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Abstract. We present a convenient method for characterizing and optimizing the performance of
quasioptical electron paramagnetic resonance (EPR) sample cavities. The formalism is based on the
transfer matrix method used in transmission line analysis. Transfer matrix representations are defined
for each of the essential components of an open resonator, and the method is demonstrated by applica-
tion to selected practical examples. Emphasis is given to optimization of quasioptical EPR for aqueous
biological samples.

1 Introduction

One of the major obstacles in the application of high-field electron paramagnetic
resonance (EPR) to biological samples near physiological temperatures has been
a lack of sensitivity with respect to aqueous samples. This is largely due to the
fact that water exhibits significant dielectric losses at micro- and millimeter-wave
frequencies. Researchers at high field have encountered significant difficulties in
observing spins in aqueous samples with sensitivity comparable to conventional
EPR. Such difficulties occur despite the fact that the dielectric loss tangent of
water generally decreases with frequency above 20 GHz. However, at higher
frequencies it is still necessary to minimize losses by ensuring that even small
aqueous sample volumes are not in contact with the E field in a resonator. The
need to decrease the sample thickness at smaller A thus to some degree offsets
the gain in sensitivity that might be expected with lower dielectric losses.

Barnes and Freed [1]  have described a cell design for aqueous samples con-
sisting of a thin layer of water sandwiched between two dielectric windows
mounted transversely in an FPI. A similar sample cell has been applied at 220 GHz
by Cardin et al. [2]. Barnes and Freed [1] carried out a detailed analysis on the
basis of transmission line reflection coefficients to model the properties of the
cell and found that the spectrometer sensitivity depended strongly upon sample
geometry, especially the thickness of the aqueous layer. It has proved possible
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to design sample cells for a Fabry-Perot transmission cavity that afforded an ab-
solute sensitivity of 10 1 spins/Gauss under favorable conditions [3], which is ad-
equate for studies of many aqueous samples of biological interest. However, the
details of the analytical methods used to optimize the cavity have not yet been
published.

In the present paper, we present an alternative design method to that utilized
by Barnes and Freed [1] for analyzing the sensitivity of different aqueous sample
cells in a Fabry-Perot cavity. It is based on the transfer matrix method origi-
nally developed for analyzing transmission lines [4, 5], and it relies on the fact
that individual Gaussian modes propagating through space are reasonably well
represented as waves on a transmission line [6]. The formalism is easy to use
and can readily be applied to optimization of sample cells with polar solvents
other than water, as well as for a wide variety of dielectric window materials.

2 Theory and Method

In the transfer matrix formalism, an optical element or a system of elements that
acts as a linear two-port device may be represented by a general two-by-two
matrix M. The input and output voltages and currents of the device are then
related as follows:

C lout) M(In)—(C DJ)

The 

(1)

The quantities A, B, C, and D are determined by the impedance characteristics
of the device. A useful property of this representation is that the output current
and voltage for a given element are identical with the input current and voltage
of the next element. Thus, a series of optical or circuit elements may be repre-
sented by a single matrix that is the product of the matrices for each successive
element.

Only two types of matrices are needed to represent a wide variety of open-
cavity configurations. The first matrix is used to represent a partially reflective
mirror such as a wire grid, a mesh, or a solid mirror with a coupling aperture.
Such a mirror is equivalent to a shunt impedance Zm across a transmission line,
which has the matrix representation [5, 7-11]

Mm(Zm) — 
(

1/Z 1j (2)

The value of Zm is typically small [6] and is purely reactive (i.e., Z m = iXm) for
perfect (i.e., loss-free) mirrors. A complex-valued impedance can be used to
account for such effects as radiation losses, scattering into other modes, diffrac-
tion from an aperture or resistive losses in the metal of the mirror.
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The second type of matrix is needed to represent transmission of a beam over
a given distance through a medium with known dielectric properties. The gene-
ral form for a matrix M d representing a dielectric layer is

coshikod 	 /iisinhik0dj^s

Md(E,p,d) _	 ,	 (3)^__ sinhikd ,us	 coshik.d ,us

where ko = 2it/20 is the wave number of the radiation in free space, d is the path
length through the material, e = sß,(1 + Ze), where xe is the electric susceptibility
of the medium and EY is the vacuum permittivity, equal to 8.85• 10 -12 F/m. In the
presence of an EPR-active sample, p = í,r9(1 + x), where fro = 47E • 10 -' Him is the
vacuum permeability and x is the EPR sample susceptibility. For propagation through
free space, e = e, and its permeability is p = fro. The matrix in Eq. (3) may be ap-
plied to dielectric sample cell windows and free space as well as to the sample.

