ATOMIC ENERGY CALCULATION BY A MODIFIED STATISTICAL THEORY

 $\mathbf{B}\mathbf{y}$

B. APAGYI

RESEARCH GROUP FOR THEORETICAL PHYSICS OF THE HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST

(Received 31. VIII. 1971)

A modified Thomas—Fermi equation proposed by Gombás is solved. The total energies calculated for representative atoms of the periodic system are in good agreement with the experimental values. The role of the modifying term is illustrated.

In a recent paper [2], Gombás suggested a new basic equation for calculation of electron number density of the Thomas—Fermi atom or ion. He also showed that a good approximate solution to this could be obtained with a method based on the Fermi—Amaldi correction. The present work demonstrates how a direct solution to the same equation can be performed. The solutions obtained enable us to calculate such characteristic quantities of the atoms as the total energy, diagmagnetic susceptibility, etc. A striking feature of the calculated data — especially in view of the semi-empirical treatment of the problem (see Appendix) — is their excellent agreement over a wide range with the experimentally determined energy values.

Method of calculation

The equation suggested is

$$\varrho = \sigma_0 \left(V - V_0 - \frac{ea_0}{8} \frac{1}{r^2} \right)^{3/2}. \tag{1}$$

where $\rho(r)$ is the number density of electrons, the potential V(r) is

$$V(r) = -\frac{Ze}{r} + \int \frac{e\varrho(r')}{|\mathbf{r} - \mathbf{r}'|} dv', \qquad (2)$$

r is the distance from the centre of the atom (or ion), and the constants appearing elsewhere have their usual meaning [3].

With the Poisson equation we obtain

$$\nabla^2(V - V_0) = 4\pi e \,\sigma_0 \left(V - V_0 - \frac{ea_0}{8} \,\frac{1}{r^2} \right)^{3/2}. \tag{3}$$

24 B. APAGYI

This nonlinear, inhomogeneous, second order, ordinary differential equation can be solved by the Adams—Störmer method if one knows the boundary conditions, i.e. the initial conditions for V.

The density must be real, therefore we shall suppose that

$$\varrho(r)=0,\quad \text{if}\quad r\leqslant r_1. \tag{4}$$

In this range Eq. (1) yields

$$\nabla^2(\vec{V} - V_0) = 0, \quad \text{if} \quad r \leqslant r_1. \tag{5}$$

The boundary conditions are

and

$$\lim_{\substack{r \to 0 \\ \lim_{r \to r_1} r(V - V_0) = \frac{ea_0}{8r_1}}} \text{ if } r \leqslant r_1.$$
(6)

The solution of Eq. (5), using (6), is

$$V - V_0 = Ze\left(\frac{1}{r} - \frac{1}{r_1}\right) + \frac{ea_0}{8r_1^2}, \text{ if } r \le r_1.$$
 (7)

Performing the following generally used transformations into dimensionless variables

$$\varphi = \frac{r}{Z_e} (V - V_0) \quad \text{and} \quad r = \mu x \,, \tag{8}$$

we obtain for (3)

$$\varphi'' = \left(\varphi - \frac{\gamma}{x}\right)^{3/2} x^{-1/2}, \quad \text{if } x \ge x_1, \tag{9}$$

where

$$\gamma = \frac{a_0}{8} \frac{1}{Z\mu} = 0.1412 Z^{-2/3}. \tag{10}$$

By requiring the inner $(x \le x_1)$ and outer $(x \ge x_1)$ solutions and their derivatives to be continuous at the point x_1 , we get

$$\varphi(x_1) = \frac{\gamma}{x_1} \tag{11}$$

and

$$\varphi'(x_1) = \frac{\gamma}{x_1^2} - \frac{1}{x_1} \ . \tag{12}$$

Moreover, it can be seen from (9) that

$$\varphi''(x_1) = 0, \tag{13}$$

$$\varphi'''(x_1) = 0, \tag{14}$$

$$\varphi^{(\mathrm{IV})}(x_1) = 0. \tag{15}$$

Therefore the initial function according to (11)-(15) is:

$$\varphi(x) = \frac{\gamma}{x_1} + \varphi'(x_1)(x - x_1) + (x - x_1)^{7/2}, \text{ if } x \sim x_1.$$
 (16)

