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Abstract. At high frequencies, e.g., Q- and W-bands, it is advantageous to make the axial length of
loop-gap resonators (LGRs) at least as long as a free-space wavelength. The opposite scaling of
capacitance and inductance with LGR length suggests that the length of an LGR can be increased
without limit, with the axial radio frequency (rf) field profiles and resonance frequency independent
of length. This scaling is accurate for resonator dimensions much less than one free-space wavelength.
When the resonator length approaches one-tenth of a free-space wavelength, the rf field uniformity
degrades. From one-tenth to one free-space wavelength, computer simulations and experimental mea-
surements show that the axial magnetic field energy density profile is peaked in the center of the
LGR, gradually decreases from 25-to 50% at a distance one radius from the end, and rapidly there-
after. The nonuniformity is of two types. One type, in the vicinity of one radius of the end, is caused
by the flaring of the field as it curves from the central loop to the end region, into the larger retum
loop(s). The other type, in the central part of the resonator, is caused by impedance mismatch at the
ends of the LGR. The LGR may be viewed as a strongly reentrant (ridge) waveguide nearly open at
both ends and supporting a standing wave. A transmission line model relates the central nonuniformity
to the fringing capacitance and inductance at the ends of the resonator. This nonuniformity can be
eliminated in several ways including modifying the ends of the LGR by adding a small metal bridge
or a dielectric ring. These uniformity trimming elements increase the fringing capacitance and/or de-
crease the fringing inductance. With trimmed ends, LGRs can be made many free-space wavelengths
long. The maximum resonator length is determined by the proximity in frequency of the fundamen-
tal LGR mode to the next highest frequency mode as well as the quality factor. Results of this theory
are compared and confirmed with finite-element simulations. This theory connects the uniform LGR
with the uniform field cavity resonators previously introduced by this laboratory.

1 Introduction

The loop-gap resonator (LGR) was introduced for use in electron paramagnetic
resonance (EPR) spectroscopy in the simplest possible cross-sectional geometry
(Fig. 1a) [1] and later extended to numerous other cross sections including those
shown in Fig. 1b-d. The literature has been reviewed by Hyde and Froncisz [2]
and by Rinard and Eaton [3]. Although the literature is extensive, there has been
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Fig. 1. LGR cross sections. a 1-loop—1-gap, no return flux loop. b I-loop—1-gap. The sample is placed
in the smaller loop and the larger loop is the flux return path. ¢ 3-loop-2-gap. d 5-loop—4-gap.

no study of the dependence of EPR performance of LGRs on the length of the
structure or on the microwave characteristics as this length approaches or ex-
ceeds the free-space (FS) wavelength. That is the subject of this paper.

LGRs in the microwave frequency range of 2 to 4 GHz were introduced as
a practical alternative to cavity resonators, which are large and require too much
sample in order to achieve optimum signal-to-noise ratio (SNR) [1]. The struc-
ture of Fig. la, a one-loop—one-gap LGR, is 4.5 mm in diameter and 10 mm in
length. By adjusting the gap dimensions and introducing dielectric material into
the gap, it can be made to resonate from 0.5 to 6 GHz. All dimensions are much
less than a wavelength, and the structure is properly classified as a lumped cir-
cuit resonator with well-defined values of inductance L, capacitance C, and re-
sistance R in this frequency range.

In ref. 1, data are given for two LGRs at 9.5 GHz, each with 1.2 mm diam-
eter and 5 or 10 mm length, respectively. The rationale for use of LGRs at this
frequency is that they provide superior sensitivity in comparison with cavity
resonators for samples that are small. This structure is widely used in site-di-
rected spin labeling (SDSL), where this rationale is of central importance. The
quality factor Q was found to be nearly independent of length, consistent with
the lumped circuit equation Q = wL/R, where o is the resonator radian frequency,
noting that both L and R are inversely proportional to resonator length. In addi-
tion, the resonant frequency was independent of cavity length, consistent with
the equation @ =1/VLC , noting that C is proportional to length, compensating
for the inverse dependence of L on length. Although the length of 10 mm is
about 1/3 of a wavelength, there was no evidence that a more distributed-circuit
electromagnetic-fields approach to analysis of the LGR design at 9.5 GHz was
required.

