
Appl. Magn. Reson. 31, 573-589 (2007) Applied 
Magnetic Resonance 
�9 Springer-Verlag 2007 
Printed in Austria 

Uniform Radio Frequency Fields in Loop-Gap Resonators 
for EPR Spectroscopy 

R. R. Mett 1`2, J. W. Sidabras l, and J. S. Hyde 1 

Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA 
2 Milwaukee Schoo[ of Engineering, Milwaukee, Wisconsin, USA 

Received September 28, 2006; revised October 1 I, 2006 

Abstract. At high frequencies, e.g., Q- and W-bands, it is advantageous to make the axial length of 
loop-gap resonators (LGRs) at least as long a s a  free-space wavelength. The opposite scaling of 
capacitance and inductance with LGR length suggests that the length of an LGR can be increased 
without limit, with the axial radio frequency (rf) field profiles and resonance frequency independent 
of length. This scaling is accurate for resonator dimensions much less than one free-space wavelength. 
When the resonator length approaches one-tenth of a free-space wavelength, the rf field uniformity 
degrades. From one-tenth to one free-space wavelength, computer simulations and expe¡ mea- 
surements show that the axial magnetic field energy density profile is peaked in the eenter of the 
LGR, gradually decreases from 25-to 50% a t a  distance one radius from the end, and rapidly there- 
after. The nonuniformity is of two types. One type, in the vicinity of one radius of the end, is caused 
by the flaring of the field as it curves from the central loop to the end region, into the larger retum 
loop(s). The other type, in the central part of the resonator, is caused by impedance mismatch at the 
ends of the LGR. The LGR may be viewed a s a  strongly reentrant (ridge) waveguide nearly open at 
both ends and supporting a standing wave. A transmission line model relates the central nonuniformity 
to the fringing capacitance and inductance at the ends of the resonator. This nonuniformity can be 
eliminated in several ways including modifying the ends of the LGR by adding a small metal bridge 
o r a  dielectric ring. These uniformity trimming elements increase the fringing capacitance and/or de- 
crease the fringing inductance. With trimmed ends, LGRs can be made many free-space wavelengths 
long. The maximum resonator length is determined by the proximity in frequency of the fundamen- 
tal LGR mode to the next highest frequency mode as well as the quality factor. Results of this theory 
ate compared and confirmed with finite-element simulations. This theory connects the uniform LGR 
with the uniform field cavity resonators previously introduced by this laboratory. 

1 Introduction 

T h e  l o o p - g a p  r e s o n a t o r  ( L G R )  w a s  i n t r o d u c e d  for  use  in  e l ec t ron  p a r a m a g n e t i c  
r e s o n a n c e  ( E P R )  s p e c t r o s c o p y  in the  s i m p l e s t  pos s ib l e  c r o s s - s e c t i o n a l  g e o m e t r y  

(Fig.  l a )  [1] and  la ter  e x t e n d e d  to n u m e r o u s  o t h e r  c ross  s ec t ions  i n c l u d i n g  t h o s e  

s h o w n  in Fig.  l b - d .  The  l i t e ra tu re  has  b e e n  r e v i e w e d  b y  H y d e  a n d  F r o n c i s z  [2] 
and  b y  R i n a r d  a n d  E a t o n  [3]. A l t h o u g h  the  l i t e ra tu re  is ex t ens ive ,  t he re  ha s  b e e n  
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Fig. 1. LGR cross sections, a l-loop-l-gap, no retum flux loop. b l-loop-l-gap. The sample is placed 
in the smaller loop and the larger loop is the flux retum path. e 3-1oop-2-gap. d 5-1oop-4-gap. 

no study of the dependence of EPR performance of  LGRs on the length of  the 
structure or on the microwave characteristics as this length approaches or ex- 
ceeds the free-space (FS) wavelength. That is the subject of  this paper. 

LGRs in the microwave frequency range of 2 to 4 GHz were introduced as 
a practical alternative to cavity resonators, which are large and require too much 
sample in order to achieve optimum signal-to-noise ratio (SNR) [1]. The struc- 
ture of  Fig. la, a one-loop-one-gap LGR, is 4.5 mm in diameter and 10 mm in 
length. By adjusting the gap dimensions and introducing dielectric material into 
the gap, it can be made to resonate from 0.5 to 6 GHz. All dimensions are much 
less than a wavelength, and the structure is properly classified a s a  lumped cir- 
cuit resonator with well-defined values of  inductance L, capacitance C, and re- 
sistance R in this frequency range. 

