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Abstract. The reliability of procedures for extracting the distance distribution between spins from
the dipolar evolution function is studied with particular emphasis on broad distributions. A new nu-
merically stable procedure for fitting distance distributions with polynomial interpolation between sam-
pling points is introduced and compared to Tikhonov regularization in the dipolar frequency and
distance domains and to approximate Pake transformation. Distance distributions with only narrow
peaks are most reliably extracted by distance-domain Tikhonov reguiarization, while frequency-do-
main Tikhonov regularization is favorable for distributions with only broad peaks. For the quantifi-
cation of distributions by their mean distance and variance, Hermite polynomial interpolation pro-
vides the best results. Distributions that contain both broad and narrow peaks are most difficult to
analyze. In this case a high signal-to-noise ratio is strictly required and approximate Pake transfor-
mation should be applied. A procedure is given for renormalizing primary experimental data from
protein preparations with slightly different degrees of spin labelling, so that they can be compared
directly. Performance of all the data analysis procedures is demonstrated on experimental data for
a shape-persistent biradical with a label-to-label distance of 5§ nm, for a [2]catenane with a broad
distance distribution, and for a doubly spin-labelled double mutant of plant light harvesting com-
plex II.

1 Introduction

Pulse electron paramagnetic resonance (EPR) experiments {1] on spin probes and
spin labels can provide precise distances between selected sites in complex mate-
rials in the 2—-5 nm range and in favorable cases in the 1.6-8 nm range [2].
Since few alternative techniques exist for such measurements on systems that
lack long-range order, these methods have recently been applied in a number
of studies on synthetic macromolecules and supramolecular structures [3-6]. The
combination with site-directed spin-labelling [7, 8] is very promising for the
structural characterization of proteins by long-range distance constraints [9].
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Among the currently used experiments {2, 10-16] pulse electron-electron
double resonance (ELDOR) experiments are particularly simple to analyze theore-
tically, as the signal for multispin systems factorizes into pair contributions [11,
12, 17, 18]. If angular correlations between spin-to-spin vectors and effects of
orientation selection [19] can be neglected, the dipolar evolution function mea-
sured by such experiments is thus directly related to the spin-spin pair correla-
tion function. Therefore, even broad distance distributions can be characterized,
at least if a reasonable model of the structure exists [6]. Such relatively broad
distance distributions have also been encountered for aggregates of polypeptides
[20, 21] and in our own, hitherto unpublished measurements on membrane pro-
teins, where a model-free conversion of the dipolar evolution function to the
distance distribution P(r) would be advantageous [17, 18]. It is well known that
the Pake transformation, which underlies such a model-free conversion, corre-
sponds to an ill-posed problem, so that moderate noise can already cause sig-
nificant artefacts in P(r). In other words, in the presence of some noise, a good
fit of the experimental data set by a distance distribution does not necessarily
guarantee that all the features of this distribution are real. This problem is ex-
pected to be more cumbersome for broad distributions than for the narrow dis-
tributions that have been mainly studied to date. At the current level of knowl-
edge, it is difficult to estimate the reliability of broad distributions extracted from
experimental data.

Here we present a comparative study of different approaches for extracting
the distance distribution P(r) from the dipolar time evolution function ¥(¢). We
consider the width of peaks in the distance distribution, the presence of noise,
and the maximum time f_,, in the measurement of F{(z). After a short review of
analytical expressions for V{f) we derive expressions for the case of dilute clus-
ters of spins. On the basis of these expressions we discuss the separation of
the background contribution stemming from remote spins in different clusters
from the contribution stemming from spins in one cluster. We then describe a
procedure for modulation depth renormalization that can distinguish differences
in experimental dipolar evolution functions which are merely due to different
degrees of spin labelling from differences that are due to changes in P(r). Af-
ter a short discussion of the limitations of approximate Pake transformation
(APT) [17, 18] and Tikhonov regularization [22-24] we introduce an iterative
fitting procedure that is based on piecewise Hermite polynomial interpolation
of P(r) between sampling points. We then discuss the reduction of information
on P(r) to a few characteristic parameters by moment analysis and define de-
scriptive width parameters of the distribution. The different approaches are then
compared for several model distance distributions by analysing simulated dipo-
lar evolution functions that are superimposed by white noise. Finally, experi-
mental data are analyzed for a shape-persistent biradical with a label-to-label
distance of 5 nm [25], a [2]catenane [6], and a double mutant of plant light
harvesting complex II (LHCII) reconstituted with different single xanthophyll
components next to chlorophyll a and &.
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2 Materials and Methods

Synthesis of the shape-persistent biradical [25] and of the doubly spin-labelled
[2]catenane [6, 26] have been described earlier. The double mutant S106C/S160Ch
of the LHCII apoprotein was dissolved (1 mg/ml) in an aqueous solution of
sodium dodecyl sulfate (0.5 weight%) and sodium phosphate buffer of pH 7 (20
mM). Reduction of any present disulfide linkages to free SH groups was achieved
by incubation with tris-(2-carboxyethyl)phosphine (TCEP, 2 mM) for 2 h. Spin
labelling was performed by adding 4-(2-iodoacetamido)-2,2,6,6-tetramethylpipe-
ridine 1-oxyl (Sigma-Aldrich, tenfold molar excess) and incubating over night at
ambient temperature on a shaker. The protein was then precipitated by addition
of 100 mM acetic acid (1/10 of the original volume) and acetone (2.3 times the
original volume). After centrifugation the protein was washed several times with
70% ethanol/30% water and once with absolute ethanol. The protein pellet was
dried for 15 min at ambient temperature. This doubly labelled protein was then
used in reconstitution of LHCII following a standard procedure {27].