The LGR design was extended to 35 GHz in a two-loop—one-gap configura-
tion (Fig. 1b) [4] and subsequently in the three-loop—two-gap cross section of
Fig. 1c [5]. In both of these designs, the sample-loop diameter (small loop) was
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0.65 mm, and the length was 1 mm. In comparison with a TE,,, resonant cavity
using spin-labeled aqueous samples, SNR values were about the same, but about
10 times less sample was required with the LGR. This was found to be a useful
aspect of the LGR at 35 GHz, but not nearly as critical as at 9.5 GHz because
the required volume of aqueous sample for optimum performance in a cavity
resonator at 35 GHz is small (about 300 nl). All dimensions of the sample loop
at 35 GHz were small compared with the wavelength, and lumped-circuit mod-
els were adequate in designing the structures. An additional benefit of LGRs
relative to cavity resonators was discussed in ref. 4: the phase noise voltage of
microwave oscillators tends to increase linearly with microwave power [6: eq.
5.27], and at 35 GHz can be a limiting source of noise when using cavity reso-
nators of relatively high Q values. LGRs yield good SNR even though they have
low @ values because the filling factor 7 is very high. The low Q value re-
duces sensitivity to oscillator phase noise.

In a recent abstract, the LGR design of Fig. 1d for use with aqueous spin-
labeled samples at 95 GHz was studied using finite-element modeling [7]. The
sample-loop diameter and length were the same as used in the 35 GHz struc-
tures and resonance was achieved by reduction of the capacitance of the loops
and an increase in the number of gaps (which are in series in the lumped-cir-
cuit model). At this frequency, the length of 1 mm is about 1/3 of a wavelength,
the same as in the 9.5 GHz structure. At 95 GHz, sample volume in most SDSL
studies will not be a problem. Theoretical comparison with a TE,,, cavity reso-
nator showed signal intensities to be about the same when H, values at the
sample were the same. The rationale for use of LGRs in continuous-wave EPR
at 95 GHz in order to reduce the impact of oscillator phase noise is even greater
than at 35 GHz. In -addition, a new benefit of the structure was identified in
ref. 5: greatly increased bandwidth relative to cavity resonators. A bandwidth of
1 GHz between 3 dB points is significantly greater than the width of a rigid-
limit spin-label spectrum (about 375 MHz) at this frequency, facilitating elec-
tron—electron double resonance (ELDOR) experiments.

For pulse EPR experiments, the increased bandwidth relative to cavity reso-
nators is beneficial at all microwave frequencies because of reduced dead-time.
In addition, LGRs that are relatively short in length tend to exhibit a higher
efficiency parameter A (H, at the sample for 1 W incident power) relative to
cavity resonators at all microwave frequencies, which is advantageous in pulse
experiments.

From this overview, it is apparent that LGRs can be used over a very wide
range of frequencies, although the practical benefits depend on frequency.

Until the present time, loop-gaps for use in EPR have been axially short com-
pared to an FS wavelength. However, the opposite scaling of capacitance and
inductance with LGR length suggests that the length of a LGR can be increased
without limit [8]. In this lumped circuit approximation the axial radio frequency
(rf) field profiles and resonance frequency are independent of length. This scal-
ing is accurate for resonator dimensions much less than one FS wavelength. When
the resonator length is increased to about a tenth of a FS wavelength, the rf
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field uniformity is observed to degrade. From about one tenth to about one FS
wavelength, computer simulations and experimental measurements show that the
magnetic field energy density H? profile is axially peaked in the center of the
loop-gap and decreases about 25% from the center to an axial distance equal to
a radius from the end, and then drops an additional 35% at the end of the reso-
nator. Analysis indicates that the nonuniformity is of two types. The first is in
the vicinity of one radius of the end of the LGR and is caused by the flaring of
the field as it goes from the central loop into the end region of the resonator,
where it then extends into the larger return loops. The second type of non-
uniformity is in the central part of the resonator and is caused by the LGR act-
ing like a transmission line supporting a standing wave. The LGR may be viewed
as a strongly reentrant (ridge) waveguide nearly open at both ends. A transmis-
sion line model is used to relate the central nonuniformity to the fringing ca-
pacitance and inductance at the ends of the resonator. It is found that this non-
uniformity may be eliminated by adding trimming elements to the ends of the
LGR. Examples include a small metal bridge or a dielectric ring placed near the
gaps which increase the fringing capacitance and/or the fringing inductance. With
properly designed ends, LGRs can be made many FS wavelengths long. It is found
that the maximum resonator length is determined by the proximity in frequency
of the lowest LGR mode to the next highest frequency mode and the quality fac-
tor. Results of this theory have been confirmed with finite-element simulations. Our
results connect the LGR and the uniform field cavity resonators introduced by this
laboratory [9-11]. With properly designed end sections, the loop-gap is a type of
uniform field resonator.