In ref. 1, data are given for two LGRs at 9.5 GHz, each with 1.2 mm diam- 
eter and 5 or lO mm length, respectively. The rationale for use of  LGRs at this 
frequency is that they provide superior sensitivity in comparison with cavity 
resonators for samples that are small. This structure is widely used in site-di- 
rected spin labeling (SDSL), where this rationale is of  central importance. The 
quality factor Q was found to be nearly independent of  length, consistent with 
the lumped circuit equation Q = coL~R, where co is the resonator radian frequency, 
noting that both L and R are inversely proportional to resonator length. In addi- 
tion, the resonant frequency was independent of  cavity length, consistent with 
the equation co = 1/L,~--C, noting that C is proportional to length, compensating 
for the inverse dependence of L on length. Although the length of  10 mm is 
about 1/3 of  a wavelength, there was no evidence that a more distributed-circuit 
electromagnetic-fields approach to analysis of  the LGR design at 9.5 GHz was 
required. 

The LGR design was extended to 35 GHz in a two-loop-one-gap configura- 
tion (Fig. lb) [4] and subsequently in the three-loop-two-gap cross section of  
Fig. lc [5]. In both of these designs, the sample-loop diameter (small loop) was 
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0.65 mm, and the length was 1 mm. In compa¡ with a TE01 t resonant cavity 
using spin-labeted aqueous samples, SNR values were about the same, but about 
10 times less sample was required with the LGR. This was found to be a useful 
aspect of  the LGR at 35 GHz, but not nearly as critical as at 9.5 GHz because 
the required volume of aqueous sample for optimum performance in a cavity 
resonator at 35 GHz is small (about 300 ni). All dimensions of  the sample loop 
at 35 GHz were small compared with the wavelength, and lumped-circuit mod- 
els were adequate in designing the structures. Ah additional benefit of  LGRs 
relative to cavity resonators was discussed in ref. 4: the phase noise voltage of 
microwave oscillators tends to increase linearly with microwave power [6: eq. 
5.27], and at 35 GHz can be a limiting source of  noise when using eavity reso- 
nators of  relatively high Q values. LGRs yield good SNR even though they have 
low Q values because the filling factor 7] is very high. The low Q value re- 
duces sensitivity to oscillator phase noise. 

In a recent abstract, the LGR design of  Fig. id for use with aqueous spin- 
labeled samples at 95 GHz was studied using finite-element modeling [7]. The 
sample-loop diameter and length were the same as used in the 35 GHz struc- 
tures and resonance was achieved by reduction of the capacitance of the loops 
and an increase in the number of  gaps (which are in series in the lumped-cir- 
cuit model). At this frequency, the length of  1 mm is about 1/3 of  a wavelength, 
the same as in the 9.5 GHz structure. At 95 GHz, sample volume in most SDSL 
studies will not be a problem. Theoretical comparison with a TE0, t cavity reso- 
nator showed signal intensities to be about the same when H l values at the 
sample were the same. The rationale for use of  LGRs in continuous-wave EPR 
at 95 GHz in order to reduce the impact o f  oscillator phase noise is even greater 
than at 35 GHz. In addition, a new benefit of  the structure was identified in 
reŸ 5: greatly increased bandwidth relative to cavity resonators. A bandwidth of 
1 GHz between 3 dB points is significantly greater than the width of  a rigid- 
limit spin-label spectrum (about 375 MHz) at this frequency, facilitating elec- 
tron-electron double resonance (ELDOR) expe¡ 

For pulse EPR expe¡ the increased bandwidth relative to cavity reso- 
nators is beneficial at all microwave frequencies because of reduced dead-time. 
In addition, LGRs that are relatively short in length tend to exhibit a higher 
efficiency parameter A (H 1 at the sample for 1 W incident power) relative to 
cavity resonators at all microwave frequencies, which is advantageous in pulse 
experiments. 

From this overview, it is apparent that LGRs can be used over a very wide 
range of  frequencies, although the practical benefits depend on frequency. 

Until the present time, loop-gaps for use in EPR have been axially short com- 
pared to an FS wavelength. However, the opposite scaling of  capacitance and 
inductance with LGR length suggests that the length of a LGR can be increased 
without limit [8]. In this lumped circuit approximation the axial radio frequency 
(rf) field profiles and resonance frequency are independent of  length. This scal- 
ing is accurate for resonator dimensions much less than one FS wavelength. When 
the resonator length is increased to about a tenth of  a FS wavelength, the r f  
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field uniformity is observed to degrade. From about one tenth to about one FS 
wavelength, computer simulations and experimental measurements show that the 
magnetic field energy density H 2 profile is axially peaked in the center of  the 
loop-gap and decreases about 25% from the center to an axial distance equal to 
a radius from the end, and then drops ah additional 35% at the end of  the reso- 
nator. Analysis indicates that the nonuniformity is of  two types. The first is in 
the vicinity of  one radius of  the end of  the LGR and is caused by the flaring of  
the field as it goes from the central loop into the end region of the resonator, 
where it then extends into the larger return loops. The second type o f  non- 
uniformity is in the central part o f  the resonator and is caused by the LGR act- 
ing like a transmission line supporting a standing wave. The LGR may be viewed 
a s a  strongly reentrant (ridge) waveguide nearly open at both ends. A transmis- 
sion line model is used to relate the central nonuniformity to the fringing ca- 
pacitance and inductance at the ends of  the resonator. It is found that this non- 
uniformity may be eliminated by adding trimming elements to the ends of  the 
LGR. Examples include a smatl metal bridge or a dielectric nng placed near the 
gaps which increase the fringing capacitance and/or the fringing inductance. With 
properly designed ends, LGRs can be made many FS wavelengths long. It is found 
that the maximum resonator length is determined by the proximity in frequency 
of the lowest LGR mode to the next highest frequency mode and the quality fac- 
tor. Results of  this theory have been confirmed with finite-element simulations. Our 
results connect the LGR and the uniform field cavity resonators introduced by this 
laboratory [9-11]. With properly designed end sections, the loop-gap is a type of 
uniform field resonator. 