The A, B, C, and D elements of a system matrix M sys are then used to cal-
culate the field transmission and reflection coefficients of the cavity as follows
[12]:

E, AZ0^t + B — CZ;,,Zout — DZi„
r==	 ,

Ei AZ0„t + B + CZ;n Zo„t + Win

E
	

2Z0

Ei
 AZ0 + B + CZi^Zout + DZ;n

	 (4)

where E;, Er, and E, are the amplitudes of the incident, reflected, and transmit-
ted fields, and Zm and Zo , are the input and output impedances, which are gen-
erally both taken to be the impedance of free space, Z. = 377 0 = Bo /e .

It should be noted that the field reflection and transmission coefficients are in
general complex-valued, since any element in the path introduces a phase shift such
that the reflected and transmitted waves are out of phase by ir/2. The power trans-
mission, reflection, and absorption coefficients may be written in terms of the field
coefficients: T=  t 2 , R = I r 2, and A = 1 — (T + R). To illustrate, applying Eqs. (4)
to the transfer matrix for a lossless mirror leads directly to the standard relation
between power reflectivity and the imaginary part (reactance) of the effective shunt
impedance [12]:

z
R =	 Z0	(5)Zó + 4Xm

Determining the complex impedance for mirrors with losses requires a knowl-
edge of both reflection and transmission coefficients of the mirror.

To summarize, the approach to analyzing sample cells is to multiply the trans-
fer matrix representations of the different cell components (e.g., mirror, cell
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window, liquid layer, free space) according to the given physical configuration.
The transmission and reflection coefficients T and R are then determined for the
resulting system matrix, and the sensitivity to EPR resonance obtained by taking
the partial derivatives of these quantities with respect to the magnetic suscepti-
bility. Sensitivity to the EPR dispersion and absorption signals can be separately
determined by taking the derivative with respect to the components x and x",
respectively. Typically the derivative is obtained numerically by a simple forward-
differences approximation; i.e., T or R is calculated with x' or x' set to some
small number 8 (typically on the order of 10 -6) then recalculated for x = 0 and
the derivative approximated by AT/S.

Careful optimization of the sample cell dimensions depends critically on ac-
curate knowledge of c for the mirrors and window materials as well as the sample
solvent in the far-infrared range. A convenient tabulation of s' and a" for a
variety of dielectric materials used in the fabrication of quasioptical components
at millimeter-wave frequencies has been given by Goldsmith [12]. Extensive
measurements of e have also been tabulated for water as a function of frequency
and temperature [13-16]. In general, both É and e" decrease as the frequency
increases above 20 GHz, until resonant absorption bands due to intermolecular
librations (as opposed to relaxation processes) begin to occur at around 10 THz
[17]. High-frequency dielectric relaxation spectroscopy has also suggested that a
may be significantly altered at millimeter-wave frequencies by the presence of elec-

Table 1. Debye dielectric parameters for a selection of solvents (adapted from ref. 20)

Solvent Formula T (°C) a/e m/ev z (ps)

Water H2O 0.0 88.20 5.00 17.7
10.0 84.00 5.00 16.6
20:0 80.40 5.20 12.3
30.0 76.50 5.20 9.3

Sulfuric acid H2SO4 20.0 110.00 5.00 478
Carbon disulfide CSZ 20.0 2.64 2.65 4.5
Chloroform CHCl3 25.0 4.72 2.09 7.4
Methanol CH3OH -109.9 82.17 9.80 812

30.0 31.65 5.50 42.5
Ethanol C2H2OH -142.6 79 8 2.65. 10 6

30 23.56 4.2 113
Ethylene glycol C2H2(OH)2 25 41.3 5.4 112
Acetone C3H60 20 21.2 1.9 3.3
2-Propanol C3H6OH -95.7 47.1 4 1.02	 106

20 19 3.2 920
Glycerol C3H5(OH)3 -74.6 76.2 4.18 9.61 • 10''

20 34.1 4.8 1.80	 10'
Ethyl ether C4H100 4 4.7 0 2.81
n-Hexane C6H14 20 1.89 0 7.43
Cyclohexanone C6H100 1 17.01 2.21 14.4
Toluene C,HB 20 2.391 0 7.43
Aniline C6H5NH2 20 6.89 0.028 19.6
Furan C4H4O 20 2.954 0 2.18
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trolytes or hydrogen-bonding solutes such as sucrose or glycerol added to pro-
mote glass formation [ 18], as well as the macromolecules themselves [19}.