With the aid of this initial function as well as the mesh-point technique we are able to solve Eq. (9). The electron number density of a statistical atom is given by

$$\varrho = \frac{Z}{4\pi \,\mu^3} \left(\frac{\varphi}{x} - \frac{\gamma}{x^2} \right)^{3/2},\tag{17}$$

and the fact that the electron number is N, i.e.

$$\int \varrho \, dv = N, \tag{18}$$

yields the unknown value of the initial derivative $\varphi'(x_1)$. The kinetic and potential energy terms are the known equations

$$E_{\rm kin} = \varkappa_k \int \varrho^{5/3} \, dv, \tag{19}$$

$$E_{\text{pot}} = -\int \frac{Ze^2}{r} \varrho \, dv + \frac{1}{2} \iint \frac{e^2 \, \varrho(r) \, \varrho(r')}{|\mathbf{r} - \mathbf{r}'|} \, dv \, dv'. \tag{20}$$

Although the above treatment is based on the Thomas—Fermi theory, the exchange energy will be calculated here as a first order perturbation:

$$E_{\rm ex} = -\kappa_a \int \varrho^{4/3} \, dv \,. \tag{21}$$

Thus, using dimensionless variables and e^2/a_0 units, the total energy has the form

$$E_{
m tot} = E_{
m kin} + E_{
m pot} + E_{
m ex} = -rac{(2Z)^{7/3}}{(3\pi)^{2/3}} imes \ imes \int_{x_1}^{x_2} \left[-rac{3}{5} \, u^{5/2} \, x^2 + u^{3/2} \, x - u^{3/2} \, x \int_{x_1}^{x_2 \times x'} \, u^{3/2} (x') \cdot x'^2 \cdot dx' + k u^2
ight] dx, \quad (22)$$

where

$$u=\frac{\varphi}{x}-\frac{\gamma}{x^2}$$

and

$$k = 3^{4/3} (16\pi Z)^{-2/3}$$
.

The upper limit x_2 corresponds to a value $x > x_1$ at which u becomes zero again. (Negative ions, whose φ function runs upwards, were not considered.) The φ functions of the neutral atoms or the positively charged ions exhibit the same behaviour as in the usual Thomas—Fermi theory. On examining the dependence of the energy value upon the computational range only a slight (1-2 per cent) difference was found in the results by changing x_2 from 15 to 25. The computational limit was therefore chosen so that x_2 should be 25.

Calculations were also performed to examine the stability of the numerical method. In Tables I and II the convergence of the initial derivative and

 $\label{eq:Table I} \textbf{Table I}$ Stability of the method with $\epsilon=0.01$ for argon

	_				
h	-E _{tot} [e²/a0]	φ'	mesh-points	x ₂	χ [10-ε cm ³]
0.0312	523.4	0.870101	800	25	43.2
0.0208	523.4	0.922374	1200	25	38.2
0.0156	522.8	0.955814	1600	25	44.6
0.0125	522.2	0.977982	2000	25	49.7

Table II

Convergence of the total energy and of the initial derivative for argon if h=0.0125 and $x_2=25$.

Diamagnetic susceptibility (χ) is very sensitive to change in ε

ε	E _{tot} [e²/aº]	φ'	—χ [10 ⁻⁶ cm ⁸]
0.1	521.97	0.978008	18.7
0.05	522.23	0.977983	39.0
0.01	522.24	0.977982	49.7
0.005	522.24	0.977983	44.9
0.001	522.24	0.977983	47.1
			1

of the energy value are seen for argon changing the step (h) and the accuracy of the norm (ε) , defined as

$$|N^{-1}\int \varrho \, dv - 1| < \varepsilon$$
 (23)

The convergences and hence the stability of the numerical method are satisfactory. From these data it was judged sufficient to take 2000 mesh-points during the computational time (thereby exhausting the memory of an ICT-1900 computer).

