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Abs t rac t  The "glutamate hypothe- 
sis" is one of three major pathophys- 
iological mechanisms of motor neu- 
rone injury towards which current re- 
search effort into amyotrophic lateral 
sclerosis (ALS) is directed. There is 
great structural and functional diver- 
sity in the glutamate receptor family 
which results from combinations of 
14 known gene products and their 
splice variants, with or without addi- 
tional RNA editing. It is possible 
that motor neurones express a unique 
molecular profile of glutamate recep- 
tors. Abnormal activation of gluta- 
mate receptors is one of five main 
candidates a s a  final common path- 
way to neuronal death. In classical 
acute excitotoxicity, there is influx of 
Na + and CI- ,  and destabilisation of 
intracellular Ca 2+ homeostasis, which 
activates a cascade of harmful bio- 
chemical events. The concept of sec- 
ondary excitotoxicity, where cellular 
injury by glutamate is triggered by 
disturbances in neuronal energy sta- 
tus, may be particularly relevant to 
a chronic neurodegenerative disease 
such as ALS. Data are now begin- 
ning to emerge on the fine molecular 
structure of  the glutamate receptors 
present on human motor neurones, 
which have a distinct profile of AMPA 
receptors. Two important molecular 
features of  motor neurones have 

been identified that may contribute 
to their vulnerability to neurodegen- 
eration. The low expression of cal- 
cium binding proteins and the low 
expression of the GluR 2 AMPA re- 
ceptor subunit by vulnerable motor 
neurone groups may render them un- 
duly susceptible to calcium-mediated 
toxic events following glutamate re- 
ceptor activation. Eight lines of evi- 
dence that indicate a disturbance of 
glutamatergic neurotransmission in 
ALS patients are reviewed. The links 
between abnormal activation of glu- 
tamate receptors and other potential 
mechanisms of neuronal injury, in- 
cluding activation of calcium-medi- 
ated second messenger systems and 
free radical mechanisms, are empha- 
sised. Riluzole, which modulates the 
glutamate neurotransmitter system, 
has been shown to prolong survival 
in patients with ALS. Further research 
may allow the development of  sub- 
unit-specific therapeutic targeting of 
glutamate receptors and modulation 
of "downstream" events within mo- 
tor neurones, aimed at protecting 
vulnerable molecular targets in spe- 
cific populations of  ALS patients. 
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I n t r o d u c t i o n  

The primary pathogenetic processes underlying amyo- 
trophic lateral sclerosis (ALS) are likely to be multifacto- 
rial, and the precise molecular mechanisms underlying se- 
lective cell death in the disease are, at present, unknown. 
Evidence is emerging to indicate that cell death in ALS 
may reflect a complex interplay between genetic factors, 
toxic activation of glutamate receptors and oxidative stress, 
which may result in damage to critical target proteins and 
organelles [1-6]. In some ALS patients, autoimmune mech- 
anisms may contribute to motor neurone injury [7, 8]. 

This article will highlight: the present state of knowl- 
edge relating to glutamate neurotransmission in the hu- 
man motor system; the concept of excitotoxicity and how 
this might apply to a chronic neurodegenerative disease 
such as ALS; current knowledge about the molecular pro- 
file of glutamate receptors on human motor neurones; pos- 
sible reasons for the selective vulnerability of motor neu- 
rones to glutamate; the evidence supporting the "gluta- 
mate hypothesis" of motor neurone injury; the links be- 
tween glutamate receptor activation and free-radical-me- 
diated damage. 

