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ATOMIC ENERGY CALCULATION
BY A MODIFIED STATISTICAL THEORY
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A modified Thomas—Fermi equation proposed by GouBAs is solved. The total energies
calculated for representative atoms of the periodic system are in good agreement with the
experimental values. The role of the modifying term is illustrated.

In a recent paper [2], GoMBAS suggested a new hasic equation for calcula-
tion of electron number density of the Thomas—Fermi atom or ion. He also
showed that a good approximate solution to this could be obtained with a
method based on the Fermi— Amaldi correction. The present work demons-
trates how a direct solution to the same equation can be performed. The
solutions obtained enable us to calculate such charaecteristic quantities of the
atoms as the total energy, diagmagnetic susceptibility, etc. A striking feature
of the calculated data — especially in view of the semi-empirical treatment of
the problem (see Appendix) — is their excellent agreement over a wide range
with the experimentally determined energy values.

Method of calculation

The equation suggested is

1 1372
e=afv =t " M

2
where p(r) is the number density of electrons, the potential V(r) is
Z r
Vi) =— 2% +J~e_"_(’l dv', 2)
r r—x'|
r is the distance from the centre of the atom (or ion), and the constants appear-
ing elsewhere have their usual meaning [3].
With the Poisson equation we obtain

s ®3)

3/2
VAV —V,) = 4neq, [V»-V(')~ ] 1) 4
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24 B. APAGYI

This nonlinear, inhomogeneous, second order, ordinary differential equa-
tion can be solved by the Adams— Stérmer method if one knows the boundary
conditions, i.e. the initial conditions for V.

The density must be real, therefore we shall suppose that

p(r) =0, if r<r. 4)

In this range Eq. (1) yields

V(V—-V)=0, if r<n. (5)
The boundary conditions are
lim rV = Ze
r-0
d i <rn.
an lim r(V — ;) = ea, if r<n (6)
r—=n 8’1
The solution of Eq.(5), using (6), is
V——K,zZe[—l————l—) B <. (7)
r r 8r}

Performing the following generally used transformations into dimensionless
variables

p=——(V=V) and r=ps, (8)
we obtain for (3)
, y |32 )
@ =(<p——x—) 2712 ifx >, 9)
where
a, 1 .
u

By requiring the inner (x < x;) and outer (x > x,) solutions and their derivat-
ives to be continuous at the point x;, we get

play) =2 (11)
X
and
' 14 1
qo(xl):—z——m (12)
X1 %1
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ATOMIC ENERGY CALCULATION 25

Moreover, it can be seen from (9) that

¢'(x)) = 0, (13)
¢"(x) = 0, (14)
o"(x;) = 0. (15)

Therefore the initial function according to (11)—(15) is:
#2) = L= () (o) + (P, iz, (16)
Xy

With the aid of this initial function as well as the mesh-point technique we
are able to solve Eq. (9). The electron number density of a statistical atom

_Z (i _ _Z_]m, (17)

¢= dmpd | x x?

is given by

and the fact that the electron number is N, i.e.
jg dv=N, (18)

yields the unknown value of the initial derivative ¢’(x;). The kinetic and
potential energy terms are the known equations

Eyn = %, {051 dv, (19)
E = —-J Ze* gdv+ —l—J‘J.eng)_Q’(LL dvdv'. (20)
r 2 je—r'|

Although the above treatment is based on the Thomas—Fermi theory, the
exchange energy will be calculated here as a first order perturbation:

Eox =—2, {03 dv. (21)

Thus, using dimensionless variables and e?/a, units, the total energy has
the form
(2Z)3

Etot == Ekin + Epot + Eex = (37’5)2/3

Xz 3 x>x'
XJ [— ——5—u5/2 x24-udi2 x—udi? xf u3/2(x’)-x'2-dx'+ku2] dx, (22)
X1 X1
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where

and
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-9 _ 7
x x2

k = 3v3 (16nZ) 25,

The upper limit x, corresponds to a value x > x; at which u becomes zero
again. (Negative ions, whose ¢ function runs upwards, were not considered.)
The ¢ functions of the neutral atoms or the positively charged ions exhibit
the same behaviour as in the usual Thomas—Fermi theory. On examining
the dependence of the energy value upon the computational range only a
slight (1--2 per cent) difference was found in the results by changing x, from
15 to 25. The computational limit was therefore chosen so that x, should be 25.

Calculations were also performed to examine the stability of the numer-
ical method. In Tables I and II the convergence of the initial derivative and

Table I
Stability of the method with ¢ = 0.01 for argon
k —Eot [¢*/a®] —¢’ mesh-points % — [10-° em?)
0.0312 523.4 0.870101 800 25 43.2
0.0208 523.4 0.922374 1200 25 38.2
0.0156 522.8 0.955814 1600 25 44.6
0.0125 522.2 0.977982 2000 25 49.7
Table II

Convergence of the total energy and of the initial derivative for argon if A = 0.0125 and x, = 25.
Diamagnetic susceptibility ()) is very sensitive to change in &

s 1 —Eqoy [e¥a) — — [10-¢ om]
0.1 521.97 0.978008 18.7
0.05 522.23 0.977983 39.0
0.01 522.24 0.977982 49.7
0.005 522.24 0.977983 £4.9
0.001 522.24 0.977983 a11

of the energy value are seen for argon changing the step (k) and the accuracy
of the norm (&), defined as

N7 [pdv—1| <e.
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ATOMIC ENERGY CALCULATION 27

The convergences and hence the stability of the numerical method are satis-
factory. From these data it was judged sufficient to take 2000 mesh-points
during the computational time (thereby exhausting the memory of an ICT-
1900 computer).