It is interesting to note that the function φ is, at least initially, in the vicinity of the Thomas—Fermi φ_0 . This fact can give us, as Gombás suggested, a first approximation $x_1^{\gamma_1}$ to the exact initial point x_1 ; from value x_1 the suitable initial derivative can be calculated by means of (12). All this is illustrated in Table III.

Table III

Values of $\varphi'(x_1)$. x_1' means the approximate value of x_1 calculated using the Thomas—Fermi φ_0

Z	γ	$\varphi_0(x_1')$	x_1'	φ 1	x_1	$-\varphi'(x_1)$
6	0.042762	0.941	0.045	0.961960	0.044453	0.855815
10	0.030419	0.956	0.032	0.971232	0.031320	0.918313
18	0.020557	0.971	0.021	0.979464	0.020988	0.977982
26	0.016088	0.977	0.016	0.983494	0.016358	1.008689
36	0.012950	0.981	0.013	0.986366	0.013129	1.031882
54	0.009883	0.987	0.010	0.989487	0.009988	1.056026
80	0.007605	0.989	0.0076	0.991784	0.007668	1.074997
86	0.007247	0.9893	0.0073	0.992196	0.007304	1.078064
92	0.006928	0.9896	0.0070	0.992408	0.006981	1.080815

Results

All terms of the total energy are represented in Fig. 1 and in Table IV. The agreement with the experimental values is very good, though not that with the virial theorem, from which the differences are about 15-20 per cent. The results for the diamagnetic susceptibility expression are less satisfactory (see Table IV). This expression, which includes the product $\varphi \cdot x^4$ in its integrand is very sensitive for the numerical accuracy, as can be seen from Tables I and II.

Acknowledgement

The author is very grateful to Dr. K. Ladányi for helpful discussions throughout this work.