Increased uniformity of  the rf  magnetic field over the sample volume pro- 
duces a more uniform saturation of  the sample. Benefits o f  this include higher 
EPR signal, particularly under saturable conditions. Because of  smaller sample 
size, the benefits of  using long LGRs are greater at higher rf  frequencies. 

2 Theory  

2.1 Lumped-Circuit Model of LGR 

The inductance of  a circular loop of  radius r and length l with current distrib- 
uted uniformly in the walls and flowing perpendicular to the axis of  the loop is 

L =~o~r2/l, (1) 

where /.t o is the magnetic permeability of  free space. We assume that there is a 
central loop of  radius r i and m outer loops of  radius r o with a gap between each 
outer loop and the inner loop (Fig. lb-d).  The spilling of  magnetic flux from 
both the inner and outer loops causes an increase in inductance from that pre- 
dicted by Eq. (I). An accurate accounting of this effect may be made by con- 
sidering problem 6.14 of Jackson [12]. In this problem, the inductance of  two 
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parallel rectangular metal strips of width w, length 1 and separation t with cur- 
rent input on one side flowing parallel to w is given by 

L = & t w / ( 3 0 .  

This is one-third of  the inductance of the shorted strips. To apply this result to 
the LGR, we must treat the capacitance of a gap as two capacitors in parallel 
divided at the location of the current null. The location of  the current null is 
determined by conservation of flux and the size of the inductance of  the inner 
and outer loops. To first order, we find, 

Li = =1Ÿ -3 ro 2 +ti 2 / m i '  

L~ = gF~ "+" "3 ro 2 -b ~2 / m ) '  

(2) 

(3) 

where the gap width and thickness (distance of separation) are given by w and 
t, respectively. Study of the total series impedance around the inner loop in this 
configuration reveals that the total inductance is a parallel combination of  L~ and 
mLo, 

1 
L~q= 

l / L  i + 1/(mLo) " 

The capacitance of each gap is commonly given by 

C = e o w l / t ,  

where ~o is the electric permittivity of  free space. An empirical relation to ac- 
count for the capacitance due to the fringing electric fields near the gap edges 
was introduced by the last term in eq. (3) of  ref. 1. We find that the predicted 
resonant frequency is more accurate by about an order of magnitude (from about 
10 to 1% as discussed in Sect. 3.2) when a more complicated expression for 
the capacitance given by Smythe [13: problem 59] is used. Smythe's model gives 
an exact analytic expression for the capacitance per unit length of two infinitely 
thin, infinitely long, parallel conducting strips of  width w and distance t apart. 
We envision these strips as the interior metallic surfaces of the LGR gap. Ne- 
glecting end effects, which are treated in the following section, the capacitance 
of  the two strips of length l is, in the present geometry, 

c '  = r c ,  (4) 

where the dimensionless factor 7 is given by 
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t K ( x )  

Y = w K ( 4 1  - x 2 ) (5) 

Here, K represents the complete elliptic integral of the first kind and the param- 
eter te in the arguments of the elliptic integral is a real number between zero 
and one determined by solving the equation 

w K( tr  / K(x)] ,  x} - E(tc)F{arccos[E(tc)  / K(x)] ,  te} 
(6) 

E(  x ) K  ( lqrl--Z tc~ ) - ( l~- x z / te)2 E(41 - x z ) K  ( x )  

In this equation, E of single argument represents the complete elliptic integral 
of the second kind while E of double argument represents the elliptic integral 
of  the second kind. Also F represents the elliptic integral of the first kind. Equa- 
tion (6) was solved numerically and Eq. (5) evaluated by Mathematica 5.0 (Wol- 
fram Research, Inc., Champaign, IL). This model slightly underestimates the fring- 
ing capacitance because the gaps are treated as plates of zero thickness instead 
of the true geometry of the LGR edge. 