Increased uniformity of the rf magnetic field over the sample volume pro-
duces a more uniform saturation of the sample. Benefits of this include higher
EPR signal, particularly under saturable conditions. Because of smaller sample
size, the benefits of using long LGRs are greater at higher rf frequencies.

2 Theory
2.1 Lumped-Circuit Model of LGR

The inductance of a circular loop of radius » and length / with current distrib-
uted uniformly in the walls and flowing perpendicular to the axis of the loop is

L=pmrt/l, (N

where g, 1s the magnetic permeability of free space. We assume that there is a
central loop of radius », and m outer loops of radius r, with a gap between each
outer loop and the inner loop (Fig. 1b—d). The spilling of magnetic flux from
both the inner and outer loops causes an increase in inductance from that pre-
dicted by Eq. (1). An accurate accounting of this effect may be made by con-
sidering problem 6.14 of Jackson [12]. In this problem, the inductance of two
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parallel rectangular metal strips of width w, length / and separation ¢ with cur-
rent input on one side flowing parallel to w is given by

L = ptw/(30) .

This is one-third of the inductance of the shorted strips. To apply this result to
the LGR, we must treat the capacitance of a gap as two capacitors in parallel
divided at the location of the current null. The location of the current null is
determined by conservation of flux and the size of the inductance of the inner
and outer loops. To first order, we find,

Hy , | miw r?
A X P S AL . 2
' l[ ! 3 r02+riz/m] (2)
2
[=2 e 20 3)
! 3r2+ntim

where the gap width and thickness (distance of separation) are given by w and
¢, respectively. Study of the total series impedance around the inner loop in this
configuration reveals that the total inductance is a parallel combination of L; and
mL_,

o

e
S 1/ L +1/(mL,)

The capacitance of each gap i1s commonly given by
C=gwllt,

where g, is the electric permittivity of free space. An empirical relation to ac-
count for the capacitance due to the fringing electric fields near the gap edges
was introduced by the last term in eq. (3) of ref. 1. We find that the predicted
resonant frequency is more accurate by about an order of magnitude (from about
10 to 1% as discussed in Sect. 3.2) when a more complicated expression for
the capacitance given by Smythe [13: problem 59] is used. Smythe’s model gives
an exact analytic expression for the capacitance per unit length of two infinitely
thin, infinitely long, parallel conducting strips of width w and distance ¢ apart.
We envision these strips as the interior metallic surfaces of the LGR gap. Ne-
glecting end effects, which are treated in the following section, the capacitance
of the two strips of length / is, in the present geometry,

C’ = yC, 4

where the dimensionless factor y is given by
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tK (k)

r= wK(1=x%) " )

Here, K represents the complete elliptic integral of the first kind and the param-
eter x in the arguments of the elliptic integral is a real number between zero
and one determined by solving the equation

K(x)E{arccos[ E(x)/ K(x)],x} — E(x)F{arccos[E(x)/ K(x)],x}
E(x)K(1-x?) - W=k /1K) EN1 - 63K (x) '

)

w
t
In this equation, E of single argument represents the complete elliptic integral
of the second kind while £ of double argument represents the elliptic integral
of the second kind. Also F represents the elliptic integral of the first kind. Equa-
tion (6) was solved numerically and Eq. (5) evaluated by Mathematica 5.0 (Wol-
fram Research, Inc., Champaign, IL). This model slightly underestimates the fring-
ing capacitance because the gaps are treated as plates of zero thickness instead
of the true geometry of the LGR edge.