Dipolar time evolution data were obtained at X-band frequencies (of about
9.3-9.4 GHz) on a Bruker Elexsys 580 spectrometer equipped with a Bruker
Flexline split-ring resonator ER 4118X_ MS3 using the four-pulse DEER experi-
ment /2(Vope) = 7= (Vo) =t = T(Vymp) — (7 + 5, =t ) —1( v, ) — ,—echo [13]. The
dipolar evolution time in this experiment is ¢t = t" — 7,. Data were analyzed only
for ¢+ > 0. The resonator was overcoupled to Q of about 100, the pump frequency
Voump Was set to the center of the resonator dip and coincided with the maxi-
mum of the nitroxide EPR spectrum, while the observer frequency v, was 65
MHz higher and coincided with the low-field local maximum of the spectrum.
Measurements on the shape-persistent biradical and the [2]catenane were per-
formed at a temperature of 15 K with a pump pulse length of 32 ns, while mea-
surements on LHCII reconstituted with the doubly spin-labelled double mutant
S106C/S160Ch were performed at a temperature of 50 K with a pump pulse
length of 12 ns. Proton modulation was averaged by adding traces at 25 differ-
ent 7, values, starting at 7,(0) = 200 ns and incrementing by Az, = 8 ns.

Tikhonov regularization with optimum choice of the regularization parameter
was performed with the program FTIKREG [23, 24] by implementing routines
for the computation of dipolar evolution functions V¢, w,,) for given dipolar fre-
quency @, or distance r in the Fortran source code (subroutine KTISJ1, see
appendix). Computation of pair correlation functions by direct transformation [17]
and by cubic Hermite interpolation between sampling points as described below
was accomplished with home-written Matlab programs. The source codes are
available at http://www.mpip-mainz.mpg.de/~jeschke/distance.html. Distance-do-
main smoothing with a filter width of 0.1 nm was applied to APT results un-
less noted otherwise.
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3 Computational Procedures
3.1 Dipolar Evolution Function for Dilute Clusters

Many applications of EPR distance measurements are concerned with dilute bi-
radicals or dilute doubly labelled biomacromolecules. In this case the primary
signal of a pulse ELDOR experiment normalized to unity at time ¢z = 0 (dipolar
evolution function V(f)) can be written as the product of an intramolecular part
Vear and an intermolecular part V. stemming from homogeneously distributed
remote spins [12]. The intermolecular part corresponds to an exponential decay
whose time constant depends on the concentration ¢ and the fraction A of spins

that are inverted by the pump pulse
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where g is the g value of the two electron spins (differences between the two g
values are assumed to be negligible), 4y is the Bohr magneton, and N, the
Avogadro constant. For a fixed distance r of the spin pair, the intramolecular
part is given by

n/2

Ve t,7) = 1= A+ A | cos[ (1 - 3cos? B)wy, (r)t ]sin6d6, (1)
0

where we have assumed that A does not depend on the angle & between the
external field and the spin-spin vector in the pair and where the distance depen-
dence of the dipolar frequency is described by

1 2,2
0y (7) = 7%' @)

As is apparent from Eq. (1), 4 can be considered as a modulation depth for
an isolated pair. For a distribution of distances in the pair, described by the pair
correlation function G(r), Eq. (1) can be integrated over r. As we have shown
recently, the restriction to dilute spin pairs can be overcome when the angular
correlation between spin-spin vectors of several coupled spins is negligible {17,
18]. In this situation there is a unique mapping between G(r) and the dipolar
evolution function and the signal can be computed as the product of contribu-
tions from infinitely thin spherical shells. With this result, we obtain the dipolar
evolution function of a sample consisting of dilute clusters of radicals
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where 7 is the average number of radicals in a cluster, and where the cluster-

only part of the spin-spin pair correlation function G, is normalized:

[ 4nr2G e (r)dr = 7 - 1,

For a negligible homogeneous decay contribution, the modulation depth for
clusters is A(m — 1), as was pointed out earlier by Milov et al. [11].

The lower integration limit r,, in Eq. (3) depends on the excitation band
width and hence on the pulse length. For the experimental conditions used in
this work, r_, = 1.5 nm is a reasonable choice [17, 18]. The upper integration
limit generally depends on the maximum observation time ¢ _,,, as effects from
more remote spins are increasingly significant with increasing time ¢. For maxi-
mum observation times of 8 ps, r,, = 40 nm is a safe choice. However, in the
case at hand the effective limit is set by the size of the clusters, which may
for instance be aggregates of biomacromolecules. Doubly labelled proteins or
protein complexes can be considered as a special case of clusters with 7 = 2.
For such samples r_,, corresponds to the maximum expected distance between
the labels. For the discussion of label-to-label separations, the distance distribu-
tion

P(r) = 4nr’G .. (r)
is most convenient.