The resonant frequency fe of the LGR may be found from these values of 
inductance and capacitance, 

f~ = 1 / ( 2 7 z ~ ) ,  (7) 

where C~q = C' /m.  A reasonable prediction of the quality factor of the empty LGR 
may also be found by considering the path of current flow around the loops 
and through the gaps with arguments similar to that used to derive the induc- 
tance, 

where 
Q = (-OLeq / Req, (8) 

I 
Req 1 //~ + 1/(mR o) 

~ l  mw r: 1 P i =  rtri + 3 r~Z + r~2 / m ' 

~( w~~'m I 
R O = aro+ 3ro2+ri2 /m , 

and where cr represents the conductivity of the metal and d represents the skin 
depth in the metal of the resonator, 

= 1/~X/-~~oo" . 
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2.2 Transmission Line Model o f  LGR 

When the length o f  the LGR approaches one FS wavelength, we can view the 
LGR a s a  strongly reentrant ridge waveguide with open ends. The mode o f  os- 
cillation is transverse electric (TE) with the electric fields across the gaps. A TE 
mode in a waveguide o f  arbitrary cross section has a characteristic impedance 
[12: sect. 8] 

2 
Z o = Z F S - - ,  (9) 

3-F s 

where ZFs = ~ / - t o  is the characteristic impedance o f  free space, 2 is the wave- 
length o f  the waveguide mode and 3. FS = c / f  is the FS wavelength. The guide 
wavetength may be expressed in temas o f  the cutoff  frequency f~ o f  the mode, 

~--- ~)~FS/x/1 - ( f ~ / f ) 2  . (10) 

The cutoff  frequency may be determined approximately by the lumped-circuit  
model (Eq. (7)) or by finite-element computer simulation. I 

C o n s i d e r a  length l o f  waveguide with a load impedance Z L on each end. 
As discussed further below, this load impedance is a high reactance from the 
combination o f  fringing electric and magnetic fields at the ends o f  the LGR. In 
order for this length o f  guide to resonate, the load impedance Z L must be equal 
to the complex conjugate o f  Z L transformed by the length 1 o f  waveguide. In 
terms of  the guide wavenumber k = 2re/A, this resonance condition may be ex- 
pressed as [14] 

Z_..~_.~ ---- Z L COS kt + iZ o sin kl 

Z 0 Z 0 cos kl + iZ L sin kl" 

Assuming the load impedance is purely reactive, this equation may be reduced to 

2 cot kl - Lrn[ZL ] Z~ (11) 
Zo ~[zL] 

This equation may be solved to determine the wavenumber o f  each mode and 
the frequency through Eq. (10). Equation (11) predicts an infinite number  o f  
modes. 

A convenient approach is to use Ansoft HFSS (Ansoft Corp. Pittsburgh, PA) to obtain an eigenmode 
so|ution of a short axial slice of the LGR (waveguide) with perfect magnetic boundaries on each 
end. 
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In the limit o f  ideal open ends Z L - - ~  (no fringing electric or magnetic 
fields; or low frequencies) the sotutions o f  Eq. (11) are 

kl  = nrt , (12) 

where n = 0, 1, 2 . . . . .  The lowest frequency mode has the solution k = 0 for 
n = 0 and the corresponding mode frequency is the cutoff  frequency f = f~. The 
next highest f requency mode n = 1 has one-half  waveguide wavelength in l 
(2. = 2/) and each next higher frequency mode has an additional half  wavelength 
in 1. The uniformity o f  the rf  fields along the LGR axis z is related to the wave 
number according to 

fcoskz,  n even, 
(B:,Ega p) oC L sin kz, n odd, (13) 

where z = 0 corresponds to the center o f  the resonator and z = +l/2 are the ends. 
The mode is uniform when k = 0. 

In actuality, the load impedance at the end of  the resonator Z L may be mod- 
eled as a capacitance, caused by the fringing electric fields, in paratlel with an 
inductance, caused by the fringing magnetic fields, in the end region o f  the LGR. 
Fo r  m gaps, 

1 / m  
Im[ZL] = 1/(oJLr - co n . %  (14) 

A convenient expression for the fringing capacitance at each end of  the LGR is 
hall  the capacitance o f  two rectangular metal strips o f  dimensions w by b - a a 
distance 2a apart lying in a plane and parallel along the w dimension [13: prob- 
lem 58], 

C e = ~ C o W / 2 ,  (15) 

where the dimensionless factor ~ is given by the ratio o f  complete elliptic inte- 
grals, 

K ( ~ I ~  - a 2 / b )  
~= 

K ( a / b )  

We find that setting a = t/2 and b = r~ produces reasonable results. The in- 
ductance o f  a single gap may be approximated by 

q  + ro 2) 
L e = (16) 

w + r i / m + r  o 
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For all conventional LGR designs considered, the capacitive admittance in 
the denominator of  Eq. (14), coco, is smaller than the inductive admittance 1~coL e. 