Table IV

Element Z N —Epot Ekin —Ecx —Etot H 1 1 1 0.4965 0.1291 0.1225 0.4900 He 2 2 3.075 0.9121 0.1225 0.4900 Be 4 4 18.44 6.091 1.600 13.95 C 6 6 51.88 18.07 3.323 37.13 Ne 10 10 118.5 69.55 8.258 127.2 Ar 18 18 319.4 23.20 522.2 Fe 26 2 2 44.1 1260 Kr 36 36 4534 1868 77.4 2743 Kr 36 36 4534 1868 77.4 2743 Kr 36 37,50 16500 345 1790 Hg 80 80 37,50 16500 345 21790 Ca+ 20 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>						
1 1 0.4965 0.1291 0.1225 2 3.075 0.9121 0.4496 4 4 18.44 6.091 1.600 1 6 6 51.88 18.07 3.323 3 10 10 188.5 69.55 8.258 12 26 26 2034 818.2 44.1 126 26 26 2034 818.2 44.1 126 36 36 4534 1868 77.4 274 54 54 12.235 5177 156 721 80 80 31.850 13.790 305 18.36 86 86 37.950 16.500 345 21.79 92 92 44.690 19.500 388 25.57 4 4849 2.001 81.1 292 5 54 13.370 5670 165	Eex	-Etot	-Eexperimental	Tr.	۳ – ۲	Xexperimental
2 3.075 0.9121 0.4496 1 4 4 4 18.44 6.091 1.600 1 6 6 51.88 18.07 3.323 3 3 10 10 188.5 69.55 8.258 12 3 12 18 818.4 319.4 23.20 52 22 3 22 3 22 2 22 3 2		0.4900	0.5000	1	26.9	1
4 4 4 18.44 6.091 1.600 6 6 51.88 18.07 3.323 1 10 10 188.5 69.55 8.258 1 18 18 319.4 23.20 5 26 26 2 034 818.2 44.1 12 36 36 4 534 1 868 77.4 27 54 54 12 235 5 177 156 7 80 80 31 850 13 790 305 18 3 86 86 37 950 16 500 345 21 7 92 92 44 690 19 500 388 25 5 20 19 1 063 418.4 27.8 6 37 36 4 849 2 001 165 78 56 54 13 370 5670 165 78		2.612	2.904	ŀ	30.7	1
6 6 51.88 18.07 3.323 10 10 188.5 69.55 8.258 1 18 18.4 319.4 23.20 5 26 2 034 818.2 44.1 12 36 36 4 534 1868 77.4 27 54 54 12 235 5 177 156 7 80 80 31 850 13 790 305 18 3 86 86 37 950 16 500 345 21 7 92 92 44 690 19 500 388 25 5 20 19 1 063 418.4 27.8 6 37 36 4 849 2 001 81.1 29 4 13 370 5 670 165 78	1.600	13.95	14.68]	32.8	1
10 10 188.5 69.55 8.258 18 18 818.4 319.4 23.20 26 20.34 818.2 44.1 1 36 36 45.34 1868 77.4 2 54 54 12.235 5.177 156 7 80 80 31.850 13.790 30.5 18 86 86 37.950 16.500 345 21 92 92 44.690 19.500 388 25 20 19 1.063 418.4 27.8 25 37 36 4.849 2.001 81.1 2 56 54 13.370 5670 165 7	3.323	37.13	37.86	l	33.8	
18 18 818.4 319.4 23.20 26 26 2 034 818.2 44.1 1 36 36 4 534 1 868 77.4 2 54 54 12 235 5 177 156 7 80 80 31 850 13 790 305 18 92 92 44 690 19 500 345 21 20 19 1063 418.4 27.8 25 4 849 2 001 81.1 2 56 54 13 370 5670 165 7	8.258	127.2	129.5	0.79	40.7	6.8
26 26 2 0 3 4 818.2 44.1 1 36 36 4 53 4 1 868 77.4 2 54 54 12 235 5 177 156 7 80 80 31 850 13 790 305 18 86 86 37 950 16 500 345 21 92 92 44 690 19 500 388 25 20 19 1 063 418.4 27.8 25 4 849 2 001 81.1 2 56 54 13 370 5670 165 7	23.20	522.2	525.4	81.0	49.7	19.5
36 36 4534 1868 77.4 2 54 54 12 235 5 177 156 7 80 80 31 850 13 790 305 18 92 92 44 690 19 500 348 25 20 19 1 063 418.4 27.8 25 37 36 4 849 2 001 81.1 2 56 54 13 370 5 670 165 7		1 260	1 249	1	44.7	1
54 54 12 235 5 177 156 7 80 80 31 850 13 790 305 18 86 86 37 950 16 500 345 21 92 92 44 690 19 500 388 25 20 19 1 063 418.4 27.8 25 37 36 4 849 2 001 81.1 2 56 54 13 370 5 670 165 7		2 743	2 704	102	53.9	28.0
80 80 31 850 13 790 305 18 86 86 37 950 16 500 345 21 92 92 44 690 19 500 388 25 20 19 1 063 418.4 27.8 25 + 56 54 13 370 5670 165 7		7 214	7 079	117	64.0	42.4
86 86 37 950 16 500 345 21 92 92 44 690 19 500 388 25 20 19 1 063 418.4 27.8 25 37 36 4 849 2 001 81.1 2 56 54 13 370 5 670 165 7		3 360	18 680	ı	1	1
92 92 44 690 19 500 388 25 20 19 1 063 418.4 27.8 27.8 37 36 4 849 2 001 81.1 2 56 54 13 370 5 670 165 7	_	1 790		l	1	
20 19 1 063 418.4 27.8 37 36 4 849 2 001 81.1 2 + 56 54 13 370 5 670 165 7		5 570	25 520		1	
37 36 4849 2001 81.1 + 56 54 13370 5670 165	27.8	672.1	1	4]	1
F 56 54 13.370 5.670 165		2 929	2 885	1	1	1
	165	7 865			1	1
Hg^{++} 80 78 31840 13790 305 18360		3 360	1	1	1	١,

Fig. 1. Experimental and calculated total energy values for various atoms of the periodic system

Appendix

The Thomas—Fermi formula (1) originates from a model in which the electrons are grouped according to their azimuthal quantum numbers, namely

$$\varrho = \sum_{l=0}^{\infty} \varrho_l \sim \int_0^{l\mu} \varrho_l \, dl. \tag{24}$$