According to Eq. (3), linear baseline correction of the logarithm of the sig-
nal provides the term that is solely due to spin pairs within the same cluster.
The exponential of this term, renormalized to unity at ¢ = 0, is a cluster-only
dipolar evolution function V. (f) corresponding to an ideal measurement on
isolated clusters with full modulation of the echo. When extracting V.. (f) from
experimental data, a range for the linear baseline fit must be selected. Usually
the long-time behavior is dominated by the background contribution, so that the
optimum range corresponds to fyy, < ¢ < t,,. For narrow distributions, visual
inspection of the data yields a good estimate for f,,, and, furthermore, the re-
sult does not depend strongly on the particular choice. For broad distributions
or distances longer than about 4 nm, an automatic, adaptive choice of #,, is
more suitable. For this, we perform APT [17] for all possible values of f,,, in
the range between 0.1z, and 0.9z ,,. The best background correction should yield
a distance distribution P(r) that decays to zero at long distances. We thus select
the value of #,,, at which |P(r,,, \pr)| is minimum, where r,, .pr is the upper
distance limit of the APT for the given dataset.
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Extraction of G (r) or P(r) from V. (8 is generally an ill-posed (or ill-
conditioned) problem, in which small statistical variations (noise) in the input
function ¥, ..(f) may cause strong variations in the output function P(r). To a
certain degree, this problem can be mended by an integral transformation with
properly selected digital resolution in the dipolar frequency domain, mapping to
distance domain, and subsequent distance domain smoothing [17].
Alternatively, Tikhonov regularization [22] with adaptive choice of the regu-
larization parameter [23, 24] can be used [18; P. P. Borbat and J. H. Freed, Cornell
University, Ithaca, NY, USA, pers. commun.]. For the similar problem of extract-
ing dipolar frequencies from rotational echo double resonance (REDOR) data in
solid-state nuclear magnetic resonance (NMR), a study conceming distance dis-
tributions with only narrow peaks found that Tikhonov regularization is advanta-
geous for noisy data [28]. In the following we mainly consider the case of dis-
tance distributions containing broad peaks, as they are typical for membrane

proteins labelled in the loop regions.

3.2 Comparison of Data Sets

Site-directed spin labelling (SDSL) is often used to reveal function-related struc-
tural changes in biomacromolecules [7, 8, 29]. For this purpose it would be useful
to reliably detect small changes in the distance distribution P(r). We have en-
countered the same problem in the characterization of LHCII samples that are
reconstituted with different xanthophylls or in the presence of different lipids.
As extraction of P(r) is an ill-posed problem, apparently significant differences
in the experimental distance distribution of two samples may result from mod-
erate noise, as we shall also see in the Sect. 4. Therefore, direct comparison of
the primary time-domain data reveals more clearly whether the differences be-
tween two samples are statistically significant.

To test reproducibility for like samples, we have performed measurements
with careful adjustment of all parameters of the four-pulse DEER experiment on
‘several samples prepared by the same procedure from the Same constituents. We
have found that primary experimental data for such nominally identical samples
often vary in the modulation depth A. The most likely cause is variation in the
efficiency of spin labelling, leading to slightly different ratios of doubly labelled
to singly labelled protein. For repeated measurements on the same sample we
find smaller, but still noticeable, variations in A that are presumably due to un-
avoidable small differences in the width and shape of the cavity mode, which
in turn lead to slightly different excitation profiles of the pulses.

As we are interested only in changes in the “true” pair correlation function,
we need to compensate for these variations in A. From Eq. (3) it follows that a
mere difference in the modulation depth A between two samples corresponds to
scaling of the logarithm of the primary data V(f) by a constant factor f; = 4,/4,.
Assume that two data sets V(¢ and V,(z,) are specified at N discrete times ¢,.
The experimental scaling factor
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corresponds to a minimum root mean square difference between In¥| and f,InV,.
The difference signal,

AV = exp(f,In¥;) -,

is thus a measure for differences in the spin-spin pair correlation function be-
tween the two samples. Differences in the modulation depths caused by slightly
different spectrometer settings do not contribute to AV. A different ratio of sin-
gly labelled to doubly labelled protein molecules may influence the relative
weights of the homogeneous contribution and the cluster contribution on the right-
hand side of Eq. (3) and thus may not be fully compensated by the scaling. How-
ever, in measurements on proteins one usually works at concentrations where the
homogeneous contribution is the smallest of the three terms on the left-hand side
of Eq. (3), so that moderate changes in the ratio of cluster concentration to bulk
concentration of the spin labels are not expected to cause a significant contribu-
tion to AV.

3.3 lterative Fitting of a Model-Free Pair Correlation Function

In our previous derivation of the APT procedure for extracting G(r) from dipo-
lar time evolution data, we discretized the dipolar frequency domain in a way
that approximately minimized the condition number of the crosstalk matrix [17].
We obtained condition numbers of about 3, indicating that for this discretization
the problem is reasonably well-posed. Yet, scaling of the dipolar evolution func-
tion with 7 in this approach decreases the signal-to-noise ratio and any condition
number larger than unity means that noise introduces some crosstalk, i.e., some
interference between values of P(r) at different ». Our recent experience with
broad distance distributions in doubly spin-labelled [2]catenanes [6] has shown
that this may introduce unreasonably narrow features into the experimental P(r).
These artefacts can be eliminated by distance-domain smoothing only at the price
of undue broadening of the true features.

For any given data set there is a resolution in distance domain which is an
optimum compromise between the appearance of such crosstalk artefacts and
artificial broadening of P(r). In principle, Tikhonov regularization with adaptive
choice of the regularization parameter is supposed to automatically provide this
optimum resolution [23, 24]. Furthermore, unlike APT, Tikhonov regularization
can incorporate the constraint P(r) = 0, which is known to counteract the ap-
pearance of crosstalk artefacts. However, our experience shows that for broad
distance distributions, this technique tends to yield P(r) consisting of a multi-
tude of narrow peaks if distance-domain data are computed directly (see Sect.



230 G. Jeschke et al.

4). If data are first computed in dipolar frequency domain and then mapped to
distances, narrow features may be lost in distributions that contain both narrow
and broad peaks (see also Sect. 4). It is therefore desirable to study systemati-
cally how the appearance of artefacts in P(r) and the deviation between experi-
mental and simulated dipolar evolution functions depend on the selected resolu-
tion in distance domain.