N o r m a l  g l u t a m a t e  n e u r o t r a n s m i s s i o n  

Research during the past decade has shown that glutamate, 
and in some cases other excitatory amino acids (EAAs), 
is a major excitatory neurotransmitter in the mammalian 
nervous system. Of relevance to motor neurone disease 
(MND) is the probability that gtutamate is an important 
neurotransmitter in several pathways in the human motor 
system, including the corticospinal tracts [9], excitatory 
interneuronal pathways in the spinal cord [10] and cor- 
tico-cortical association pathways [11]. Postsynaptic glu- 

tamate receptors have traditionally been classified into two 
major categories: ionotropic receptors, which are ligand- 
gated ion channels, and metabotropic receptors, which are 
coupled through G proteins to second messenger systems. 
The ionotropic receptors have been subdivided into three 
subtypes according to the pharmacological specificity of 
their preferred agonists: N-methyl-D-aspartate (NMDA) 
receptors; AMPA (c~-amino-3-hydroxy-5-methyl-4 isoxa- 
zole propionic acid) receptors; and kainate receptors [12]. 
Fourteen genes have been identified which encode differ- 
ent ionotropic glutamate receptor subunits (Fig. 1) [13- 
22]. In vivo, each ionotropic glutamate is thought to be 
composed of four or five subunits arranged as hetero-oli- 
gomers or possibly homo-oligomers. The functional prop- 
erties, including, for example, the ionic permeability of 
the ion channel, depend on the subunit combination of re- 
ceptors expressed [23]. Thus, the existence of multiple 
subunit genes and variations of subunit assembly to form 
receptor complexes in vivo contribute to the diversity of 
receptors. In addition, multiple subunit variants can be 
generated from a single gene by alternative splicing of ad- 
jacent exons of glutamate receptor genes as exemplified 
by the flip and flop variants of the AMPA receptor sub- 
units [24]. A given gtutamate receptor gene product and 
splice variant may be further modified by post-transcrip- 
tional RNA editing. This may have significant functional 
consequences; for example, the change of a single amino 
acid in the second transmembrane domain of the gluta- 
mate receptor channel can determine whether or not the 
channel is permeable to Ca 2+ [25, 26]. 

Thus, the potential number of different subtypes of 
glutamate ionotropic receptors that may result from com- 
binations of known gene products and their splice vari- 
ants, with or without additional RNA editing, is very large 
and it is quite conceivable that a given population of neu- 
rones within the CNS, such as motor neurones, will be 

Fig. 1 Classification of  gluta- 
mate receptors 
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Fig.2 Normal glutamate neuro- 
transmission 
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characterised by a relatively unique molecular profile of 
glutamate receptors. 

During normal glutamate neurotransmission (Fig.2), 
glutamate is released from the presynaptic neuronal termi- 
nal and travels across the synaptic cleft to act on postsy- 
naptic receptors. The excitatory signal is terrninated by 
active removal of glutamate from the synaptic cleft by 
several types of glutamate re-uptake transporter proteins, 
which are located on both perisynaptic astroglia and pre- 
synaptic terminals. Three rat and four human glutamate 
transporters have recently been cloned: GLT-1 (human ex- 
citatory amino acid transporter EAAT2), which is a widely 
distributed astroglial-specific glutamate transporter; EAACI 
(human equivalent EAAT3), which has a neuronal locali- 
sation; and GLAST (human equivalent EAAT1), which is 
an astroglial transporter preferentially localised in the cere- 
bellar cortex [27-31 ]; EAAT4 is a recently cloned human 
aspartate/glutamate transporter, which is expressed pre- 
dominantly in the cerebellum [32]. 

It is thought that the glutamate-glutamine cycle [33] 
represents an important mechanism for replenishing the 
neurotransmitter glutamate levels within neuronal termi- 
nals. Synaptic glutamate is transported into glia and con- 
verted to glutamine by the enzyme glutamine synthetase. 
Glutamine is then shuttled back to the neuronal terminal 

where it is reconverted to glutamate by the enzymatic ac- 
tion of glutaminase [33]. 

Excitotoxicity 

Abnormal activation of glutamate receptors is one of five 
candidates a s a  final common pathway to neuronal death 
that are currently of great research interest (Fig. 3). The 
work of Lucas and Newhouse [34] in 1957 first showed 
that glutamate can have lethal effects on neurones in the 
CNS. Subsequently, the term "excitotoxicity" was in- 
voked to describe the neuronal degenerative changes re- 
sulting from exposure to glutamate and its EAA ana- 
logues [35]. The molecular mechanisms of neuronal in- 
jury caused by excessive stimulation of glutamate recep- 
tors are beginning to be elucidated and it is clear that glu- 
tamate may be toxic to neurones in several ways. 

