ~ - ;  f4(z) = - 2  -~q 2 
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Then P2(t) is nowhere differentiable and satisfies 

II P2(/) - P2(s) II -< 2x/3- I t - s i1/2. (9.4) 

EXAMPLE 3. Sierpifiski [49] gave a slightly different example of aplanar  curve 
P3(t) filling the square with vertices 1 +i ,  - 1 +i ,  . -  1 - i  and 1 - i .  P3(t) is a unique 
continuous periodic solution with period 1 of the equation (6.7) for the four 
contractions: 

[ �9 f2(z)=~(z--l--i); f l ( g ) = ~ - ( Z - - 1 - i); 
(9.5)

i 1
f3(z)= - ~ - ( z -  1 - i ) ;  f4(z)= - ~ - ( z -  1 - i )  

and hi( t )=4t- 1/8 (mod 1) (Fig. 8). 

1 

1' ~. 

I/"/ 
I 

. . . .  ~7' 

0 1 

Fig. 8. 

Note that {fj} satisfies 

f~ of,(Fix(f2)) =fz of,(Fix(fz)) =f3 of,(Fix(f2)) =f,2(Fix(f2)). 

We have ~~"=1 (LiP(fj)) 2 = 1 in all examples. 

10. H a u s d o r f f  D i m e n s i o n  o f  S e l f - S i m i l a r  Se t s  

We begin with some definitions. 

DEFINITION 10.1. Fo r  any ~ > 0 and U~  X, we shall denote, for each e > 0, by 
A~(U) the lower bound of the sum ~._>1 (diam(S.)) ~ where {S~},>_I is an arbitrary 
covering of U consisting of closed spheres of diameters less than e. When e ~ 0 + ,  
A~(U) tends to a unique limit A~(U) (finite or infinite), which we shall call the a- 
dimensional outer measure. Then there exists a uniquely determined number such that 

sup {cz; A,(U) = oo } = inf{~; A,(U) = 0}, 

which we shall call the Hausdorffdimension of U and denote by dimn(U). 

The function of a set A~(U) thus defined is an outer measure in the sense of 
Carath› It is known that every Borel set is measurable and every set is regular 
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with respect to this measure (Saks [46, p. 53]). 

First of all, we have 

THEOREM 10.2. Suppose that {fj}t _<~_< mis a finite set of  weak contraetions of X. 
Then dimn(K(f  1, " . . ,  fin))-< 2 where 2 is given by 

(Lip(fj)) ~= 1. (10.1) 
j = l  

Proof. Fix an arbitrary x > 2. Consider a closed sphere S containing the set K =  
K ( f l , ' " , f m ) .  Put fw =fwl o . . .  ofw, for any word w=(v~ 1 . . .  w,). Then we have 

A~(K)< ~ A~(f~,(K))< ~ A~(f~(S))<(2diam(S)) ~ (Lip(fj)) ~ , 
we W(n) w ~  W(n) "=  

where ~=2f2"(diam(S)) and t2(t)=maxl<_j<_mf2ij(t ). Taking the limit as n~oo,  it 
follows that A~(K)=0. This completes the proof. [] 

THEOREM 10.3. Suppose that {f~}t_<j_<~ is a finite set of  one to one weak 
contractions of)( .  Suppose further that {fj(K)} t <_j<_m ate pairwise disjoint where K= 
K(fl, "'" ,f=). Then dimn(K) >2 where 2 is given by 

(Lip(ff  1))- ~= 1. (10.2) 
j = l  

Proof. Fix an arbitrary x < 2. By assumption, we have dist(f~(K), fj(K)) > p > 0 
for any i#j .  Consider now an arbitrary closed sphere S satisfying S. K #  q~. 

Suppose first that S-K consists of more than one point. Then there exist an 
integer n = n ( S ) > 0  a n d a  word w=w(S)eW(n)  such that S.K<f~(K) and 
S.fwoi(K) # ~b # S'f~oj(K) for some i#j .  Note that diam(S)> a~, . . .  aw,p where aj = 
(Lip( f i l ) )  -1 for l < j < m .  

Suppose next that S . K  consists of exactly one point. Then we can take a 
sufficiently large integer n = n(S) a n d a  word w = w(S) E W(n) such that S" K= S.fw(K) 
and diam(S)>a~l . . .  a~,p. 