For that purpose we model P(7) by polynomial interpolation between »n, equi-
distant sampling points r, in distance domain. The P, = P(r,) are variables in a
nonlinear fit procedure performed with the simplex algorithm. The dipolar time
evolution function V(f) for the current model distance distribution is computed
by shell factorization [17] and the best-fit P, values are determined by minimiz-
ing the root mean square deviation of V(¢) from V. (¢) under the constraint
P, = 0. The cluster-only dipolar evolution function V(¢f) in the range from
t=0 tot=1t, is computed from experimental or simulated data as described
in Sect 3.2. The use of piecewise cubic Hermite interpolation rather than spline
interpolation between the sampling points ensures that the interpolated model dis-
tance distribution is nonnegative in between sampling points.

To enhance numerical stability and to avoid convergence to local minima, the
fit procedure is started with only n, = 8 sampling points r,, with r, = r_, = 1.75
nm and rg = r,,.. Here r,, is the distance obtained by Eq. (2) from the mini-
mum detectable dipolar frequency @y, = S7/(4¢,,) [17]. A good set of start-
ing values for the P, can be derived by direct transformation of V. (¢) to the
dipolar frequency domain, mapping to distance domain with Eq. (2), and dis-
tance domain smoothing with a Gaussian filter width of 0.5 nm.

To increase the resolution of the modelled distance distribution P(r), an new
set of r, is defined by inserting additional sampling points halfway between the
existing sample points. The starting values P,, at these new sampling points are
the values of the interpolating Hermite polynomial of the previous set of sam-
pling points. Typically we perform five iterations of this procedure so that we
obtain model distance distributions PO(r)...PO)(r) with n, = 8, 15, 29, 57, and
113 sampling points between r;, and r,,. For the usually achievable observa-
fion times ¢, < 8 us this corresponds to a resolution of about 0.05 nm or bet-
ter in the last step. Higher resolution is unrealistic as conformational distribu-
tions irrevocably cause larger peak widths than that in P(r) even for shape-per-
sistent molecules [25]. Improvements in the quality of the fits with increasing reso-
lution of P(r) can be assessed by changes in the rm.s. deviation of V(?) from

Vcluster(t) .

3.4 Characteristic Parameters of Broad Distance Distributions

In the presence of moderate or strong noise, different data analysis procedures
may provide significantly different distance distributions P(r), since the problem
of extracting P(r) from V. (¢) is generally ill-posed. Nevertheless, certain char-
acteristics of P(»), such as its mean value and variance, may be defined with
high or at least satisfying precision by the available experimental data. For the
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distribution of ionic spin probes in telechelic ionomers, we could determine such
characteristic parameters by fitting a P(r) consisting of one or two Gaussian peaks
and a homogeneous background contribution [4, 5]. However, in the case of dou-
bly-labelled LHCII, this approach was found to be numerically unstable. A model-
free reduction of distributions to characteristic parameters can be achieved by
moment analysis. The first moment,

[™ rP(r)dr

)= [™ P(ryar’

min

is the mean distance. Higher moments of order n» > 1 are defined by

J‘::‘ (r ={r)* P(r)dr
[™Pryar

(o) -

The second moment or variance of the distribution, {(Ar?), is of the order of
the square of the width of the distribution, while the third moment, {(Ar?), char-
acterizes the asymmetry of the distribution. A more descriptive width parameter
I can be defined by

(r)+Tos/2
P(r)dr
————————L’)""»’/ 2 =05.

jr’“_“ P(r)dr

In other words, Iy is the width of the range in which 50% of all spin-to-
spin distances are found. Analogously, a parameter [, can be defined as the
width in which 90% of all spin-to-spin distances are found.

4 Results
4.1 Assessing Structural Changes in LHCII

Data typical for the reproducibility of our measurements on doubly spin-labelled
LHCII from different preparations are shown in Fig. 1. The data from indepen-
dent measurements on the double mutant S106C/S160Ch of LHCII reconstituted
with pure neoxanthin (NX) can be superimposed by scaling with a factor f, =
1.091 (Fig. la, c), while data from the measurements of the same double mu-
tant reconstituted with pure zeaxanthin (ZX) can be superimposed with a factor
S, = 1.631. In both cases, the difference between the superimposed traces is vir-
tually pure white noise, except for small deviations close to ¢, (arrows in Fig.
l¢, d) that are caused by slightly different amplitudes of the residual proton
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modulation. In contrast, traces of LHCII reconstituted with NX are not super-
imposable with traces of LHCII reconstituted with ZX (Fig. le, f). At shorter
times, the decay of the normalised signal is faster for ZX, as is apparent from
the negative difference signal in the range from about 0.2 to about 1.2 us,
whereas it is slower at longer times. This indicates a broader distance distribu-
tion for NX.