Classical acute excitotoxicity 

Studies on neurones in culture have shown that two dis- 
tinct phases may be involved in excitotoxicity. First, there 
is acute neuronal swelling caused by depolarisation-medi- 



$6 

1-t activation of J 
glutamate receptors I 

5.1 neurotrophic ] 
factor support I z t intracellular 

free Ca ++ 

4. Activation of 
cellular suicide 
programmes- 
apoptosis 

| 

3. t f'ee J 
radical production 

Fig. 3 Final common pathways of neuronal cell death Secondary or "weak" excitotoxicity 

ated influx of Na +, C1- and water, which appears re- 
versible on removal of the excitotoxin [36]. Second, there 
is excessive influx of Ca 2+, either directly through gluta- 
mate receptor ionotropic channels or through voltage-gated 
calcium channels following depolarisation of the neurone 
[37]. Normally there is very tight regulation of intra-neu- 
ronal free Ca 2+, maintaining the level of  free Ca 2+ below 
0.1 ~tM [38]. After excessive stimulation of glutamate re- 
ceptors, there is destabilisation of intracellular Ca 2+ home- 
ostasis, which activates a cascade of cytotoxic biochemi- 
cal events including inappropriate activation of several 
enzyme systems (lipases, phospholipases, endonucleases, 
calpains, nitric oxide synthase, protein kinase C and xan- 
thine oxidase). These processes can injure the neurone 
both directly and through the generation of free radicals 
[39]. Until recently, the NMDA subtype of glutamate re- 
ceptor, with its calcium permeable cation channel, was 
primarily implicated in excitotoxic injury to neurones 
[40]. However, it is now apparent that activation of non- 
NMDA (AMPA/kainate receptors) may also result in ex- 
citotoxic effects, particularly with more prolonged expo- 
sure to receptor agonists [41]. 

Following the original observations of Novelli et al. [42], 
it is now apparent that excitotoxicity can be viewed not 
merely a s a  primary disease mechanism, but as a secon- 
dary phenomenon triggered by disturbances in neuronal 
energy status. A neurone that is compromised by some pri- 
mary pathological process may show impaired glucose 
metabolism, reduced ATP production and dysfunction of 
Na§ which are necessary to generate a normal 
resting membrane potential. Thus, for example, the volt- 
age-dependent Mg 2§ block of the NMDA receptor channel 
may be eliminated, resulting in over-activation of NMDA 
receptors by normal endogenous glutamate levels. Recent- 
ly, Riepe et al. [43] extended the concept of excitotoxicity 
under conditions of chronic neuronal energy blockade. 
They studied the effects of exposure to glutamate of hip- 
pocampal slice preparations maintained under conditions 
of chronic inhibition of oxidative phosphorylation. In this 
system, failure of neuronal ion exchange, particularly Na + 
transport, together with disturbed interaction between neu- 
rones and glia, were the main processes that resulted in 
neuronal death. 

The concept of secondary, or weak, excitotoxicity is 
theoretically appealing in relation to a chronic neurode- 
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generative disease such as ALS. This mechanism could 
lead to toxic activation of  glutamate receptors without any 
abnormality in the level of  glutamate, of alteration in glu- 
tamate receptors. It could account for the relative anatom- 
ical specificity of ALS, anda  wide variety of primary ab- 
normalities in motor neurone physiology could result in 
susceptibility to the toxic effects of glutamate. In addition, 
therapy targeted at glutamate receptors may retard the 
progression of neuronal injury, whatever the primary dis- 
ease process [44]. 

Inhibition of cystine transport 

Recently, it has become apparent that glutamate can have 
an indirect toxic effect by depletion of intracellular glu- 
tathione [45]. The cystine carrier transports cystine into 
cells and also transports glutamate out of the cell, the dri- 
ving force for this exchange being provided by the gluta- 
mate gradient. Cystine and glutamate compete for binding 
to the carrier and an elevation of extracellular glutamate 
will result in decreased intracellular cystine transport. Cys- 
tine is a vital precursor of intrac› glutathione, which 
protects the cell from oxidative damage and also has a di- 
rect effect on neuronal excitability through an effect on K + 
conductance [46]. 