Then the total load reactance is large and positive. Under these conditions, the 
wavenumber of  the n = 0 mode is positive, which makes the field profile slightly 
cosine and the mode frequency above the cutoff frequency. This behavior is 
observed in finite-element simulations of  a wide variety of  practical LGR de- 
signs at X-, Q-, and W-bands. At these frequencies the load impedance of  the 
ends causes a nonuniformity of  the mode and pulls the resonant frequency above 
the cutoff frequency of the LGR. In addition, the axial LGR wavelength is de- 
creased to satisfy the resonance condition of Eq. (11). In order to make the mode 
uniform, capacitance may be added to the ends or inductance increased at the 
ends in order to produce infinite loading impedance (Eq. (14)). The condition 
Z L -- oo makes the lowest frequency mode of the LGR the same as the cutoff 
frequency. This condition has been described extensively in publications from this 
laboratory about the uniform field [9-11]. 

We have discovered several practical ways to trim the ends of  the LGR to 
produce uniform field for conventional LGR designs: (i) a quarter wavelength 
dielectric may be placed between the gaps; (ii) the gaps at the ends of  the LGR 
may be made narrower, increasing the capacitance; (iii) a dielectric ring may be 
placed near the gaps to increase the capacitance; and (iv) a metal bridge may 
be placed near each of the gaps at the ends. Like the dielectric ring, the metal 
bridge also increases the fringing capacitance at the end of the LGR, but may 
also increase the fringing inductance by increasing the magnetic flux at the end 
of the LGR. Use of metal bridge elements for trimming the rf magnetic field 
uniformity are discussed further in Sect. 3.1. 

The mode uniformity is also influenced by coupling of modes to each other 
by proximity in frequency and resonator Q. By using the condition 

Al_>• 
f Q '  

where Af is the frequency separation between modes, and estimating the frequen- 
cies of  the n = 0 and n = 1 modes by Eqs. (12) and (10), an upper limit on the 
resonator length can be found, 

2Fs 7 6  
�9 I -~  (17) 

This has been proven accurate by finite-element modeling. I f  the coupler used 
to excite the LGR is axially symmetric, so that the n = 2 mode is excited and 
not the n = 1 mode, then the maximum length is double that of  Eq. (17). Spe- 
cial designs using multiple in-phase couplers may be used to couple only to the 
n = 0 mode and further increase the maximum length of the resonator. 
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3 Finite-Element Simulations and Discussion 

The finite-element computer program Ansoft High Frequency Structure Simula- 
tor (HFSS) (Version 10, Ansoft Corporation, Pittsburgh, PA) was used to make 
the numerical simulations of  the modes. A HP WX8000 workstation with dual 
Xeon 3.2 GHz processors and 4 GB of RAM was used. The operating system 
was Windows 2003. The eigenmode solution method was used for all finite-el- 
ement simulation results presented in this paper. 

3.1 Comparison of EPR Properties of Short, Long, and Trimmed Long LGRs 
at Q-band 

The EPR benefits of longer LGRs are illustrated by comparing properties of  two 
Q-band 3-1oop-2-gap LGRs that have been built and tested in this laboratory 
[15-17]. The dimensions of  each LGR are shown in Table 1. The short (1 mm) 
LGR was made of aluminum, while the long (10 mm) was made of silver. The 
gap thickness of  the short LGR is slightly smaller than that of the long. The 
resonators have no slots for modulation penetration. A mechanical drawing of  
the long LGR is provided in Fig. 2. No coupling structure was included in the 
simulations. 

A comparison of  the two resonators in terms of the EPR properties calcu- 
lated from the finite-element simulations is shown in Table 2. The short resona- 
tor is about one-tenth of an FS wavelength and the long resonator about one. 
The filling factor is about 9% for the long LGR and slightly less for the short 
due to end effects. The filling factor is comparable to the ratio of  sample vol- 
ume to inner loop volume. The sample diameter could not be made larger than 
the indicated size without degrading the unloaded Q (Q0) below 200. The rf 
magnetic field energy integrated along the LGR axis is representative of  the 
lengths of  the two resonators, which differ by a factor of  10. Cross-sectional 
profiles of the magnetic field energy for the two resonators are shown in Fig. 

Table 1. LGR and sample dimensions. 

Dimension Value (mm) for LGR 

Sho~ Long 

Sample diameter d s 0.254 0.254 
Sample tube outer diameter d t 0.330 0.330 
Inner loop diameter di 0.648 0.660 
Outer loop diameter d o 2.06 2.06 
Length 1 1.016 10.03 
Gap width w 1.162 1.156 
Gap thickness t 0.127 0.165 
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Sampie 
alignment 

cene 

LGP 

Coupling iris 

Fig. 2. Mechamcal drawing of bisected 10 mm iong Q-band 3-1oop-2-gap LGR. The resoaater body 
is shown in gray and the samMe ho[der in black. Gaps face bisecfing plane. The coupling iris slot 

appears on the neares: edge. 