4.2 Extraction of Distance Distributions from Model Data Sets

For systems with well defined distances (one narrow peak in the distance dis-
tribution), no particular problems in data analysis are expected if the data can
be acquired with good signal-to-noise ratio. This is borne out by analysis of
the simulated data set (Fig. 2a) corresponding to a distance distribution with one
Gaussian peak at 5 nm with a standard deviation of 0.2 nm. The four alterna-
tive approaches APT, Tikhonov regularization in frequency domain (Tikh.-@,,)
and distance domain (Tikh.-r), and fitting by Hermite interpolating polynomial
distributions (Poly-P™) all give reasonable results. Approaches on the basis of
a primary analysis in dipolar frequency domain (APT and Tikh.-w,,) have lim-
ited resolution. In principle, the resolution may be improved by zero-filling; but
as the modulation has not decayed and as the effect of apodization in these tech-
niques is not well understood, we have refrained from this. Note that despite
the good signal-to-noise ratio, Poly-P® and Poly-P® display an apparent fine
structure of the peak, which is an artefact. As is clearly seen in Fig. 2c, in-
creasing the number of sampling points beyond n, = 29 (Poly-P®) does not
strongly improve the fit. Moment analysis gives mean distances of 4.6 nm for
Tikhonov regularization in frequency domain, 5.2 nm for APT, 4.9 nm for Poly-
P® and the precise result of 5.0 nm for Tikhonov-regularization in distance
domain as well as Hermite polynomial fitting with at least 15 sampling points
(Poly-P® to Poly-P®). For the standard deviation (square root of the second
moment), Tikhonov regularization in distance domain gives a value of 0.40 nm,
i.e., an overestimate by a factor of two. The best results for this parameter are
obtained from the distributions Poly-P® (0.28 nm) and Poly-P® (0.25 nm).
As an example for an asymmetric distance distribution we have selected the
Birnbaum-Saunders distribution originally introduced to model the lifetime dis-
tribution of materials subject to a physical fatigue process [30]. Results of ex-
ponential background correction and data analysis by the alternative approaches
are displayed in Fig. 3a, b for two different signal-to-noise ratios. For this broad
distribution, adaptive choice of the regularization parameter in distance domain
Tikhonov regularization is not successful even at moderate noise amplitude (Fig.
3b, trace III). For the signal-to-noise ratio of the data displayed in Fig. 3c, the
algorithm for finding the optimum regularization parameter fails altogether. In this
situation, Tikhonov regularization in dipolar frequency domain provides the best
result. Hermite polynomial fitting with a small number of sampling points and
APT also perform reasonably well. Increasing the number of sampling points in
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Fig. 1. Assessment of structural differences in LHCII reconstituted with the two different xantho-
phylls neoxanthin (NX) and zeaxanthin (ZX) by comparison of dipolar time evolution data (doubly
spin-labeiled double mutant S106C/S160Ch). Arrows in ¢ and d mark small deviations caused by
proton modulations (see text). a Primary experimental data for two different preparations of LHCII
reconstituted with NX (inset). b Primary experimental data for two different preparations of LHCII
reconstituted with ZX (inset). ¢ Difference of the two traces in a after scaling with optimum f, =
1.091. d Difference of the two traces in b after scaling with optimum f; = 1.631. e Difference ZX-
NX of the black- traces in a and b after optimum scaling. f Difference ZX-NX of the grey traces in
a and b after optimum scaling.

Hermite polynomial fitting from n, = 8 to 15 leads to only a moderate improve-
ment in the r.m.s. deviation of the fitted dipolar evolution function from 0.605
to 0.591. A further increase up to 113 points yields 0.583.

Again the moments of the distance distribution and also the widths 77, and
I, (Table 1) are reproduced best by the P(r) obtained by Hermite polynomial
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Fig. 2. Analysis of dipolar time evolution data with added noise for a model distance distribution
consisting of one Gaussian peak at » = 5 nm with standard deviation o, = 0.2 nm. a Simulated di-
polar time evolution function ¥(f) (upper trace, left vertical scale) and cluster-only part V.. (£) ob-
tained by exponential background fitting (grey lower trace, right vertical scale). The black solid line
in the lower trace is the best fit of a Hermite polynomial distance distribution function with 113
sampling points (Poly-P®)). b Distance distributions. I, model distribution used in simulating ¥(¥).
11, distribution extracted by approximate Pake transformation. III, distribution extracted by Tikhonov
regularization in dipolar frequency domain. IV, distribution extracted by Tikhonov regularization in
distance domain. V-IX, distributions Poly-P™ extracted by fitting Hermite polynomial distance dis-
tribution functions with different numbers of sampling points. Sampling points are marked by solid
‘circles. ¢ Dependence of the r.m.s. deviation between V. () and fitted dipolar evolution functions
Va(®) on the number of sampling points #,.

fitting. Although the Poly-P™ with a large number of sampling points clearly
exhibit noise artefacts (see, e.g., Fig. 3b, trace IV), they provide characteristic
parameters of the distribution that are close to the true values. Although the sig-
nal-to-noise ratio is lower for the data shown in Fig. 3c, (r), (Ar?), and I
could be determined with better precision than for the data shown in Fig. 3a.
This can be traced back to the shorter time window. To substantiate this find-
ing, we have simulated 100 dipolar evolution functions with the same mean
square noise amplitude and same ¢, as in Fig. 3c and analyzed them by Hermite
polynomial fitting. We find that the mean distance (r) can be determined with
a standard deviation of less than 0.015 nm, the second moment {Ar?) (variance)
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Fig. 3. Analysis of dipolar time evolution data with added noise for a model distance distribution
consisting of a broad asymmetric Birnbaum-Saunders peak with x# = 1.4 nm, #= 1.45 nm, y= 0.75.
a Simulated dipolar time evolution function ¥{f) extending to ¢, = 4 ps with moderate noise (upper
trace, left vertical scale) and cluster-only part V() obtained by exponential background fitting
(grey lower trace, right vertical scale). The black solid line in the lower trace is the best fit of a
Hermite polynomial distance distribution function with 29 sampling points (Poly-P®). b Distance dis-
tributions extracted from ¥, (f) in a (solid lines) overlayed by the model distribution (dotted lines).
I, distribution- extracted by approximate Pake transformation. II, distribution extracted by Tikhonov
regularization in dipolar frequency domain. III, distribution extracted by Tikhonov regularization in
distance domain. IV-VI, distributions Poly-P™ extracted by fitting Hermite polynomial distance dis-
tribution functions with different numbers of sampling points. ¢ Simulated dipolar time evolution func-
tion V(¢) extending to f_, = 2.5 ps with strong noise (upper trace, left vertical scale) and cluster-
only part V. (f) obtained by exponential background fitting (grey lower trace, right vertical scale).
The black solid line in the lower trace is the best fit of a Hermite polynomial distance distribution
function with 29 sampling points (Poly-P®). d Distance distributions extracted from V(¢ in ¢
(solid lines) overlayed by the model distribution (dotted lines). I, distribution extracted by approxi-
mate Pake transformation. II, distribution extracted by Tikhonov regularization in dipolar frequency
domain. III-VII, distributions Poly-P™ extracted by fitting Hermite polynomial distance distribution
functions with different numbers of sampling points.

with a standard deviation of less than 0.02 nm?, and 7, with a standard devia-
tion of less than 0.02 nm. The third moment {Ar*), which characterizes the asym-
metry of the distribution, cannot be determined reliably by any of the data analy-
sis procedures (Table 1).