Free radical production 

Activation of glutamate receptors is one of the main routes 
to free radical production by calcium-dependent activa- 
tion of the arachidonic acid cascade, rlitric oxide synthase 
and calpain [47, 48]. Reactive oxygen species can lead to 
cumulative cellular injury and death, by damage to con- 
stituent proteins, lipids and DNA, with impairment of 
function of essential macromolecules and organelles. 

Time course of excitotoxic neuronal death 

There is now a substantial body of evidence that glutamate 
receptor agonists can produce neuronal death following 
acute exposure. There are also some emerging lines of 
evidence that excitotoxic mechanisms can poterltially pro- 
duce chronic neurodegenerative pathology. Excitotoxic 
effects with a prolonged time course have been shown af- 
ter exposure of organotypic CNS tissue cultures, or stria- 
tumor  ventricular system of rats, to low concentrations of 
the EAA agonist quinolinic acid [49, 50]. Chronic phar- 
macological blockade of the glutamate re-uptake trans- 
porter system in spinal cord explants from rats results 
in degeneration of motor neurones over a time course of 
weeks [51]. Activation of glutamate receptors under phys- 
iological conditions is knowrl to produce long-lasting 
changes in specific aspects of cellular biochemistry, result- 

ing, for example, in changes in synaptic efficiency known 
as long-term potentiation [52]. Also, glutamate receptor 
activation of neurones under pathological, as well as phy- 
siological, conditions may alter gene expression in a long- 
lastirlg manner [53]. As discussed above, activation of 
cell-surface glutamate receptors is a particularly important 
pathway for free radical damage, and oxidative damage to 
irltracellular proteins, lipids and DNA may be cumulative 
[54]. 

Glutamate receptor profile of human motor neurones 

Motor neurones have a high density of glutamate recep- 
tors [55-57] and in culture are susceptible to toxic effects 
following activation of either NMDA or non-NMDA glu- 
tamate receptors [58]. The distribution and density of 
ionotropic glutamate receptor subtypes and the glutamate 
re-uptake transporter system in the normal human motor 
system have been systematically studied using quantita- 
t ire autoradiography with specific radioligands [55, 59-  
62]. The key important findings are: (1) glutamate recep- 
tors of both NMDA and non-NMDA (AMPA/kainate) sub- 
types are expressed in the motor cortex, brainstem and 
spinal cord regions of the normal human motor system; 
(2) focal areas of high binding ("hot spots") of  [3H[MK- 
801 (NMDA receptors) and [3H]D-aspartate (glutamate 
transporter system) are coqocalised with lower motor neu- 
rone somata; (3) motor neurone groups that tend to be 
spared in ALS [e.g. oculomotor (III) nucleus] express a 
lower density of NMDA receptor binding sites a n d a  
higher density of AMPA binding sites compared with mo- 
tor neurone groups vulnerable to the disease. These find- 
ings indicate differences in normal glutamate neurotrans- 
mission in spared and vulnerable motor neurone groups. 

Data are now beginning to emerge on the fine molecu- 
lar structure of glutamate receptors present on human mo- 
tor neurones. Immunocytochemical studies with subunit 
specific antibodies have shown that humarl motor neu- 
rones have a relatively distinct profile of AMPA receptor 
subunits, with low levels of expression of the GluR~ pro- 
tein, high levels of GluR2/3 and moderate levels of GluR 4 
[56]. In situ hybridisation to study the cellular expression 
of AMPA subunit tuRNAs has shown that human spinal 
motor neurones express GluR1, GluR 3 and GluR4 but have 
no detectable expression of the mRNA for GluR 2 [63]. 
The GluR2 subunit has a very important role in determin- 
ing the calcium permeability of AMPA receptors [64]. 
Most native AMPA receptor subunit hetero-oligomers in 
the human CNS include the edited forro of GIuR 2, which 
renders them impermeable to calcium [65]. Only a few 
groups of cells in the mammalian CNS appear to express 
calcium-permeable AMPA receptors; these include Berg- 
mann glia in the cerebellum a n d a  subpopulation of hip- 
pocampal neurones [64-66]. It has beerl shown that neu- 
ronal subpopulations expressing atypical AMPA receptors 
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that lack GluR 2, which gate calcium permeable ion chan- 
nels, exhibit heightened vulnerability to non-NMDA ago- 
nist toxicity [67]. Thus, the lack of GluR 2 expression by 
human motor neurones and the resulting likely permeabil- 
ity of their AMPA receptors could potentially render this 
cell group vulnerable to excitotoxic injury by increasing 
calcium influx during glutamate receptor activation. 