Tt is interesting to note that the function ¢ is, at least initially, in the
vicinity of the Thomas—Fermi ¢,. This fact can give us, as GomBA4s sug-
gested, a first approximation x; to the exact initial point x,; from value x;
the suitable initial derivative can be calculated by means of (12). All this
is illustrated in Table III.

Table III
Values of p’(x,). x; means the approximate value of x; calculated using the Thomas—Fermi g,
z v Po(x) EA P xy —¢'(%)
6 0.042762 0.941 0.045 0.961960 0.044453 0.855815
10 0.030419 0.956 0.032 0.971232 0.031320 0.918313
18 0.020557 0.971 0.021 0.979464 0.020988 0.977982
26 0.016088 0.977 0.016 0.983494 0.016358 1.008689
36 0.012950 0.981 0.013 0.986366 0.013129 1.031882
54 0.009883 . 0.987 0.010 0.989487 0.009988 1.056026
80 0.007605 0.989 0.0076 0.991784 0.007668 1.074997
86 0.007247 0.9893 0.0073 0.992196 0.007304 1.078064
92 0.006928 0.9896 0.0070 0.992408 0.006981 1.080815
Results

All terms of the total energy are represented in Fig. 1 and in Table IV.
The agreement with the experimental values is very good, though not that
with the virial theorem, from which the differences are about 15—20 per cent.
The results for the diamagnetic susceptibility expression are less satisfactory
(see Table 1V). This expression, which includes the product ¢ - 2% in its inte-
grand is very sensitive for the numerical accuracy, as can be seen from Tables

1 and 1I.
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Fig. 1. Experimental and calculated total energy values for various atoms of the periodic
system
Appendix

The Thomas— Fermi formula (1) originates from a model in which the
electrons are grouped according to their azimuthal quantum numbers, namely

= Yo~ fsedl. (24)

Here 1, = 1,(r) means the maximum ‘“‘quantum number” for which g is real.
The different expressions given by GomBAs for g [3], [4], [5] can be
summarized as follows

241
4

(44

[B—C -1+, (25)
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where

A =22, (26)
B == 8meﬂ2 TZ(V — Vo) h —29 (27)

0 in[3],

L in [4]
C=12 ’ (28)

1
— inf5
1 [5]

The maximum value for ! (allowing it to be continuous)
1
3“:—2—(V1—4c+43 —1). (29)

Performing the quadrature, we get

m B_(C \32
= o, dl = 2 . 30
¢ J o ( 34 ) (30)

Substituting the values 4, B and C, we obtain

[ 4Cea, 132
=0, |V -V, — 3 ?} . (31)
or, in another usual form,
87 Rz (302
0= I _C . 32
) 3h3 P An? r? ) (32)

with p} = 2me(V — V).

PraskETT [1] also derived Eq. (1) with C = 1/4 by applying the B.K.W.
approximation. To make the role of the constant C perceptible, we have
represented the solutions for the cases C = 0,1/4,1/2 and 1/8 (see Table V
and Fig. 2).
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Fig. 2. The role of constant C in the displacement of the energy values. The solutions of C = 0
are taken from [6]

Table V

Total energy (e¢*/ay) and diamagnetic susceptibility (10~% e¢m?®) for various values of C.
Z = N = 18. Values for C = 0 corresponding to the Thomas—Fermi—Dirac solution are taken

from [6]
’ C=0 C=105 C=0.25 C = 0.125
Z = N —Et —x —Eyot ‘ —x —Etot, ‘ —x —Eyot [ —x
2 — — 2.050 31.5 2.612 30.7 3.122 23.2
10 176.3 67.0 110.1 42.0 127.2 34.3 140.9 28.7
18 680.7 81.0 463.4 47.7 522.2 49.7 566.6 42.7
36 3378 102 2505 55.3 | 2743 53.9 | 2894 42.8
54 8846 117 6670 54.2 | 7214 64.0 | 7503 46.0
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PACUET 3HEPI'MIKM ATOMOB B BUJAOU3MEHEHHONM CTATUCTUYECKON TEOPUU
B. ATIAOV
Pesiome
JaHo peuleHHe BHIOM3MEHEHHOr0 ypaBHeHHs1 Tomaca — Qepmu, npenyioykeHHoro om-

6awom. IlosHble 3HEPrUH, pacCUUTaHHBIE 151 aTOMOB IePHOAUYECKOH Ta0JIMIBI XOPOLIo Corna-
CYHOTCS C 9KCNePHMEHTANbHBIMH JaHHbIMH. [ToKa3aHa poJsib BUIOH3MeHeHHOH YaCTH ypaBHHEHHSI.
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