For other solvents of interest, there is often not a tabulation of experimental
data available in the 150 GHz to 1 THz frequency range. In such cases it is
frequently sufficient to extrapolate measurements made at lower frequencies with
the Debye form for dielectric relaxation of the solvent dipole, including possible
corrections for sample conductivity:

= Em + E0 — E,, — t u0 , (6)
1 + iCn- Q)E

where w is the angular frequency at which e is needed, e 0 is the static permit-
tivity, s^ is the limiting permittivity at infinite frequency, r is the rotational cor-
relation time of the solvent, and Qo is the DC conductivity of the sample, and
cv is the permittivity of vacuum defined above. A short compilation of this
information for a selection of solvents is given in Table 1 (adapted from ref. 20).

3 Applications and Results

We now apply the formalism described above to characterize the simple quasioptical
EPR cavity shown in Fig. 1. This type of cavity is similar to the aqueous sample
cell design utilized by Barnes and Freed [1] and by Cardin et al. [2], consisting
of two quartz windows of thickness dW on either side of an aqueous layer of thick-
ness d, containing the EPR sample. The cell is placed between the mirrors at dis

-tances d, and d2 from them. For simplicity, the mirrors are assumed to be planar
metal meshes, although in practical implementations at least one of the mirrors is
spherical to accommodate Gaussian beams, and the sample is placed as close as
possible to the beam waist. Parameters typical of the aqueous sample cells that
have been described in the literature are summarized in Table 2; these parameters
have been utilized, except as noted, in the calculations presented below.

Fig. 1. Schematic diagram of aqueous sample arrangement in a Fabry-Perot resonator. The sample
is placed between two dielectric windows located at distances d, and d 2 from the partially reflective

mirrors of the resonator (dotted lines).
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Table 2. Properties of components used for a typical Fabry-Perot cavity with aqueous sample.

Material	 6' /e 	 e"/e	 Thickness d (mm)

Mirror	 —	 30*	 —
Quartz window	 4.54	 0	 0.170
Water	 5.5	 —6.0	 0.017

Effective e"/e for a normalized impedance of 1/30i.

The matrix product M cav, representing the configuration shown in Fig. 1 is

Mm(Zm)Md(1,1, d,)Ma (EW,1, d,W)Md(Es , Ps' ds)Md(£W, 1 , dw)Md(l, 1, d2)Mm(Zm) • (7)

Figure 2 shows the power transmission coefficient T calculated as a function of
the mirror spacings d t and d2 by applying Eqs. (2)—(4) to the matrix product
calculated from Eq. (6) using parameters in Table 2. The peaks observed in the
plot correspond to the power transmission maxima that occur when the effective
path length through the cavity (taking into account the longer effective path length
in the dielectric and sample regions) is near a half-integral number of wave-
lengths. The plot of R for the same cavity has an analogous, but inverted, ap-
pearance, exhibiting minima corresponding to the peaks seen in Fig. 2. The power
maxima in the d„ d2 space are typically quite elongated, with the approximate
long axis of the peak lying parallel to the line d, + dz = constant.

The curvature of the peaks in Fig. 2 can be understood by examining the
transmitted power along lines c and d, as shown in Fig. 3. These lines corre-
spond to translation of the sample with the mirrors fixed at their optimal spac-
ing (c), and spaced further apart than optimal (d). At the optimal spacing, a
single, relatively sharp peak is observed. When the mirrors are too far apart, two
resonances are observed as the sample is translated through the cavity, each cor-
responding to a weak resonance between the partially reflective window surfaces
and one of the cavity mirrors.