Further work needs to be undertaken to elucidate the 
molecular profile of NMDA and kainate receptors, as well 
as the glutamate transponer system, in relation to human 
motor neurones. In addition, other molecular features of 
glutamate receptors that may be important in contributing 
to cell-specific excitotoxic vulnerability, which include 
the expression of flip versus flop variants of AMPA re- 
ceptors [68] and the expression of particular splice vari- 
ants of the NMDAR~ subunit [69], have not yet been 
studied in the human motor system. 

Selective vulnerability of motor neurones 

To be plausible, the "glutamate hypothesis" of motor neu- 
rone injury must explain how motor neurones can be se- 
lectively damaged by a disturbance of the glutamate neu- 
rotransmitter system, given the fact that EAA receptors 
are widely distributed throughout the CNS. Motor neu- 
rones differ from many other groups of cells in the CNS 
by their large size, their high ratio of axonal length to cell 
sorna diameter, their high metabolic rate, their high con- 
tent of neurofilament proteins and free radical scavenging 
enzymes [70-72]. In relation to glutamate toxicity, two 
cell-specific molecular features of human motor neurones 
have been identified that may render this cell group un- 
duly susceptible to calcium-mediated toxic events follow- 
ing glutamate receptor activation. The first feature is the 
low expression of GluR 2 and the resulting likelihood that 
human motor neurones express atypical, calcium-perme- 
able AMPA receptors, which is discussed in the preceding 
section. The second feature is that human motor neurones 
that are vulnerable in ALS do not express the calcium- 
binding proteins parvalbumin and calbindin D28K [73]. 
These proteins buffer intracellular Ca z+ and may play an 
important role in the protection of neurones from calcium- 
mediated injury following activation of glutamate recep- 
tors. A direct relationship has been shown between cellu- 
lar Ca 2+ buffering capacity and resistance to glutamate 
neurotoxicity [74]. These two molecular features may, in 
combination, render human motor neurones particularly 
susceptible to calcium toxicity following AMPA receptor 
activation. Thus, a plausible explanation is beginning to 
emerge whereby disturbances of glutamate neurotrans- 
mission in ALS may cause selective injury to motor neu- 
rones. 

Evidence for dysfunction 
of the glutamate neurotransmitter system in ALS 

The evidence that a disturbance of glutamate transmission 
may be present in ALS has been discussed in several re- 
cent reviews [1-3]. The key points will be highlighted 
here, with emphasis on recent developments. 

Glutamate levels in CNS tissue, 
cerebrospinal fluid and plasma of ALS patients 

Several groups have found significant reductions in the 
levels of glutamate in several CNS regions of ALS pa- 
tients [75-77]. Reductions in the levels of aspartate, N- 
acetyl-aspartyl glutamate (NAAG) and N-acetyl-aspartate 
(NAA) in the spinal cord have also been reported [77]. 
This has led to the hypothesis that there may be an under- 
lying defect in the metabolism, transport of storage of gluta- 
mate. Several studies have shown the level of glutamate 
in the cerebrospinal fluid (CSF) to be increased in ALS 
patients [78, 79], although not all groups have confirmed 
this finding [80]. The reason for these discrepancies may 
relate, in part, to the heterogeneity of the MND patients in 
some of the studies, and also to technical difficulties in 
measuring glutamate in biological samples [81]. A recent 
study has indicated that the elevation of CSF glutamate 
may only be present in a subset of approximately 30% of 
patients with ALS, the remainder of patients having levels 
within the control range [79]. The identification of a sub- 
group of MND patients with high CSF glutamate levels 
may be important in evaluating the clinical response to 
anti-glutamate therapeutic agents. Ir is of interest that the 
CSF of ALS patients has been shown to be toxic to neu- 
rones in culture, apparently via activation of non-NMDA 
glutamate receptors [82]. It has not yet been established 
whether such toxicity correlates with the level of CSF glu- 
tamate. 