Thus, for any finite covering {Si}j_>1 of K, we have ~wtsj)f~(K)=K. Therefore 

(diam(Sj))" > p~ ~ (aw, " "  aw.)" > p" ~ P(fw(K)) > p~p(K) = p~, 
j _> I w(Sfl w(Sfl 

where /~ is the probability measure such that /~(f~(K))=(a,~. . .  aw,) ~ for any w. 
Hence A~(K)> p~. This completes the proof. [] 

In the case X =  R p with the usual Euclidean distance, the following theorem is 
known. For the proof, see Falconer [13, pp. 118-124]. See also Moran [38], Marion 
[31], and Hutchinson [22]. 

THEOREM 10.4. Let {fj}~ ___j_<,~ be a finite set of contractions of  X = R  p satisfying 
]~(x)-fj(y)]] =Lip(fj)] lx-y]l  for any x , y ~ X .  Suppose that there exists a bounded 
open set V such that ~ j ~ ~ f j ( F ) ~ V  and f~(F).fj(10=~b for any i#j.  Then 
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0 <Aa(K(fl ,  " '" ,fin)) < oo; therefore dimH(K) = 2 where 2 is given by 

(Lip(fj)) x= 1. (10.3)
j=l 

EXAMPLE 1. Consider the contractions defined by (4.1). If  a + b .< 1, it follows 
that dimn(K(f~,f2))=2 where aa+ba= 1 by Theorems 10.2 and 10.3. In pa/'ticular, 
for Cantor's ternary set (a=b=l/3) we have dimH(K)=log2/log3. For  the con- 
tractions defined by (5.5), one can easily verify that {f~,f2} satisfies the condition of  
Theorem 10.4. Hence dimH(K) = 2 where 2 is givenby [ ct la + (1 - [ ~ 12)a = 1. Note that 
dimn(K) is discontinuous at every real ~t. On the other hand, the contractions defined 
by (5.6) does not presumably satisfy the condition of  Theorem 10.4 for Im ~t ~0.  

EXAMPLE 2. Let X=[0,  1] with the usual Euclidean distance and put 

1
fj(X)-x+nj for l<j<m,  (10.4) 

where ni, �9 �9 ", nm are m distinct positive integers. Then K(fl, �9 �9 ",fin) is the set of all 
continued fractions each of  whose partial quotients is either n 1, �9 �9 n i_  1 or n, ,  since 

1 1 
~b(~t)=f~l~176 - n ~ l +  n~~+ for any ~ =(~ , )~ Z .  

Using Theorems 10.2 and 10.3, one can easily obtain lower and upper estimates for 
dimn(K). In this respect, see Good [14]. Moreover one can get better estimates using 
the following fact repeatedly: 

K({fj} 1 <_j<_m)=K({fj, ~ _<~,_<m). (10.5) 

EXAMPLE 3. Let X= C with the usual Euclidean distance and put R.(z)= 
az(1 -z )  where a is a real parameter satisfying a > 4. It is known that the Julia set J .  

for R,(z) is totally disconnected and contained in [0, 1] (Brolin [5]). Then it is easily 
seen that if a_>2 +x/5- ,  Ja coincides with the set K(ft ,f2) where 

1 ~ x and f 2 ( x ) = l - ~  l x  (10.6)
f l (x)=-2  -+  a 4 a 

From Theorems 10.2 and 10.3, it follows that if a _>2+2x/-2-, 

log 2 log 4 
< dimH(K) < ~ - .log a - - log(a z - 4a) 

Using (10.5), we also have the following asymptotic expansion: 

log 2 , 1 . 
di -~K)=loga-a+O(a  -2) as a--.oo. 
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11. Williams' Problem 

Throughout this section, we will restrict ourselves to the case X = R  p with the 
usual Euclidean distance. The following theorem has been shown by Williams. 
Compare with Theorem 4.1. 

THEOREM 11.1 (Williams [54]). Let {fl,f2} be two one to one contractions o f  R 

such that Fix(f0 ~ Fix(f2) and that 

Lip(fl- 1) -1  ._]_ Lip(f21)-  1 > 1. (11.1) 

Then the set K ( f l , f z )  is a closed line interval. 

Here we will give a simple proof for this, which is completely different from Williams' 
proof. 