The resonant frequency f, of the LGR may be found from these values of
inductance and capacitance,

f. =1enfL.C.), (7

where C,, = C'/m. A reasonable prediction of the quality factor of the empty LGR
may also be found by considering the path of current flow around the loops
and through the gaps with arguments similar to that used to derive the induc-
tance,

Q=wL,/R,, ®)
where
P S
1 1/R +1/(mR))

Ro=2fmr e
osl\ ' 3 ri+rt/im)

and where o represents the conductivity of the metal and & represents the skin
depth in the metal of the resonator,

o =1/ nfuo .
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2.2 Transmission Line Model of LGR

When the length of the LGR approaches one FS wavelength, we can view the
LGR as a strongly reentrant ridge waveguide with open ends. The mode of os-
cillation is transverse electric (TE) with the electric fields across the gaps. A TE
mode in a waveguide of arbitrary cross section has a characteristic impedance
[12: sect. 8]

Zy=Zps—, )]

where Zpg = jg,/ 4, is the characteristic impedance of free space, A is the wave-
length of the waveguide mode and A g=c/f is the FS wavelength. The guide
wavelength may be expressed in terms of the cutoff frequency f, of the mode,

A=Ap I J1=(L 1) (10)

The cutoff frequency may be determined approximately by the lumped-circuit
model (Eq. (7)) or by finite-element computer simulation.!

Consider a length / of waveguide with a load impedance Z, on each end.
As discussed further below, this load impedance is a high reactance from the
combination of fringing electric and magnetic fields at the ends of the LGR. In
order for this length of guide to resonate, the load impedance Z, must be equal
to the complex conjugate of Z; transformed by the length / of waveguide. In
terms of the guide wavenumber k& =2n/A, this resonance condition may be ex-
pressed as [14]

Z;  Z coskl+iZ,sinkl
Z, Z,coskl+iZ sinkl’

Assuming the load impedance is purely reactive, this equation may be reduced to

_Imz] 2,

2cotkl .
Z, Im[Z, ]

(1)

This equation may be solved to determine the wavenumber of each mode and
the frequency through Eq. (10). Equation (11) predicts an infinite number of
modes.

! A convenient approach is to use Ansoft HFSS (Ansoft Corp. Pittsburgh, PA) to obtain an eigenmode
solution of a short axial slice of the LGR (waveguide) with perfect magnetic boundaries on each
end.
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In the limit of ideal open ends Z; —« (no fringing electric or magnetic
fields; or low frequencies) the solutions of Eq. (11) are

Kl =nm, (12)

where n=0, 1, 2, .... The lowest frequency mode has the solution £ = 0 for
n =0 and the corresponding mode frequency is the cutoff frequency = f.. The
next highest frequency mode n = 1 has one-half waveguide wavelength in /
(A = 2]) and each next higher frequency mode has an additional half wavelength
in /. The uniformity of the rf fields along the LGR axis z is related to the wave
number according to

(B.,E, )«

8ap

coskz, n even,
{ (13)

sinkz, n odd,

where z = 0 corresponds to the center of the resonator and z = +//2 are the ends.
The mode is uniform when &k = 0.