236 G. Jeschke et al.

Table 1. Characteristics of the asymmetric model distribution (see Fig. 3a, b) and errors of these
characteristics for distributions reextracted by different analysis procedures from moderately noisy
data.

Data % Deviation® from the following value of the model function
analysis
(r) = (ar) = (ar) = I = I, =
3.042 nm 0.343 nm? 0.169 nm? 0.808 nm 1.803 nm
APT -2.21 7.9 44.1 -5.2 6.6
Tikh.-w,, -1.94 10.1 38.9 —-8.8 7.6
Tikh.-r —1.38 11.9 48.1 -3.4 12.0
Poly-P(M 0.89 5.7 —~24.0 -9.1 14.2
Poly-P® 1.20 —-4.2 -19.5 —-4.9 5.5
Poly-P® 1.26 -39 -16.4 -4.8 3.1
Poly-P® 1.25 -52 —-24.0 -55 2.4
Poly-P® 1.25 —-4.7 —24.2 -5.2 2.1

* Deviations were calculated as AM /M, for {r), AM/M, for {AF), AM/M, for (AP), AL, /T for
Tos and Alyg/ 1, for Iy,

Faithful extraction of distance distributions from dipolar evolution functions
is expected to be most difficult in cases where the distribution contains both
broad and narrow contributions. This is because then a regularization parameter
or smoothing filter width cannot be optimum throughout the distribution. The
problem is readily apparent for a model distribution consisting of three peaks
with mean distances of 3, 4, and 5 nm and widths of 0.4, 0.5, and 0.2 nm, re-
spectively (Fig. 4). Despite the fact that the signal-to-noise ratio is rather good
in both traces, Tikhonov regularization in both frequency and distance domain
runs into problems. With frequency domain Tikhonov regularization, the peak at
5 nm is completely missing (Fig. 4d, trace II, see arrow). Adaptive choice of
the regularization parameter in distance domain Tikhonov regularization provides
a too optimistic estimate of resolution. With Hermite polynomial fitting, the r.m.s.
.deviation for the data in Fig. 4a improves from 0.518 to 0.071 when increasing
the number of sampling points from 8 to 57, while a further increase to n, = 113
results in only an insignificant change of the r.m.s. deviation to 0.066. The best
performance for these two data sets is obtained by APT. Indeed, the APT result
can even be improved by zero filling (data not shown).

4.3 Peak Quantification in Model Data Sets

In some applications, it may be of interest to estimate the fractions of spin pairs
that correspond to the peaks of a multimodal distance distribution. We have
performed tests for a simple example of three baseline separated Gaussian peaks
with widths of 0.2 nm (standard deviation) and mean distances of 2.25, 3.25,
and 4.25 nm. The noise level (r.m.s. amplitude) was varied between 0.025 and
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Fig. 4. Analysis of dipolar time evolution data with added noise for a model distance distribution
consisting of three Gaussian peaks at r, = 3 nm (standard deviation o;, = 0.4 nm), », =4 nm (g;, = 0.5
nm), and »;, = 5 nm (g, = 0.2 nm). For labeling of distribution functions in b and d see Fig. 3. a
Simulated cluster-only part ¥V,,.(f) (grey line) with low noise and best fit of a Hermite polynomial
distance distribution function with 29 sampling points (Poly-P®). The inset shows the range t = 2~
5 ps with five times increased amplitude. b Distance distributions extracted from V..(¢) in a (solid
lines) overlayed by the model distribution (dotted lines). ¢ Simulated cluster-only part V. (¢) (grey
line) with moderate noise and best fit of a Hermite polynomial distance distribution function with 29
sampling points (Poly-P®). The inset shows the range t = 2-5 ps with five times increased ampli-
tude. d Distance distributions extracted from V. (f) in ¢ (solid lines) overlayed by the model dis-

cluster

tribution (dotted lines). The arrow designates the peak at 5 nm that is missing in distance domain
Tikhonov regularization.

0.8% of the total echo amplitude and a modulation depth 1 = 0.16 was assumed.
The dependence of the sum of the standard deviations of all three peak ampli-
tudes on the noise level is displayed in Fig. 5 for the different data analysis
procedures. It is apparent that distance domain Tikhonov regularization performs
best for this task. If the signal-to-noise ratio is decreased by another factor of
two (1.6% r.m.s. noise amplitude, data not shown) the determination of the op-
timum regularization parameter in the FTIKREG algorithm fails. However, for
such low-noise data, quantification by any of the other methods is not reliable
either. Up to approximately 0.5% r.m.s. noise, APT and Hermite polynomial fit-
ting with a sufficiently large number of sampling points (Poly-P®) also provide
satisfying results.
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Fig. 5. Standard deviation o,,, of the three peak intensities in a model distribution with three nar-

row peaks (r, = 2.25 nm, r, = 3.25 nm, r; = 425 nm, o, = 0,, = 0, = 0.2 nm) as a function of

the amplitude o, of white noise for different data analysis procedures. For labelling of the proce-
dures see Fig. 3.
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4.4 Extraction of Distance Distributions from Experimental Data Sets

In experimental data sets, complications beyond the presence of white noise may
be encountered. For instance, nuclear modulations are not completely suppressed
in the four-pulse DEER experiment and may give rise to an artefact at about
1.5 nm at X-band frequencies of about 9.6 GHz [13]. As can be seen for the
example of a shape-persistent biradical with a spin-to-spin distance of about 5
nm [25], this artefact is well confined in frequency domain Tikhonov regular-
ization (see arrow in Fig. 6b) and has a tolerable influence in APT analysis. Dis-
tance domain Tikhonov regularization and Hermite polynomial fitting can be
restricted to the distance range at which the data are reliable.