Proof  Let Lo be the smallest closed interval containing the set K=K(�93 
Then there exist ~,/~ ~ Z" such that Lo = [~(~), ~(/~)]. Since fio ~O(~), f j  o ~(~) ~ K, we 
have Lo ->fi(Lo) fo r j  = 1, 2; therefore Lo > L1 > L2 > "'" where F = f f  + f ~  e ~ (  ~(R))  
and L, = F"(Lo) for n >_ 1. Suppose now that L k is connected but L k + 1 is not for some 
k _> 0. Since each fi(Lk) is a closed interval, ir follows that f~(Lk)"f2(Lk)= q~; therefore 

diam(L k + 1) > diam(fl (Lk)) + diam(fz(Lk)) 

> (Lip(f~- 1)- 1 + Lip(f2-1) - l)diam(Lk)> diam(Lk), 

contrary to Lk+l--<Lk. Therefore every L. is connected. Hence the set lim,-.oo L , =  
K(fx,f2) is connected, as required. [] 

Note that the above theorem holds true even for weak contractions satisfying 
(11.1). We now give a generalization of Theorem 11.! as follows: 

THEOREM 1 1.2. Let {fj}l _<j_<,, be a finite se t o f  one to one weak contractions o f  
R such that Fix(f/) ~ Fix(fi) for  some iv~j and that 

~, (Lip(ff  1)) - t _> m - 1. (11.2) 
j = l  

Then the set K(fx, �9 " ",fin) is a closed line interval. 

Proof  It suffices to show the connectedness of K = K ( f ~ , . .  ",fin) since K is 
perfect by Theorem 4.3. Suppose, on the contrary, that K is not connected. By 
Theorem 4.6, there exist two positive integers r and s such that r + s = m  and that 

Kj.K,+i=(a f o r any  l<_j<_r and l < i < s ,  (11.3) 

where K,=f , (K)  for l<_n<m. Put a , = L i p ( f ¡  -1 for l<_n<_m. Then we get 
a i + a , + i <  1 for any 1 < j < r  and 1 <_i<_s. For otherwise, the set K* =K(fi ,  f,+i) is 
connected by Theorem 11.1; therefore, by Theorem 4.6, Kj 'K,+i>fi(K*)" 
f,+i(K*) v L c~, contrary to (11.3). Thus we have 
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s ~ aj-t-r ~ ar+i~FS. (11.4)
j=l i=1 

On the other hand, 

s ~ aj+r ~ ar+i>min(r,s)~ a~>min(r,s).(m-1)>rs,
j=l i=1 j=l 

contrary to (11.4). This completes the proof. [] 

REMARK. The constant m - 1  in (11.2) can not be replaced by any smaller 
number. For example, for an arbitrary e > 0, consider the contractions 

f l ( x ) = - - x ,  f i ( x ) = ( 1 - e ) x + ! e  for 2 < j < m .  (11.5) 
m m 

Then it is clear that f l  ([0, 1 ]) .fj([0, 1 ]) = ~b for 2 < j  < m; therefore K(ft,  " " ,  fin) is not 
connected by Theorem 4.6, while 

~ ( L i p •  1> m - l - c m .  
j=l 

In connection with Theorems 4.1 and 11.1, Williams gave the following problem: 
what is the structure of K(f~,fz) for f~,f2 : R2~R2, affine contractions satisfying 
(11.1)? Here we will give a partial answer for this. In fact, more generally we have 

THEOREM 1 1.3. Let {f~, f2} be two one to one weak contractions o fR  p such that 
Fix(fl) ~ Fix(f2) and that 

Lip ( f -  1) - v + Lip(f~- 1 ) - v > 1. (11.6) 

Then the set K=K(f~,f2)  is a nondegenerate locally connected continuum; therefore 
dimr(K) _> 1. 

Proof. Suppose, on the contrary, that K is not connected. Then, by Theorem 
4.6, we havefl(K)"f2(K) = ~b. Therefore it follows that dimu(K) >p  by Theorem 10.3. 
This contradiction completes the proof. [] 

As a corollary, we have immediately 

COROLLARY 11.4. Theorem 11.3 holds true for two one to one weak con-
tractions {fl,f2} satisfying Fix(fl) ~ Fix(f2) and 

Lip(f~- 1)- 1 + Lip(f~- 1) - ~ > 2 r l~/v. (11.7) 