Figure 2 also suggests a preferred approach to tuning Fabry-Perot cavities.
It can be seen that motion of either mirror along lines a and a' will in general
produce a series of peaks spaced at 2/2. Peaks can be observed with the mo-
tion of one mirror for a wide range of positions of the other mirror, even far
away from the extremum of the peak. To move towards the resonance starting
from arbitrary mirror positions thus requires alternating one-mirror adjustments,
which can be time-consuming and tedious. The shape and orientation of the trans-
mission peaks suggests that the most efficient motions towards a cavity reso-
nance are along the directions of constant d, + d2 and constant d, — dz; that is,
by first adjusting the mirror spacing with a symmetric motion of the two mir-
rors, parallel to line b in Fig. 2, and then adjusting the sample location relative
to the two mirrors, moving parallel to line c.
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Fig. 2. Power transmission coefficient for the cavity shown in Fig. 1 as a function of mirror spac-
ings d, and d2 . Dotted lines correspond to various types of cavity mirror motion: a — motion of one
mirror with the other one fixed, b — symmetric motion of the mirrors about the sample, c and d —
motion of the mirrors in the same direction, equivalent to motion of the sample relative to fixed

mirrors. Calculated with parameters from Table 2, except that Z m/Zo was 0.2 — 4i.
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Fig. 3. Transmitted power vs. sample position for translation along each of the dashed lines shown
in Fig. 2: c — cavity tuned on resonance, d — cavity off-resonance with mirrors too far apart. Calcu-

lated with parameters from Table 2, except that Zm/Zo was 0.2 — 4i.
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We now illustrate the use of the transfer matrix method to calculate EPR
sensitivity to both absorption and dispersion signals as a function of cavity ge-
ometry. Figure 4 shows these quantities for both transmission and reflection cavi-
ties, togéther with transmitted or reflected power. It can be seen that the EPR
signal phase is quite sensitive to the mirror spacing and the sample position in
both transmission and reflection modes. At the peak of the transmitted power
(or minimum in reflected power) and in the absence of any cavity mismatch,
the sensitivity to the dispersion signal is zero, and one observes a pure absorp-
tion signal. However, relatively small displacements of either the sample or the
mirrors can significantly increase the sensitivity to the dispersion signal, result-
ing in an effective phase shift in the observed EPR signal.

Figure 5a demonstrates sample cavity optimization for solvents with differ-
ent dielectric properties with a fixed window thickness of 0.17 mm. Calculations
of sensitivity to x" as a function of sample thickness were carried out for wa-
ter, methanol, ethanol, and toluene in order to illustrate cavity behavior for both
polar and nonpolar solvents. For each curve, the window spacing was adjusted
to maximize EPR sensitivity at every value of the sample thickness with a one-
dimensional search algorithm [21]. All of the curves exhibit a maximum as the
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Fig. 4. Millimeter-wave power (solid lines) and EPR sensitivity to absorption (dashed lines) and
dispersion (dotted lines) for mirror displacements (a and c) and sample displacements (b and d) for
transmission (a and b) and reflection (c and d) modes. Calculated with parameters given in Table 2.
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Fig. 5. EPR sensitivity as a function of sample thickness for various solvents with a fixed window
thickness of 0.17 mm. a Sensitivity curves for solvents of different polarity: water (solid line), metha-
nol (dotted line), ethanol (dashed line), and toluene (dot-and-dashed line). b Sensitivity curves for
water at different temperatures: 20°C (solid line), 10°C (dotted line), and 0°C (dashed line). Calcu-

lated with parameters given in Tables 1 and 2.

sample thickness increases, reflecting the competing effects of increasing the
number of spins in the sample and attenuation of the millimeter-wave power
through dielectric losses in the sample. For the thinnest samples, the sensitivity
is limited by the number of spins; thus, sensitivity increases linearly with sample
thickness and does not depend strongly on the dielectric properties of the sample.
Since dielectric losses have a logarithmic dependence upon sample thickness (cf.
the hyperbolic functions in Eqs. (3)), they become dominant as the sample thick-
ness increases. Thus, lossy samples exhibit a maximum at smaller thickness,
whereas the linear increase in sensitivity occurs over a significantly larger range
of thickness for low-loss solvents such as toluene, leading to a maximum at larger
sample thickness and substantially greater sensitivity.