Controversy exists regarding fasting plasma glutamate 
levels in ALS. Plaitakis and Caroscio [83] reported that 
fasting plasma glutamate levels were increased by ap- 
proximately 100% in ALS patients compared with con- 
trols, and that oral glutamate loading produced plasma 
levels which were higher in the ALS group. Iwasaki et al. 
[84] agreed with tbese findings, but others have found 
normal plasma glutamate levels in ALS patients [79, 80]. 

Abnormalities of glutamate transport 

Rothstein et al. [85] showed a specific functional defect in 
the Na+-dependent glutamate uptake system of synapto- 
somes obtained from spinal cord or affected regions of 
brain in ALS patients. This led to the hypothesis that inef- 
ficient synaptic clearance of glutamate could result in ex- 
cessive activation of EAA receptors with resulting toxic 
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effects on motor neurones. It has been shown that "knock- 
out" of the glial glutamate transporters GLT-1 and GLAST 
using chronic antisense oligonucleotide administration in 
vivo produces elevation of extracellular glutamate levels, 
excitotoxic neurodegenerative changes, and progressive 
paralysis [86]. Studies using antibodies to synthetic peptides 
from three of the cloned glutamate transporters showed a 
substantial loss of the astroglial GLT-1 immunoreactive 
protein in ALS, with a distribution largely confined to the 
areas of pathology in the motor cortex and spinal cord 
[87]. There was a 70% decrease in GLT-1 expression in 
motor cortex from ALS patients, and in about 25% of. the 
ALS cases the loss of expression of the GLT- 1 protein was 
dramatic, with no accompanying depletion of another glial 
specific protein, glial fibrillary acidic protein (GFAP), or 
GLT-1 mRNA [88]. The reason for the selective loss of the 
glial transporter protein in ALS is, at present, unknown, 
and it is by no means established that the abnormality of 
glutamate transport is a primary pathogenic factor. It also 
appears that GLT-1 expression may be subject to rapid al- 
teration post-mortem (Shaw, unpublished observations), 
so results from human post-mortem studies should be in- 
terpreted with caution. However, it remains possible that 
in a proportion of patients with ALS there is an abnor- 
mality in the synthesis or turnover of the protein. Alterna- 
tively, GLT-1 could be selectively damaged by other patho- 
physiological processes, such as oxidative stress, given 
the known sensitivity of glutamate transport to damage by 
free radicals [89]. A further possibility is that GLT-1 ex- 
pression is down-regulated following motor neurone de- 
generation. 

Densities of glutamate receptor binding sites 

Autoradiographic studies have shown an increased den- 
sity of binding sites for NMDA and non-NMDA receptor 
ligands in ALS, particularly in the intermediate grey mat- 
ter of the spinal cord and deep layers of the motor cortex 
[61, 62]. This may reflect increased excitatory drive to 
surviving motor neurones. 

Experimental studies 

Various experimental studies have provided evidence that 
glutamate receptor agonists may contribute to motor neu- 
rone injury. For example, intrathecal injection of the EAA 
agonist kainic acid in mice preferentially injures anterior 
horn cells and induces within them the formation of ab- 
normally phosphorylated neurofilaments, a cytoskeletal ab- 
normality that has been documented in MND [90]. Using 
a tissue culture model in which organotypic rat spinal cord 
is maintained under conditions of chronic glutamate up- 
take inhibition, motor neurone toxicity is produced with a 
subacute time course [51 ]. In this experimental paradigm 

therapeutic agents have been evaluated for neuroprotec- 
tive effects on motor neurones. It appears that drugs 
which inhibit glutamate release, which block glutamate 
synthesis, or which act as non-NMDA receptor antago- 
nists are the most potent neuroprotective agents, and cer- 
tain antioxidants or inhibitors of nitric oxide synthesis can 
also exert a modest neuroprotective effect [91 ]. 