REMARK. For p =  2, the constant x/2- in (11.7) can not be replaced by any 
smaller number. For example, consider the contractions 

f l(z)= s +  z and f2(z)= s - e - 1 ) + l ,  (11.8) 
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where  s is a real  p a r a m e t e r  sa t i s fy ing 0 < s < l q  We  d e n o t e  by  Qs the  closed 
q u a d r a n g l e  wi th  vert ices O, 1, 1 - s + i/2 a n d  s + i/2. T h e n  it is eas i ly  seen tha t  f l (Qs)  + 
f 2 ( Q ~ ) < Q ~  a n d  fl(Q~)"f2(Q~) = q~- There fo re  the  set K ( f l , f 2 )  is to ta l ly  d i sconnec ted  
by  T h e o r e m  4.4 (Fig.  9), while  

L i p ( f ( l ) - I  + L i p ( f 2  1)-  1 = x/1 + 4s2 �9 (11.9) 

0  1 

Fig. 9. 

F ina l ly ,  we will p r e sen t  the  fo l lowing  p r o b l e m :  is it t rue  or  n o t  tha t  i f  one  to one  
weak  c o n t r a c t i o n s  {fj}l  _<g_<m of  R p sat isfy 

( L i P ( f 7  1))- p_> 1 ,  
j = l  

t hen  the set K(f~, . . .  ,fin) c o n t a i n s  a n o n d e g e n e r a t e  c o m p o n e n t ?  

References 

[ 1 ] A.F.  Beardon, The Geometry of Discrete Groups. Discrete Groups and Automorphic Functions. 
(ed. W. J. Harvey), Academic Press, New York, 1977, 47-72. 

[ 2 ] A. S. Besicovitch and I. J. Schoenberg, On Jordan arcs and Lipschitz classes of functions. Acta 
Math., 106 (1961), 113-136. 

[ 3 ] P. Billingsley, Ergodic Theory and Information. J. Wiley and Sons, New York, 1965. 
[ 4 ] G. Birkhoff, Lattice Theory. 3rd Ed., Amer. Math. Soc., 1967. 
[ 5 ] H. Brolin, Invariant sets under iteration of rational functions. Ark. Mat., 6 (1965), 103-144. 
[ 6 ] T. Carleman, Sur les › int› singuli&es fi noyau r› et sym› Uppsala, 1923. 
[ 7 ] E. Ces~tro, Sur la repr› analytique des r› et des courbes qui les remplissent. Bull. Sci. 

Math., 21 (1897), 257-266. 
[ 8] A. Denjoy, Sur une fonction r› de Minkowski. J. Math. Pures Appl., 17 (1938), 105-151. 
[ 9 ] F.M. Dekking, Recurrent sets. Adv. in Math., 44 (1982), 78-104. 
[10]  J. L. Denny, A continuous real-valued function on E" almost everywhere I-1. Fund. Math., 55 

(1964), 95-99. 
[11]  H.G. Eggleston, On closest packing by equilateral triangles. Proc. Camb. Philos. Soc., 49 (1953), 

26-30. 
[12]  P. Erd6s, On a family of symmetric Bernoulii convolutions. Amer. J. Math., 61 (1939), 974--976. 
[13]  K.J. Falconer, The Geometry of Fractal Sets. Cambridge, 1985. 
[14]  I.J. Good, The fractional dimensional theory of continued fractions. Proc. Camb. Philos. Sor 37 

(1941), 199-228. 
[15]  A. Granas, Introduction to Topology of Functional Spaces. Univ. Chicago, Math. Lecture Notes, 

1961. 
[16]  M. Hata, Dynamics of Caianiello's equation. J. Math. Kyoto Univ., 22 (1982), 155-173. 



413 On the Structure of Self-Similar Sets 

[17]  M. Hata, Scrambled sets on compact metric spaces. J. Math. Kyoto Univ., 24 (1984), 689-698. 
[18]  M. Hata, On the functional equation 

1  x x+p-1 

J. Math. Kyoto Univ., 25 (1985), 357-364. 
[19]  M. Hata, On some properties of set-dynamical systems. Proc. Japan Acad., 61 (1985), Ser. A, 

99-102. 
[20]  D. Hilbert, • die stetige Abbildung einer Linie auf ein Fl/ichenstuck. Math. Ann., 38 (1891), 459- 

460. 
[21]  W. Hurewicz and H. Wallman, Dimension Theory. Princeton, 1948. 
[22]  J .E.  Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J., 30 (1981), 713-747. 
[23]  R. Kershner, On singular Fourier-Stieltjes transforms. Amer. J. Math., 58 (1936), 450-452. 
[24]  R. Kershner and A. Wintner, On symmetric Bernoulli convolutions. Amer. J. Math., 57 (1935), 541 

548. 
[25]  H. von Koch, Sur une courbe continue sans tangente obtenue par une construction g›233 

›233 Ark. Mat. Astronom. Fys., 1 (1904), 681-702. 
[26]  K. Kuratowski, Topology. Vol. 1. Academic Press, New York, 1966. 
[27]  P.D.  Lax, The differentiability of P£ function. Adv. in Math., 10 (1973), 456-464. 
[28]  P. L› Les courbes planes ou gauches et les surfaces compos› de parties semblables au tout. J. 