In actuality, the load impedance at the end of the resonator Z, may be mod-
eled as a capacitance, caused by the fringing electric fields, in parallel with an
inductance, caused by the fringing magnetic fields, in the end region of the LGR.
‘For m gaps,

l/m

Im{Z, ] = ——————.
(2] 1/(wl,) - oC,

(14)

A convenient expression for the fringing capacitance at each end of the LGR is
half the capacitance of two rectangular metal strips of dimensions w by b —a a
distance 2a apart lying in a plane and parallel along the w dimension [13: prob-
lem 58],

C, =é&sywl2, (15)

where the dimensionless factor £ is given by the ratio of complete elliptic inte-
grals,

£ = K(b* —a® /b)
K(a/b)
We find that setting a = #2 and b = r, produces reasonable results. The in-
ductance of a single gap may be approximated by

2 2
= Ho(r? /I m+r, ). (16)
w+r/m+r,
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For all conventional LGR designs considered, the capacitive admittance in
the denominator of Eq. (14), @C,, is smaller than the inductive admittance l/wL,.
Then the total load reactance is large and positive. Under these conditions, the
wavenumber of the n = 0 mode is positive, which makes the field profile slightly
cosine and the mode frequency above the cutoff frequency. This behavior is
observed in finite-element simulations of a wide variety of practical LGR de-
signs at X-, Q-, and W-bands. At these frequencies the load impedance of the
ends causes a nonuniformity of the mode and pulls the resonant frequency above
the cutoff frequency of the LGR. In addition, the axial LGR wavelength is de-
creased to satisfy the resonance condition of Eq. (11). In order to make the mode
uniform, capacitance may be added to the ends or inductance increased at the
ends in order to produce infinite loading impedance (Eq. (14)). The condition
Z, — o makes the lowest frequency mode of the LGR the same as the cutoff
frequency. This condition has been described extensively in publications from this
laboratory about the uniform field [9-11].

We have discovered several practical ways to trim the ends of the LGR to
produce uniform field for conventional LGR designs: (i) a quarter wavelength
dielectric may be placed between the gaps; (ii) the gaps at the ends of the LGR
may be made narrower, increasing the capacitance; (iii) a dielectric ring may be
placed near the gaps to increase the capacitance; and (iv) a metal bridge may
be placed near each of the gaps at the ends. Like the dielectric ring, the metal
bridge also increases the fringing capacitance at the end of the LGR, but may
also increase the fringing inductance by increasing the magnetic flux at the end
of the LGR. Use of metal bridge elements for trimming the rf magnetic field
uniformity are discussed further in Sect. 3.1.

The mode uniformity is also influenced by coupling of modes to each other
by proximity in frequency and resonator ). By using the condition

N1
foQ
where Af is the frequency separation between modes, and estimating the frequen-

cies of the n = 0 and » = 1 modes by Egs. (12) and (10), an upper limit on the
resonator length can be found,

{

max

1l

Aes
2

0 IO

17)

This has been proven accurate by finite-element modeling. If the coupler used
to excite the LGR is axially symmetric, so that the » = 2 mode is excited and
not the n = 1 mode, then the maximum length is double that of Eq. (17). Spe-
cial designs using multiple in-phase couplers may be used to couple only to the
n =0 mode and further increase the maximum length of the resonator.
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3 Finite-Element Simulations and Discussion

The finite-element computer program Ansoft High Frequency Structure Simula-
tor (HFSS) (Version 10, Ansoft Corporation, Pittsburgh, PA) was used to make
the numerical simulations of the modes. A HP WX8000 workstation with dual
Xeon 3.2 GHz processors and 4 GB of RAM was used. The operating system
was Windows 2003. The eigenmode solution method was used for all finite-el-
ement simulation results presented in this paper.

3.1 Comparison of EPR Properties of Short, Long, and Trimmed Long LGRs
at Q-band

The EPR benefits of longer LGRs are illustrated by comparing properties of two
Q-band 3-loop—2-gap LGRs that have been built and tested in this laboratory
[15-17]). The dimensions of each LGR are shown in Table 1. The short (1 mm)
LGR was made of aluminum, while the long (10 mm) was made of silver. The
gap thickness of the short LGR is slightly smaller than that of the long. The
resonators have no slots for modulation penetration. A mechanical drawing of
the long LGR is provided in Fig. 2. No coupling structure was included in the
simulations.