Exogenous excitotoxins 

Exogenous excitotoxins have been implicated in the aeti- 
ology of specific forms of human motor system degenera- 
tion, and this has led to the suggestion that similar mech- 
anisms may underlie ALS itself. Human lathyrism is 
thought to be caused by ingestion of B-N-oxalyl-amino L- 
alanine (BOAA), a glutamate analogue present in the 
chickling pea (Lathyrus sativus) [92]. Victims of  this dis- 
order develop upper motor neurone signs predominantly 
in the lower limbs. There have been few pathological 
studies, but there is evidence of degeneration of the corti- 
cospinal tracts in the spinal cord [93]. Seven per cent of 
patients have clinical evidence of lower motor neurone 
dysfunction [94] and inclusion bodies have been de- 
scribed within the anterior horn cells of victims of lath- 
yrism [95]. Until recently, one of the major hypotheses for 
the high incidence of ALS and parkinsonism dementia in 
the Western Pacific was that neurotoxicity may have re- 
sulted from the use of the seed of the false sago palm (Cy- 
cas circinalis) for food and medicinal purposes by the na- 
tive population [96]. One constituent of  the cycad seeds is 
B-N-methyl-amino L-alanine (BMAA), which is a poten- 
tiai excitotoxin capable of activating several types of glu- 
tamate receptor. However, the balance of  recent evidence 
suggests that BMAA acting as an excitotoxin is not likely 
to be the cause of the human disease [97], although it is 
noteworthy that this compound can exert other neurotoxic 
effects, including disruption of mRNA metabolism [98]. 
The excitotoxin domoic acid, which is a selective kainate 
receptor agonist, was responsible for an outbreak of food 
poisoning following consumption of contaminated mus- 
sels in a Canadian population [99]. While the hippocam- 
pus and amygdala suffered the most severe neurotoxic 
damage, some of the affected individuals developed limb 
weakness, suggestive of either lower motor neurone in- 
jury o r a  motor polyneuropathy [100]. 

Positron emission tomography studies 

Abnormalities in the contralateral cortical increase in 
cerebral flow caused by freely selected upper limb move- 
ments have been shown in ALS patients compared with 
controls [101]. In the ALS group there was significantly 
greater activation in several cortical areas, implying inap- 
propriate activation of pyramidal tract neurones, outside 
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the normal somatotopic representation of the moving up- 
per limb. This suggests an imbalance between excitatory 
and inhibitory neurotransmission in the cortex in ALS pa- 
tients. 

Neurophysiological studies 

Transcranial magnetic stimulation of the motor cortex has 
shown abnormalities in a proportion of patients with ALS, 
indicating the presence of hyperexcitability of motor neu- 
rones in these patients [102, 103]. 

Therapeutic modulation of glutamate neurotransmission 

Two recent trials using the drug riluzole have shown pos- 
itive effects in terms of improved survival of patients with 
ALS [104, 105]. Riluzole interferes with pre- and post- 
synaptic glutamate neurotransmission via a complex mech- 
anism of action involving the blockade of voltage-sensi- 
tive Na + channels, ionic flux through NMDA channels, 
and possibly also interaction with G proteins [106-110]. 
Riluzole inhibits glutamate release, decreases EAA-evoked 
firing of rat facial motor neurones, and exerts neuropro- 
tective effects in experimental models of acute and chronic 
neurodegenerative disease [58, 110-113]. An interesting 
property of riluzole is that its binding affinity is several 
hundred-fold higher for the inactivated state of Na + chan- 
nels compared with the activated state [114]. This state- 
dependent drug affinity means that riluzole can be expected 
to preferentially block depolarised hyperactive neurones, 
because their Na + channels are more often in the inacti- 
vated state compared with Na + channels of  normal neu- 
rones. 