Ecole Poly., 1939, 227-292. 
[29]  Z. Lomnicki and S. Ulam, Sur la th› de la mesure dans les espaces combinatoires et son 

application au calcul des probabilit› I: Variables ind› Fund. Math., 23 (1934), 237-278. 
[30]  B.B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982. 
[31]  J. Marion, Le calcul de la mesure Hausdorff des sous-ensembles parfaits isotypiques de R". C. R. 

Acad. Sci., Paris, 289 (1979), A65-68. 
[32]  P. Mattila, On the structure of self-similar fractals. Ann. Acad. Sci. Fenn., 7 (1982), 189-195. 
[33]  E. Michael, Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71 (1951), 152-182. 
[34]  S.C. Milne, Peano curves and smoothness of functions. Adv. in Math., 35 (1980), 129-157. 
[35]  J. Milnor and W. Thurston, On iterated maps of the interval (I). Preprint, Princeton, 1977. 
[36]  H. Minkowski, Zur Geometrie der Zahlen. Gesammelte Abhandlungen, II, 50-51. 
[37]  E.H.  Moore, On certain crinkly curves. Trans. Amer. Math. Soc., 1 (1900), 72-90. 
[38]  P.A.P .  Moran, Additive functions of intervals and Hausdorff measure. Proc. Camb. Phil. Soc., 42 

(1946), 15-23. 
[39]  W.F.  Osgood, A Jordan curve of positive area. Trans. Amer. Math. Soc., 4 (1903), 107-112. 
[40]  G. Peano, Sur une courbe qui remplit toute une aire plane. Math. Ann., 36 (1890), 157-160. 
[41]  G. P£ • eine Peanosche Kurve. Bull. Acad. Sci. Cracovie, A, 1913, 305-313. 
[42]  G. de Rham, Sur quelques courbes d› par des › fonctionnelles. Rend. Sem. Mat. 

Torino, 16 (1957), 101-113. 
[43]  G. de Rham, Sur certaines › fonctionnelles. Oeuvres Math› l'Enseignement Math., 

1981, 69~695. 
[44]  G. de Rham, Sur quelques fonctions diff› dont toutes les valeurs sont des valeures 

critiques. Oeuvres Math› l'Enseignement Math., 1981, 744-748. 
[45]  C.A. Rogers, Hausdorff Measures. Cambridge, 1970. 
[46]  S. Saks, Theory of the Integral. Warszawa, 1937. 
[47]  R. Salem, On some singular monotonic functions which are strictly increasing. Trans. Amer. Math. 

Soc., 53 (1943), 427-439. 
[48]  W. Sierpifiski, Sur un syst~me d'› fonctionnelles, d› une fonction avec un ensemble 

dense d'intervalles d'invariabilit› Oeuvres Choisies, II. Warszawa, 1975, 44-48. 
[49]  W. Sierpifiski, Sur une nouvelle courbe continue qui remplit toute une aire plane. Oeuvres Choisies, 

II. Warszawa, 1975, 52-66. 
[50]  W. Sierpifiski, Sur une courbe dont tout point est un point de ramification. Oeuvres Choisies, II. 

Warszawa, 1975, 99-106. 



414  M. HATA 

[51]  A. G. Vitushkin and G. M. Khenkin, Linear superpositions of functions. Uspehi Mat. Nauk, 22 
(1967), 77-124. 

[52]  H. Whitney, A function not constant on a connected set of critical points. Dulce Math. J., 1 (1935), 
514-517. 

[53]  G.T.  Whyburn, Analytic Topology. Amer. Math. Soc. Colloq. Pub., Vol. 28, 1942. 
[54]  R.F.  Williams, Composition of contractions. Bol. Soc. Brasil. Mat., 2 (1971), 55-59. 