3a  a n d  b. T h e  ( t r a n s v e r s e )  e lec t r i c  f i e lds  a t e  s h o w n  in  Fig.  4. T h e  r e s o n a t o r  

e f f i c i e n c y  p a r a m e t e r  is b e t t e r  fo r  the sho r t  L G R  b y  a b o u t  a f ac to r  o f  lx/~. N o n -  

s a m r a b l e  a n d  sa tu rab le  E P R  sig-Ÿ were  c a t c u l a t e d  f r o m  r f  f i e ld  in t eg ra l s  de-  

r i ved  f r o m  the  f i n i t e - e l e m e m  s i m u t a t i o n s  u s i n g  the  m e t h o d s  ou t l i ned  b y  M e t t  a n d  

Table 2. Ccmparisoa of EPR properties of LGRs with sample. 

Quantity Value for LGR 

Shorz Long un~'-immed Long trimmed 

d,'7 0.64 0.066 0.066 
l,t~ho~ 9.8 9,8 
l/2:~ 0.118 1.15 I.I4 
I"~~p~~ (ni) 84.3 542 542 
T,\~p~j p" ~oo~ (%) 15,4 14,8 14.8 
r/ (%) 7.59 9.42 9.15 
~(H' )  .... dz (mm) 1.148 9.25 10.29 

f~o ~~pL~ (GHz) 34.965 34.481 34.158 
~' (GHz) 34.894 34.434 34.088 J wzth sampie 
Q0 ,~ . . . .  pi~ 650 875 863 
Q0 ,i* ~~plo 247 234 245 
A (Ol%V t':) 7.08 2.72 2.60 
S~o=~, a ~o~,~ ! 8.7 22.1 22.4 
(S/S~hor) . . . .  a ..... i" 182 1.194 
S=o~~~ H. ,,~ (W~niG) 0.936 2,88 3.04 
(S/S~~o~:) ..... ~. =~ 3.07 3.25 
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Fig. 3. Cross-sec, tional profi!es of axia[ ff magnetic fieid energy AŸ ~- in a piane bis~cting the 3-ioo]:- 
2-gap reson~tor through the gaps obtained tbr zhe ~~ = 0 mode ~y compu~er ~imulatioa. Red to b~ue 
indica~es maximam to zero intensity, a I n-en long LGR. b 10 ew-: [ong LGR, untrin-aned tbr rf 
ma~etic field uni*brmi w. e 10 mm Ion 0 LGP,~ trimmed t%r rf mag~netic field tmi~'ormiW using me*a~ 

strips bridging ~he gaps. 

H y d e  [ tS] .  The  ~0~nsamrab[e E P R  signal  (which  is equal  to .Ÿ for  the long  
L G R  is bet ter  r~han the short  by only  18~243 because  the i m p r o v e m e m  in f i l i ing 

�9 ~ , ' a  1 i;actor is near!v  c a n c d l e d  b v  a decrease  in 00- The  satttr~b~e signar, however ,  is 
i m p r o v e d  in ~he longer  L G R  by  about  a factor  o f  q ' i0  as expected .  

Also  shown  m Tabte 2 ate the proper t ies  o f  the long  LGR trim~med for  axiai  
r f  mag-netic f ie ld  ~miformity. The  t r i m m i n g  was  done by  fo l l owing  a p rocedure  
s imi la r  to tha~ out t ined in re{'. 10. First,  the cu to f f  f r equency  o Ÿ  the tong L G R  
wi th  sample  was  t'ound. This  was  done  in A n s o f t  H F S S  by taking a short  axia[ 

s l ice o f  the long L G R  w k h  sample  and p l ac ing  a magne t i c  b o n n d a w  on both 
ends. The  eigev.mode f r equency  o f  this s t ructure  is the cu to f f  f l equency .  T h e n  

s ' . . . . . . . .  ' ' ~ k  

Fig. 4. Cross-secfional profile of rf electric field veetors ~nd energy in a ptane perpendic~al~ -:o th* 
ax:.s of the !0 mm long 3-[oop-2-g~p resonator obtained t'or the ~. = 0 mode by comp~ater ~imu[a- 

tien. Red to b[ue indicates maxmmm to zero ip_tens~*-y. 
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Fig. 5. Axial profiles of nomnalized axial magnetic field energy H: tbr the 10 mm 3-iodp-2-gap LGR 
obmined by computer simular, ion. The three pro¡ correspond to the LGR uat¡ for axial 
magne:ic Eeid tmife .rmity (b~_ack selid curve), trimmed for uniform axial magnetic fie[d energy usiag 
the metal bridge (black dashed eurve), and tb, e ua=im, med profile predicted by :he ana;,ytic model 

(gray curve). 