Here $l_{\mu} = l_{\mu}(r)$ means the maximum "quantum number" for which ϱ_l is real. The different expressions given by Gombás for ϱ_l [3], [4], [5] can be summarized as follows

$$\varrho_{l} = \frac{2l+1}{A} \left[B - C - l(l+1) \right]^{1/2}, \tag{25}$$

30 B. APAGYI

where

$$A=2\pi^2\,r^3,\tag{26}$$

$$B = 8me\pi^2 r^2 (V - V_0) h^{-2}, (27)$$

$$C = \begin{cases} 0 & \text{in [3],} \\ \frac{1}{2} & \text{in [4],} \\ \frac{1}{4} & \text{in [5].} \end{cases}$$
 (28)

The maximum value for l (allowing it to be continuous)

$$l_{\mu} = \frac{1}{2} \left(\sqrt{1 - 4C + 4B} - 1 \right). \tag{29}$$

Performing the quadrature, we get

$$\varrho = \int_0^{l\mu} \varrho_l \, dl = 2 \left(\frac{B - C}{3A} \right)^{3/2}. \tag{30}$$

Substituting the values A, B and C, we obtain

$$\varrho = \sigma_0 \left(V - V_0 - \frac{4Ce \, a_0}{8} \, \frac{1}{r^2} \right)^{3/2}, \tag{31}$$

or, in another usual form,

$$\varrho = \frac{8\pi}{3h^3} \left(p_{\mu}^2 - C \frac{h^2}{4\pi^2 r^2} \right)^{3/2}, \tag{32}$$

with $p_{\mu}^2 = 2me(V - V_0)$.

PLASKETT [1] also derived Eq. (1) with C=1/4 by applying the B.K.W. approximation. To make the role of the constant C perceptible, we have represented the solutions for the cases C=0,1/4,1/2 and 1/8 (see Table V and Fig. 2).

Fig. 2. The role of constant C in the displacement of the energy values. The solutions of C=0are taken from [6]

Table V Total energy (e^2/a_0) and diamagnetic susceptibility (10^{-6} cm^3) for various values of C. Z=N=18. Values for C=0 corresponding to the Thomas—Fermi—Dirac solution are taken from [6]

C = 0		C = 0.5		C = 0.25		C = 0.125	
$-E_{\mathrm{tot}}$	— _X	$-E_{\mathrm{tot}}$	-x	$-E_{\mathrm{tot}}$	-χ	$-E_{ m tot}$	—х
		2.050	31.5	2.612	30.7	3.122	23.2
176.3	67.0	110.1	42.0	127.2	34.3	140.9	28.7
680.7	81.0	463.4	47.7	522.2	49.7	566.6	42.7
3378	102	2505	55.3	2743	53.9	2894	42.8
8846	117	6670	54.2	7214	64.0	7503	46.0
	-E _{tot} 176.3 680.7 3378	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

REFERENCES

- 1. J. S. PLASKETT, Proc. Phys. Soc., A66, 178, 1953.
- P. Gombás, Phys. Lett., 35A, 289, 1971.
 P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen, Springer Verlag, Wien, 1949.
- 4. P. Gombás, Statistische Behandlung des Atoms, Encyclopedia of Physics, (edited by S. Flügge) Vol. XXXVI, 1956.
- 5. P. Gombás, Pseudopotentiale, Springer Verlag, Wien, 1967.
- 6. Y. Tomishima and K. Yonei, J. Phys. Soc. Japan, 21, 142, 1966.

РАСЧЕТ ЭНЕРГИИ АТОМОВ В ВИДОИЗМЕНЕННОЙ СТАТИСТИЧЕСКОЙ ТЕОРИИ

Б. АПАДИ

Резюме

Дано решение видоизмененного уравнения Томаса — Ферми, предложенного Гомбашом. Полные энергии, рассчитанные для атомов периодической таблицы хорошо согласуются с экспериментальными данными. Показана роль видоизмененной части уравннения.