The recently published clinical trial of riluzole showed 
(using a Cox proportional hazards model of analysis) a 
35% increase in survival at 18 months in the group re- 
ceiving the optimal dose of riluzole compared with pla- 
cebo [105]. This trial did not show a significant effect of 
riluzole on muscle strength of disability scores, although 
the earlier trial did report a beneficial effect on decline of 
muscle strength [104]. 

Links between glutamate receptor activation 
and free-radical-mediated damage 

Activation of glutamate receptors and subsequent calcium- 
dependent second messenger systems is an important path- 
way for free radical production within neurones [5, 6]. 
Free radicals are one of the main potential causes of age- 
related deterioration in neuronal damage, and accumula- 
tion of oxidative damage may contribute to the delayed 
onset and progressive nature of neurodegenerative dis- 
eases [54]. There is considerable interest in the role of 

free radicals in motor neurone injury following the dis- 
covery that some patients with familial ALS have point 
mutations in the gene on chromosome 21 that encodes 
Cu,Zn superoxide dismutase (SOD 1) [115]. The normal tole 
of SOD1 is to catalyse the removal of superoxide radicals 
that can contribute to cellular oxidative damage [116, 
117]. The molecular mechanisms of selective motor neuo 
rone injury in the presence of SOD1 mutations are not un- 
derstood, but recent evidence, including studies of trans- 
genic mice expressing mutant human SOD1, suggests that 
the mutant protein has acquired some "toxic gain-of-func- 
tion" [118, 119]. One hypothesis for this toxic effect is that 
the mutant SOD1 protein may alter the sensitivity of mo- 
tor neurones to glutamate neurotransmission by, for ex- 
ample, inducing mitochondrial dysfunction [4]. Interest- 
ingly, lower motor neurones in SOD1 transgenic mice de- 
velop pathological changes resembling excitotoxic effects 
[120], and the glutamate inhibitor riluzole prolongs the 
survival of affected animals [121]. 

There is emerging evidence that oxidative stress may 
contribute to motor neurone injury in the sporadic form of 
ALS. Thus, 

1. Protein carbonyl levels (an index of oxidative damage 
to protein) are increased in spinal cord [122] and fron- 
tal cortex [123] of ALS patients compared with control 
cases. 

2. The activity of the free-radical scavenging enzyme glu- 
tathione peroxidase [124], the protein expression of 
SOD1, Mn SOD and catalase [72] are all increased in 
ALS spinal cord, as is the expression of SOD1 mRNA 
in individual spinal motor neurones [ 125]. These changes 
may reflect a compensatory response to oxidative stress. 

3. The leveI of  iron is increased in ALS spinal cord, 
which could potentially contribute to oxidative cellular 
injury [126, 127], 

4. Astrocytes in ALS spinal cord show increased expres- 
sion of metallothioneins [1281. 

5. Antioxidant therapy may have a modest beneficial ef- 
fect on the clinical course of sporadic MND [129]. 

Ah important consideration is that some proteins that ap- 
pear particularly sensitive to free radical damage are very 
important in the regulation of glutamate neurotransmis- 
sion; these include glutamine synthetase [130] and the glial 
glutamate transporter GLT-1 [89], as discussed above. Ex- 
posure of astrocyte cultures to low-level oxidative stress 
results in selective damage to the high-affinity glutamate 
transporter system without significant cytotoxicity. 

Conclusions 

Whatever the primary pathophysiological process (or 
processes) underlying motor neurone injury in ALS, the 
glutamate neurotransmitter system is likely to remain an 
important target for therapies aimed at retarding the 
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pathological  progression of  the disease. Further  work 
aimed at identifying specific subgroups o f  ALS patients, 
and at elucidating a more  detailed picture o f  the precise 
molecular  structure o f  glutamate receptors located on mo-  
tor neurones,  may al low subunit-specific therapeutic tar- 
geting a imed at specific populat ions of  ALS patients. Fur- 
ther explorat ion of  the events  within motor  neurones oc- 

curring "downs t r eam"  of  glutamate receptor  activation 
may al low the deve lopment  o f  synergistic tberapeutic 
strategies a imed at protecting the underlying vulnerable 
molecular  targets. 
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