It is frequently necessary to carry out temperature-dependent studies or freeze
an aqueous sample in order to determine its magnetic parameters from the rigid
limit spectrum before applying line shape analysis to liquid solution spectra.
However, under certain circumstances, rather large changes in sensitivity can
occur with relatively small changes in temperature for aqueous samples. This
effect is illustrated in Fig. 5b, which shows EPR sensitivity as a function of
sample thickness for an aqueous sample at three different temperatures. For
samples slightly thicker than the optimum value, the sensitivity can decrease by
a factor of two upon cooling from room temperature to the freezing point, even
neglecting the inevitable changes in the sample volume and cavity dimensions
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Fig. 6. EPR sensitivity as a function of window and sample thickness calculated with the transfer
matrix method with the parameters given in Table 2.

with temperature. In contrast, the sensitivity is relatively unaffected for samples
slightly thinner than the optimum value, suggesting that this is a better choice
for the sample thickness in temperature-dependent studies of aqueous systems.

To date, most quasioptical EPR spectroscopy on aqueous samples has been
carried out with fused quartz microscope cover slips (ESCO Products, Inc., Oak
Ridge, NJ) that are about 0.16-0.17 mm in thickness [1, 2]. However, as the
plot of EPR sensitivity vs. window and sample thickness in Fig. 6 shows, this
is not the optimal value for aqueous samples, although it affords sensitivity within
about 50-75% of the maximum. The convenience and ready commercial avail-
ability of such windows as well as the difficulty in handling thinner dielectrics
have reduced incentives to develop sample cells with thinner windows for regu-
lar use. Moreover, Fig. 6 indicates a secondary maximum at window thickness
near 0.45 mm that yields sensitivity comparable to that from the 0.17 mm cover
slips, but with somewhat greater sample layer thickness. Windows of this thick-
ness would be less fragile, although substantially more expensive to manufac-
ture.

Finally, we illustrate the use of the transfer matrix formalism to calculate
quantities such as Q factors and coupling parameters that are familiar to EPR
spectroscopists from the equivalent circuit description of EPR cavities. Estima-
tion of these parameters requires knowledge of the effective impedance ,,of the
cavity contents, i.e., the free space-window-sample-window-free space elements
between the mirrors. In order to find this quantity, one first forms the transfer
matrix product of the cavity contents,

Mcont - Md(l, I, dl) Md(Sw >I, dw) Md(Es, fis , ds) Md(£W, 1, dw) Md( 1, I, d2) •	 (8)
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The input impedance of any transmission line element or equivalent element that
is terminated with output impedance Z0  given in terms of its representative
transfer matrix elements as

Z	 AZ., + B= 	 (9)
CZ

0 + D

The impedance "seen" by the input mirror (an arrangement suitable for a reflec-
tion mode resonator) is then the effective impedance of the cavity contents when
terminated by a perfectly reflecting short (Z0. t = 0):

B
Zei =	

(
 -	 10)

The unloaded cavity quality factor Q, can be estimated directly from Zeff:

Im {Zeff }

Q"	 Re {Zef.} '

and the coupling parameter /3 for the mirror obtained from the mirror impedance
and effective cavity impedance as follows [10]:

Xml 2

Zo e {Zerr}	
(11)

These quantities can then be used to calculate the loaded quality factor of the
cavity, QL . For a transmission cavity, the coupling parameters will be different
if their reflectivities differ, or if the cavity elements are disposed asymmetrically.
In order to apply the transfer matrix formalism to the transmission mode case,
we replace the short (Zou = 0) in Eq. (9) with a second shunt reactance in pa-
rallel with the characteristic impedance of the output transmission line, Zo .

In the case of a transmission cavity [5, 11],

QL __
	 QU 	(12)

1 -f /i l + /32

For a reflection cavity ßz is taken to be zero. Thus, the transfer matrix formal-
ism can be used to calculate quantities that allow direct comparison with other
types of sample cavity.

4 Conclusion

The transfer matrix method used in transmission line analysis has been demon-
strated for quasioptical EPR cavities at high fields. The method is straightfor-
ward and easy to apply even to complex cavity configurations. A number of
practical examples have been given to illustrate optimization of quasioptical EPR
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cavities containing aqueous samples typical of biological systems, and to illus-
trate their behavior with respect to the phase of the EPR signal. The method
enables direct correlation with equivalent circuit parameters for the cavity that
are familiar from conventional waveguide-based EPR.

Although the examples were limited in the main to simple, symmetric trans-
mission cavities, the method may readily be extended to asymmetric cavities in
the reflection mode, as discussed above. Significant increases of sensitivity in
the reflection mode over cavity configurations currently in use may be expected.
Readers interested in the details of the methods used may find the Matlab [22]
routines used in our calculations at the following URL: ftp://millie.chem.neu.edu/
pub/transmatrix.
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