A comparison of the two resonators in terms of the EPR properties calcu-
lated from the finite-element simulations is shown in Table 2. The short resona-
tor is about one-tenth of an FS wavelength and the long resonator about one.
The filling factor is about 9% for the long LGR and slightly less for the short
due to end effects. The filling factor is comparable to the ratio of sample vol-
ume to inner loop volume. The sample diameter could not be made larger than
the indicated size without degrading the unloaded Q@ (Q,) below 200. The rf
magnetic field energy integrated along the LGR axis is representative of the
lengths of the two resonators, which differ by a factor of 10. Cross-sectional
profiles of the magnetic field energy for the two resonators are shown in Fig.

Table 1. LGR and sample dimensions.

Dimension Value (mm) for LGR
Short Long
Sample diameter d, 0.254 0.254
Sample tube outer diameter 4, 0.330 0.330
Inner loop diameter d, 0.648 0.660
Outer loop diameter d, 2.06 2.06
Length / 1.016 10.03
Gap width w 1.162 1.156

Gap thickness ¢ 0.127 0.165
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Fig. 2. Mechaunical drawing of bisected 10 mm long Q-band 3-loop-2-gap LGR. The resonator body
is shown in gray and the sample holder in black. Gaps face bisecting plane. The coupling iris slot
appears on the nearest edge.

3a and b. The (transverse) electric fields are shown in Fig. 4. The resonator
efficiency parameter is better for the short LGR by about a factor of +/10. Non-
saturable and saturable EPR signals were calculated from rf field integrals de-
rived from the finite-element simulations using the methods outlined by Mett and

Table 2. Comparison of EPR properties of LGRs with sample.

Value for LGR

Quantity
Short Long untrimmed Long trimmed
i 0.64 0.066 0.066
Mpon 9.8 9.8
7 0.118 1.15 1.14
V ampte! Vinner 100p (¥0) 154 14.8 14.8
n (%) 7.59 9.42 9.15
[(H2) g dz (mm) 1.148 9.25 10.29
foo saagie (GHZ) 34.965 34.481 34.158
Fits sampte (GHZ) 34.894 34.434 34.088
[ — 650 875 863
0 with sampie 247 234 245
A (G/W'2) 7.08 2.72 2.60
Scuns( P, nonsat 18.7 22.1 224
(S/Sshon)cons: P, somsat 1.182 1.194
S st 1, s (WYHG) 0.936 2.88 3.04
3.07 3.25

(S / Sshon) const H, sat
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Fig. 3. Cross-sectional profiles of axial rf magnetic field energy H? in a plane bisecting the 3-loop—

2-gap resonator through the gaps obtained for the » = 0 mode by computer simulation. Red to blue

indicates maximum to zero intensity. a 1 mm long LGR. b 10 mm long LGR, untrimmed for rf

magnetic field uniformity. ¢ 10 mm long LGR, trimmed for of magnetic field uniformity using metal
strips bridging the gaps.

Hyde [18]. The unsaturable EPR signal (which is equal to 7Q,) for the long
LGR is better than the short by only 18% because the improvement in filling
factor is nearly cancelled by a decrease in ,. The saturable signal, however, is
improved in the longer LGR by about a factor of /10 as expected.

Also shown in Table 2 are the properties of the long LGR trimmed for axial
rf magnetic field uniformity. The trimming was done by following a procedure
similar to that outlined in ref. 10. First, the cutoff frequency of the long LGR
with sample was found. This was done in Ansoft HFSS by taking a short axial
slice of the long LGR with sample and placing a magnetic boundary on both
ends. The eigenmode frequency of this structure is the cutoff frequency. Then

Fig. 4. Cross-sectional profile of rf electric field vectors and energy in a plane perpendicular to the
axis of the 10 mm long 3-loop—2-gap resonator obtained for the n» = 0 mode by computer simula-
tion. Red to blue indicates maximum to zero intensity.
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2 4

Distance (mm)

Fig. 5. Axial profiles of normalized axial magnetic field energy H? for the 10 mm 3-loop-2-gap LGR

obtained by computer simulation. The three profiles correspond to the LGR untrimmed for axial

magnetic field uniformity (black solid curve), trimmed for uniform axial magnetic field energy using

the metal bridge (black dashed curve), and the untrimmed profile predicted by the analytic model
(gray curve).