Apart from this, the quality of the results for Hermite polynomial fitting and
APT is similar to the quality obtained for simulated data (compare Figs. 2 and
6). Somewhat surprisingly, this is not true for distance domain Tikhonov regu-
larization (Fig. 6, trace III). Probably the difficulty in extracting the optimum
regularization parameter is due to slightly stronger noise combined with nuclear
modulation and deviations from the ideal dipolar evolution function caused by
orientation selection [19]. Moment analysis of the Hermite polynomial fit Poly-
P® gives a mean distance of 5.02 nm and a width 7,5 of 0.19 nm in good agree-
ment with previous results for this biradical {16, 17].

In recent work on the characterization of the coconformation of [2]catenanes,
we encountered broad asymmetric distance distributions [6]. For a shock-frozen
chloroform solution, we found that the primary data could be simulated quite well
by a simple geometric model for the two concatenated macrocycles. This was
not true, however, for the same compounds in glassy o-terphenyl. A model-free
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Fig. 6. Analysis of experimental dipolar time evolution data for a shape-persistent biradical with an
end-to-end distance of approximately 5 nm. a Primary experimental data normalized at t = 0 (upper
trace) and cluster-only part ¥V (¢#) obtained by exponential background fitting (grey lower trace,
right vertical scale). The black solid line in the lower trace is the best fit of a Hermite polynomial
distance distribution function with 113 sampling points (Poly-P®). The inset shows the dependence
of the r.m.s. deviation of Vi (s) from V. (#) on the number of sampling points »n, used in polyno-
mial fitting. b Distance distributions extracted from V. (¢) in a (solid lines) by dlfferent data analysis
techniques (for labelling see Fig. 3). The arrow marks an artefact at 1.5 nm caused by residual pro-
ton modulation of the signal. ¢ Structure of the biradical.

quantification of such broad asymmetric distributions would thus be of consider-
able interest. As can be seen in Fig. 7, distance distributions extracted by differ-
ent data analysis procedures differ considerably from each other for this case.
Estimation of the optimum regularization parameter in distance domain Tikhonov
regularization fails (Fig. 7b, trace III), while frequency domain Tikhonov regu-
larization produces a reasonable result. Some of the problems can be traced back
to the fact that V..(f) has not completely decayed, which makes separation of
this contribution from the homogeneous background difficult. Moment analysis
shows that the different distance distributions, with the exception of the one
obtained by APT, agree reasonably well in some characteristics. Mean distances
range between 3.2 and 3.8 nm, first moments between 1.0 and 1.3 nm?, 7
between 1.6 and 1.9 nm, and 7, between 2.9 and 3.3 nm.

For the double mutant S106C/S160Ch of LHCII reconstituted with lutein as
the xanthophyll component, the distance distribution is considerably narrower than
that for the [2]catenane (Fig. 8). Consequently, differences between the results
of the alternative data analysis procedures are less dramatic (Table 2). Moment
analysis of the distributions from all the different analysis procedures consistently
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Fig. 7. Analysis of experimental dipolar time evolution data for a doubly labeiled medium-sized
[2]catenane’ with a broad distribution of spin-to-spin distances [6]. a Primary experimental data nor-
malized at ¢ = 0 (upper trace) and cluster-only part V,,...(f) obtained by exponential background fit-
ting (grey lower trace, right vertical scale). The black solid line in the lower trace is the best fit of
a Hermite polynomial distance distribution function with 29 sampling points (Poly-P®). b Distance
distributions extracted from ¥ __(f) in a by different data analysis techniques (for labelling see Fig.

cluster’

3). To the result of approximate Pake transformation a distance domain smoothing with a filter width
of 0.25 nm was applied. ¢ Structure of the doubly labelled [2]catenane.

results in mean distances {(r) = 4.0-4.15 nm and widths [, = 1.0-1.4 nm. Simi-
lar ranges of (r) = 3.85-4.15 nm and I, = 0.9-1.3 nm are obtained for both
measurements (see Fig. 2a) of the same double mutant of LHCII reconstituted
with ZX. In the latter case, results with APT have been excluded. Results for
LHCII reconstituted with NX are in the ranges (r) = 3.9—4.25 nm and [, =
1.15-1.6 nm (again APT excluded). There is some indication for an increase in
the mean distance and in the width of the distribution for NX, but on the basis
of these values it can hardly be claimed that the difference is statistically sig-
nificant. However, the second moment of the distance distribution {Ar?) is con-
sistently larger for NX compared to lutein and ZX (see also Table 2). This is in
agreement with the broadening of the distance distribution for NX compared to
ZX that is indicated by direct comparison of the primary data.
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Fig. 8. Analysis of experimental dipolar time evolution data for the the doubly spin-labelled doubie
mutant S106C/S160Ch of LHCII reconstituted with lutein as the xanthophyll component. a Primary
experimental data normalized at ¢ = 0 (upper trace) and cluster-only part V.. (¢) obtained by expo-
nential background fitting (grey lower traces, right vertical amplitude ruler). The black solid lines in
the two lower traces are the best fits of a Hermite polynomial distance distribution function with
113 sampling points (Poly-P*, medium trace) and by distance domain Tikhonov regularization (Tikh.-
r, lowest trace). b Distance distributions extracted from V.. (¢) in a by different data analysis tech-
niques (for labeiling see Fig. 3). ¢ Dependence of the r.m.s. deviation between V() and fitted
dipolar evolution functions V(f) on the number of sampling points n. d Structure of lutein.