dimensions of a metal bridge were chosen (0.5 mm w~ide and 0.1 mm thickness 
[Fig. 3c]) and one bridge was centered over each gap. Each bridge has the forro 
of a partial ring with the ends of  each bridge spaced 0.33 rran ap~ t  (Fig. 3c). z 
The spacing between the bridge and gap was then adjusted until the resonant 
frequeacy of the bridged LGR was equaI to the cutoff frequency. The magnetic 
field was then obser-v'ed to be uniform. The improvement in uniformity is clearly 
indicated between Fig. 3b and c a n d  na Fig, 5. The fact that this procedure pro- 
duces a uniform field confirms the theow of Sect. 2.2 and cormects this theory 
to the theory of uniform fieid cavity resonators inrroduced by this laboratory [9- 
ll].  The distance be~ 'een bridge and LGR end in this case is 0.45 m m  (Fig. 
3c). The metal b¡ primarity increases the fringing capacitance C', in Eq. (14) 
r,o produce I m ( Z Ÿ  co. This lowers the resonant frequency of the LGR to the 
cutoff frequency through Eqs. (11) and (10). Notice the drop in frequency of  
the LGR from 34.434 m 34.088 GHz (Table 2), In order to accommodate this 
frequency shift, the LGR in most eases must be engineered for uniform field 
from the start, and not simply retrofitted. As seen m Table 2, the improved field 
unifo,,-mirf produces ah rf magnetic field energy integrated along the LGR nearly 
equal to the resonator length. The nonsaturable EPR signal is on!y slightiy im- 
proved (by 1%), while the saturable EPR signal is improved by 6~243 More sig- 
nificantly, the quality of  the EPR signal is expected to be improved for the 
trimmed LGR due to uniforrn spin saturation. 

Further con• of  the uniform field theory of refs. 9 - i l  and the theew 
of Sect. 2.2 was obse~-ed by decreasing the spacing between the metal bridges 

z The shape of the metal bridge is largeiy ~ioi~a~; changes in shape ate accoraraodated by changes 
in spaciag. 
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and the gap. Then the rf magne~ic field strengr2a became peaked at the ends of  
the LGR and dipped i~, the center, consistent with ah evanescent mode shown 
in fig. 5 of  reŸ 9 (dashed curve). In this case, che wavenumber k is imaginary 
since f < f :  (Eq. (t0)). Note fna~ Eq. ([1) remains a vatid equation for the mode 
frequency with imaginar?" /r becaase Z 0 also becomes imaginarq through Eq, (9). 

Field uniformity was also achieved in this LGR with the simuiation process 
described above using other Lypes of  trimming elements, such as dielectfic ¡ 
and narrowed gaps near the ends of the LGR. Unitbrmi)" was alse acNeved using 
quarter-waveleng-th dielectric end sections on each end of the LGR as shown in 
Yig. 6. In these simulations, each end of the LGR is shorted a n d a  dielec~-ic of  
axia! dimension 

C 

is placed against each shorted end. Here f is the cutoff ~equency of the LGR 
with no die!ectric (and the resonant ~equency of the LGR) and E_ is the re!a- 
tire dielectric cons~ant of  the dielectric. Under these condirions, the central re- 
gion wirh no dieiectric has exacfly uniform fie!d and may be made ah arbirra:), 
len~h as iltustrated in t:ig. 6. This D-pe of resonator is a ridged analog of the 
uniform field cavity resonarors in~oduced in ref. 9. Equation (18) ma,," be de- 

J L 2k 5~~ 1 ok 

Fig. 6. Cross-sec~iona! pro¡ of axia! mag~.edc fie[d for LGR~ designed [or ~mifo~n ile[d using 
qua~er waveiength dielectric end sections. A,xia[ LOR ieng~hs of different FS wave[ength multiples 

ate shown. 



Uuiform Field Loop-Gaps 58"7 

rived by combiniag Eq. (7), which yields the relationship between the cutoff 
frequency of the LGR with no dielectric to the cutoff frequency of the dielec- 
t¡ filled end sections, with Eq. (!0) and setting d = ~.~a/4. Equation (18) is 
identical to eq. (15) of reŸ 9, which gives the size of the dielectric end sections 
required to produce a unifon-n field cavit3~ mode. This method of producing uni- 
forro field is not practical unless modified to accommodate sample access, in which 
case the exact die[ectric dimensions must be found by fmite-element simu[ation. 