dimensions of a metal bridge were chosen (0.5 mm wide and 0.1 mm thickness
{Fig. 3c]) and one bridge was centered over each gap. Each bridge has the form
of a partial ring with the ends of each bridge spaced 0.33 mm apart (Fig. 3c).2
The spacing between the bridge and gap was then adjusted until the resonant
frequency of the bridged LGR was equal to the cutoff frequency. The magnetic
field was then observed to be uniform. The improvement in uniformity is clearly
indicated between Fig. 3b and ¢ and in Fig. 5. The fact that this procedure pro-
duces a uniform field confirms the theory of Sect. 2.2 and connects this theory
to the theory of uniform field cavity resonators introduced by this laboratory [9—
11]. The distance between bridge and LGR end in this case is 0.45 mm (Fig.
3c). The metal bridge primarily increases the fringing capacitance C, in Eq. (14)
to produce Im(Z; )~ 0. This lowers the resonant frequency of the LGR to the
cutoff frequency through Egs. (11) and (10). Notice the drop in frequency of
the LGR from 34.434 to 34.088 GHz (Table 2). In order to accommodate this
frequency shift, the LGR in most cases must be engineered for uniform field
from the start, and not simply retrofitted. As seen in Table 2, the improved field
uniformity produces an rf magnetic field energy integrated along the LGR nearly
equal to the resonator length. The nonsaturable EPR signal is only slightly im-
proved (by 1%), while the saturable EPR signal is improved by 6%. More sig-
nificantly, the quality of the EPR signal is expected to be improved for the
trimmed LGR due to uniform spin saturation.

Further confirmation of the uniform field theory of refs. 9-11 and the theory
of Sect. 2.2 was observed by decreasing the spacing between the metal bridges

® The shape of the metal bridge is largely arbitrary; changes in shape are accommodated by changes
in spacing.
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and the gap. Then the rf magnetic field strength became peaked at the ends of
the LGR and dipped in the center, consistent with an evanescent mode shown
in fig. 5 of ref. 9 (dashed curve). In this case, the wavenumber & is imaginary
since f < f. (Eq. (10)). Note that Eq. (11) remains a valid equation for the mode
frequency with imaginary k because Z, also becomes imaginary through Eq. (9).

Field uniformity was also achieved in this LGR with the simulation process
described above using other types of trimming elements, such as dielectric rings
and narrowed gaps near the ends of the LGR. Uniformity was also achieved using
quarter-wavelength dielectric end sections on each end of the LGR as shown in
Fig. 6. In these simulations, each end of the LGR is shorted and a dielectric of
axial dimension

d=—>F (18)

4f Je -1

is placed against each shorted end. Here f is the cutoff frequency of the LGR
with no dielectric (and the resonant frequency of the LGR) and ¢, is the rela-
tive dielectric constant of the dielectric. Under these conditions, the central re-
gion with no dielectric has exactly uniform field and may be made an arbitrary
length as iliustrated in Fig. 6. This type of resonator is a ndged analog of the
uniform field cavity resonators introduced in ref. 9. Equation (18) may be de-

Fig. 6. Cross-sectional profiles of axial magnetic field for LGRs designed for uniform field using
quarter wavelength dielectric end sections. Axial LGR lengths of different FS wavelength multiples
are shown.
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rived by combining Eq. (7), which yields the relationship between the cutoff
frequency of the LGR with no dielectric to the cutoff frequency of the dielec-
tric filled end sections, with Eq. (10) and setting d = A,,/4. Equation (18) is
identical to eq. (15) of ref. 9, which gives the size of the dielectric end sections
required to produce a uniform field cavity mode. This method of producing uni-
form field is not practical unless modified to accommodate sample access, in which
case the exact dielectric dimensions must be found by finite-element simulation.