Table 2. Characteristics of the label-to-label distance distribution Poly-P® of the double mutant S106C/
S160Ch of LHCII reconstituted with different pure xanthophyll components. For zeaxanthin and
neoxanthin, two preparations each were measured.

Characteristics {r) (nm) {AF*) (nm?) (AP) (nm®) [}, (nm) Iy (nm)
Lutein 4.14 0.424 -0.211 1.07 2.05
Zeaxanthin(1) 4.13 0.406 -0.175 0.99 2.06
Zeaxanthin(2) 4.14 0.436 -0.231 1.12 2.03
Neoxanthin(1) 4.24 0.493 -0.250 1.10 1.92

Neoxanthin(2) 4.17 0.525 -0.250 1.17 2.25
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5 Discussion

Clearly, none of the alternative approaches for extracting P(r) from background-
corrected dipolar evolution data V. (¢) consistently provides reliable results. It
is therefore highly advisable to select the data analysis procedure that is best
suited to the problem at hand and to cross-check the results. Model-free extrac-
tion of broad distance distributions may only be possible if the expected resolu-
tion in distance domain is known in advance. Othetrwise, such distributions should
be characterized by their mean value and variance.

If the distance distribution consists of only narrow peaks (widths of a few
tenths of a nanometer), all data analysis procedures provide reliable results. In
this case, the best resolution and least influence of noise on the result is ob-
tained by distance domain Tikhonov regularization. If the distance distribution
consists only of broad contributions (width of the most narrow feature larger than
1 nm), distance domain Tikhonov regularization tends to fail, while all the other
methods give reasonable results. In this situation the most faithful result for P(r)
tends to be obtained by frequency domain Tikhonov regularization. However, if
moment analysis of the distribution is intended, better results are obtained with
Hermite polynomial fitting with a large number of sampling points. Distance
distributions consisting of both narrow and broad peaks are the most compli-
cated case. Adaptive choice of the regularization parameter for Tikhonov regu-
larization then tends to fail in both distance and frequency domain. Such data
are better analyzed by approximate Pake transformation or Hermite polynomial
fitting, provided that the signal-to-noise ratio is good.

Generally, the "quality of experimental data is characterized by the signal-to-
noise ratio and the maximum dipolar evolution time ¢_,. For the currently used
constant-time evolution experiments these two characteristics are strongly inter-
dependent and a compromise between them must be made before the measure-
ment. Work on an alternative approach on the basis of the four-pulse DEER ex-
periment is in progress. The choice of ¢, decides to what extent the homoge-
neous background contribution from remote spins can be eliminated from the data.
Admixture of part of this contribution to V. (#) causes errors in the extracted
distance distribution mainly at the upper end of the distance range (see trace IV
in Fig. 2b and all the traces in Fig. 7b). This in turn influences moment analy-
sis. For this reason, moment analysis for the experimental data of the [2]catenane
is less precise than would be expected from the results for the asymmetric Birn-
baum-Saunders model distribution (Table 1). Analysis of these model data also
indicates that using unnecessarily long ¢, leads to a decrease of the reliability
of moment analysis. Ideally, ¢ should be just sufficient to obtain a reliable fit
of the background contribution. Moment analysis of APT data can lead to poor
results as the constraint P(r) = 0 is lacking.

Limited signal-to-noise ratio can be compensated rather well by Tikhonov
regularization techniques if the distance distribution consists of only narrow or
only broad peaks. If both narrow and broad features occur, none of the tech-
niques is expected to extract a reliable distance distribution from noisy data. In



Broad Distance Distributions by Pulse ELDOR 243

this situation, an appropriate value of ¢, should be selected on the basis of
preliminary data and high-quality final data should then be measured under care-
fully optimized conditions (see also [18]). If this still does not provide data of
sufficient quality for a direct analysis, it may still be possible to discuss changes
in distance distributions in a series of samples by comparison of data sets after

renormalization of the modulation depth by the optimum factor f,.

Appendix

Kernel function for the Tikhonov regularization program FTIKREG dipolar fre-
quency domain:

DOUBLE PRECISION FUNCTION KTISJ1(T,S)
IMPLICIT NONE
DOUBLE PRECISION T,S,X,PI,SUM,WDD,WAC
INTEGER I
PI=3.141592654
WDD=2.*PI*3

SUM=0.
DO 10 I=1,1000
X=1/1000.0

WAC=WDD* (3*X*X-1)
SUM=3UM+DCOS (WAC*T)
10 CONTINUE
KTISJ1=5UM
RETURN
END

Kernel function for the Tikhonov regularization program FTIKREG distance
domain:

DOUBLE PRECISION FUNCTION KTISJ1(T,S)
IMPLICIT NONE
DOUBLE PRECISION T,S,X,PI,SUM,WDD,WAC,NYO,R3
INTEGER I
PI=3.141592654
NY0=52.04
R3=*3*3*3
WDD=2.*PI*NYO/R3
SUM=0.
DO 10 I=1,1000
X=1/1000.0
WAC=WDD* (3*X*X-1)
SUM=SUM+DCOS (WAC*T)
10 CONTINUE
KTISJ1l=SUM
RETURN
END
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