3.2 Further Comparison oJ'Anatytic Theo~, and Finite-EIement Simu!ations 

The first row of Table 3 is a comparison of the cutoff frequency of the short 
and long LGRs ebtained by finite-element simulations to those predicted by Eq. 
(7) with the lumped-circuit values of capacitance and mductance described in 
Sect. 2.1. A t tess than 0.8% error, a~eement  is better than other lumped-circuit 
modets. Error is prima¡ due to the underesdmate of the axial frinNng capaci- 
tance at the edge of the gaps (Eq. (4)). The significanfly lower cutoff frequency 
(2.3 GHz) of the short LGR compared to the long is caused primarily by the 
thinner gaps of the short relative to the long. The n = 0 mode frequencies of the 
two LGRs ate similar (Table 3) as required by the EPR bridge opera• frequeucy 
range. The short LGR n = 0 mode frequency is more strongly iv_t'luenced by the 
fidngi~g impedance of the ends, Eq. (14), than the long LGR. Agreement between 
the n = 0 mode frequencies predicted by HFSS and the analytic transmission !ine 
model, Eqs. (1t), (10), and (14)-(16), is good for both LGRs (Tabie 3). 

,~dso shown Lu Table 3 is a com pm son  of the unloaded Q values (with no 
sample) for the cutoff mode predicted by Eq. (8) and finite-element simulations. 
At about 5% error, agreement is reasonable. A comparison of higher order n = l, 
2, 3 mode frequencies is also shown in Table 3. Agreement is good except for 
the hi'ghest modes show~ (n = 1 for the short and n = 3 for the long) because 
at over 50 GHz, the mode fields significantly spill into the end sections and 

Table 3. Compa¡ ef anal~ic aad HFSS modeis .for LGRs ('~~theut smmp[e). 

Quaati~ vatue tor LGR 

Sho~ Long (untru~med) 

HI: S S A,aaiytic HFS S Anal3,tic 

t~ (GHz) 31.85 31.62 34.14 33.87 
Q~ 582 620 860 895 
J; (GHz) 34.97 35.30 34.48 34.85 

(GKz) 58.81 55.21 37.68 37.36 
~" ( Gt-Iz ) - - 44.99 41.93 -/2 

f~ (GHz) - - 54.68 49.57 
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Fig.  7. Cross-sect iorml profi ies  of  r,:~agnezic f ield vectors  in a p[ane b isec t ing  the I0 m m  [ong 
3- loop-2-gap  resonator  t ~ o u g h  the gatas obtained by computer  s imulat ion.  One-quarter  s~acmre  is 
shown. The complete  struc~ure is obtained by reflection on left and bo~om edges. Red to blue indi- 

cates maxin-mn to zero. intensib' ,  a ~~ = 0 mode: b ,~ = i mo te .  

therefore the lumped-circuit modei of the end ffinging reactance becomes inac- 
curate. Table 3 atso shows that the freqaency spacing of modes is much larger 
lar the short_ LGR than tbr the long, consistent wiEh Eq. (12). Comparison of 
the vector mag-netic fields tbr the n = 0 and n = 1 modes for the long LGR in 
Fig. 7 illustrates higher-order mode behavior and is cons-;stent with Eq. (13). The 
mode frequencies predicted by the transmission line mode[ ate sensitive to vai- 
ues of the lumped inductances and capacitances given by Eqs. (2)-(4), which 
influence the cutoff ffequency, and Eqs. (15) and (16), which affect the pIace- 
ment of the modes. Figure 5 shows a comparison of the t-mire element and ana- 
tytically predicted axial magnetic field energy densib' profiies affer minar ad- 
justment in end fi-inging capacitatlce. 

4 Conclusions 

The axial rf  magne¡ enerEr uniformib; of the short and long resonators, 1 and 
l0 mm, respectively, differs as does the proximity of the n = 0 mode frequen- 
cies to the cutoff frequency and the n = 1 mode frequency. Nonuniformity caused 
by f¡ capacitance has a larger effect on the shorter resonator than on the 
longer resonator due to the percentage of fringing capacitance ayer the length. 
Deviations of resonant frequency f from the cutoff frequency/~, are larger in the 
short resonator (2.3 GHz) making k larger, increasing the nonuniformiD" per ur¡ 
lengt,h. In contrast, the Ÿ resonator has a small deviation o f f  from s and a 
smaller k, but is more sensitive to changes along the !ength, k!: making the 
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n o n u n i f o r m i t y  more  apparent  (Eq. (13)).  The  total  f ract ional  r f  m a g n e t i c  f ie ld  
nonun i fo rmi ty  f rom center  to end  is g iven  by 1 -  cos 2 kl.  It is expec t ed  that as 
the length  b e c o m e s  greater  than one  FS wave leng th ,  the resonator  wi l l  b e c o m e  
ve ry  phase  sensi t ive ,  large kl, and wi l l  require  t r i m m i n g  o f  the end sect ions .  

The  results o f  this paper  are para l le l  to p rev ious  w o r k  f rom this l abora tory  
[9-11] .  T h e y  show that a L G R  can be  v i e w e d  a s a  s t rongly  reent rant  r idged  
w a v e g u i d e  at cutoff.  With  this analogy,  the fami ly  o f  un i fo rm f ie ld  cav i t ies  is 
ex tended  to include LGRs .  
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