3.2 Further Comparison of Analytic Theory and Finite-Element Simulations

The first row of Table 3 is a comparison of the cutoff frequency of the short
and long LGRs obtained by finite-element simulations to those predicted by Eq.
(7) with the lumped-circuit values of capacitance and inductance described in
Sect. 2.1. At less than 0.8% error, agreement is better than other lumped-circuit
models. Error is primarily due to the underestimate of the axial fringing capaci-
tance at the edge of the gaps (Eq. (4)). The significantly lower cutoff frequency
(2.3 GHz) of the short LGR compared to the long is caused primarily by the
thinner gaps of the short relative to the long. The n = 0 mode frequencies of the
two LGRs are similar (Table 3) as required by the EPR bridge operating frequency
range. The short LGR n = 0 mode frequency is more strongly mfluenced by the
fringing impedance of the ends, Eq. (14), than the long LGR. Agreement between
the n = 0 mode frequencies predicted by HFSS and the analytic transmission line
model, Egs. (11), (10), and (14)(16), is good for both LGRs (Table 3).

Also shown in Table 3 is a comparison of the unloaded O values (with no
sample) for the cutoff mode predicted by Eq. (8) and finite-element simulations.
At about 5% error, agreement is reasonable. A comparison of higher order n = 1,
2, 3 mode frequencies is also shown in Table 3. Agreement is good except for
the highest modes shown (n = 1 for the short and n = 3 for the long) because
at over 50 GHz, the mode fields significantly spill into the end sections and

Table 3. Comparison of analytic and HFSS models for LGRs (without sample).

Quantity Value for LGR
Short Long (uatrimmed)
HFSS Analytic HFSS Analytic

/. (GHz) 31.85 31.62 34.14 33.87
o, 582 620 860 895
f; (GHz) 34,97 35.30 34.48 34.85
f, (GHz) 58.81 55.21 37.68 37.36
f, (GHz) - - 44.99 41.93

£, (GHz) - - 54.68 49.57
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Fig. 7. Cross-sectional profiles of magnetic field vectors in 2 plane bisecting the 10 mm long

3-loop—2-gap resonator through the gaps obtained by computer simulation. One-quarter structure is

shown. The complete structure is obtained by reflection on left and bottom edges. Red to blue indi-
cates maximum to zero. intensity. a » = 0 mode; b n = 1 mode.

therefore the lumped-circuit model of the end fringing reactance becomes inac-
curate. Table 3 also shows that the frequency spacing of modes is much larger
for the short LGR than for the long, consistent with Eq. (12). Comparison of
the vector magnetic fields for the n =0 and #» = 1 modes for the long LGR in
Fig. 7 illustrates higher-order mode behavior and is consistent with Eq. (13). The
mode frequencies predicted by the transmission line model are sensitive to val-
ues of the lumped inductances and capacitances given by Eqs. (2)—(4), which
influence the cutoff frequency, and Egs. (15) and (16), which affect the place-
ment of the modes. Figure 5 shows a comparison of the finite element and ana-
Iytically predicted axial magnetic field energy density profiles after minor ad-
justment in end fringing capacitance.

4 Conclusions

The axial rf magnetic energy uniformity of the short and long resonators, 1 and
10 mm, respectively, differs as does the proximity of the n = 0 mode frequen-
cies to the cutoff frequency and the » = 1 mode frequency. Nonuniformity caused
by fringing capacitance has a larger effect on the shorter resonator than on the
longer resonator due to the percentage of fringing capacitance over the length.
Deviations of resonant frequency f from the cutoff frequency f, are larger in the
short resonator (2.3 GHz) making k larger, increasing the nonuniformity per unit
length. In contrast, the longer resonator has a small deviation of f from f, and a
smaller %, but is more sensitive to changes along the length, &/, making the
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nonuniformity more apparent (Eq. (13)). The total fractional rf magnetic field
nonuniformity from center to end is given by 1—cos?*k/. It is expected that as
the length becomes greater than one FS wavelength, the resonator will become
very phase sensitive, large &/, and will require trimming of the end sections.

The results of this paper are parallel to previous work from this laboratory
[9-11]. They show that a LGR can be viewed as a strongly reentrant ridged
waveguide at cutoff. With this analogy, the family of uniform field cavities is
extended to include LGRs.
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