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Abstract: Clustering, in data mining, is a useful technique for discovering interesting data distributions
and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern
recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster
large spatial databases, and two sampling-based DBSCAN (SDBSCAN) algorithms are developed. One algo-
rithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DB-
SCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large-
scale spatial databases.
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0 Introduction

Clustering, which is the task of grouping the

data of a database or data warehouse into meaning-

ful subclasses in such a way that minimizes the

intra-differences and maximizes the inter-differ-

ences of these subclasses, is one of the most widely

studied problems in data mining field 111 . There are
a lot of application areas for clustering technique,

such as statistical data analysis, pattern recogni-

tion, image processing, and other business applica-

tions, to name a few. Up to now, a lot of cluster-

ing algorithms have been proposed, in which fa-

mous algorithms contributed from the database

community include CLARANS [21 , BIRCH 131 , DB-

SCAN [41 , CURE [ ' ] , and recently the STING [61 ,

CLIGUE'' 1 and W aveCluster [8] . All these algo-

rithms try to challenge the clustering problems of

handling huge amount of data in large-scale

databases or data warehouses.

As an outstanding representative of clustering

algorithm, DBSCAN algorithm shows good perfor-

mance in spatial data clustering. It can discover

clusters of arbitrary shape and handle the noise

points (outliers) effectively. However, for large-

scale spatial databases, DBSCAN requires large

volume of memory support and could incur sub-

stantial I/O costs because it operates directly on

the entire database.

The aim of this paper is to extend the DB-

SCAN algorithm to cluster large-scale spatial

databases by data sampling technique. Two novel

sampling-based clustering algorithms are proposed

and implemented by combining the sampling tech-

nique with DBSCAN algorithm, which are called

sampling-based DBSCAN algorithms and abbrevi-

ated to SDBSCAN. One SDBSCAN algorithm in-

troduces sampling technique inside DBSCAN, i. e.

inside sampling approach, and the other SDB-

SCAN algorithm applies sampling procedure out-
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side DBSCAN, i. e. outside sampling approach.
Owing to data sampling, the I/O cost and memory
requirement for clustering large-scale spatial
databases are reduced dramatically, and conse-
quently the run-time of clustering is cut down con-
siderably. Experimental results demonstrate that
our approach is effective and efficient in clustering
large-scale spatial databases.

1 SDBSCAN Algorithms

In order to alleviate the bottleneck problem of
I/O cost and memory requirement while clustering
large spatial databases or data warehouses with
DBSCAN algorithm, here we develop two sam-
pling-based DBSCAN (SDBSCAN) algorithms by
combining sampling technique with DBSCAN algo-
rithm. One SDBSCAN algorithm adopts sampling
technique inside DBSCAN, i. e. inside sampling
approach, and the other SDBSCAN algorithm uses
sampling procedure outside DBSCAN, i.e. outside
sampling approach. Comparing with other tradi-
tional clustering algorithms using sampling tech-
nique, our approaches have two outstanding fea-
tures ;

1) Sampling technique and clustering algo-
rithm are bound together.

2) Clustering is carried out not only over the
sampled data set, but also over the whole data set
simultaneously.

Following are the details of these two SDB-
SCAN algorithms.
1. 1 Inside Sampling: SDBSCAN-1
1. 1. 1 The idea of sampling inside DBSCAN

Inside sampling is a technique that sampling
data inside the DBSCAN algorithm. We know the
process of clustering by DBSCAN is an iterative
procedure of executing region query. DBSCAN se-

lects a global k-dist value for clustering. For the
thinnest clusters, the number of objects contained
in their core objects' neighborhoods with radius
Eps equal to k -dist is k (The default value of k in
DBSCAN is 4). However, for the other clusters,
the number of objects contained in most of their
core objects' neighborhoods of the same radius is
more than k. DBSCAN carries out region query op-
eration for every object contained in the core
object's neighborhood. For a given core object p in

cluster C, it's conceivable that the neighborhoods
of the objects contained in p will intersect with
each other. To suppose q is an object in p's neigh-
borhood. If its neighborhood is covered by the
neighborhoods of other objects in p, then the re-

gion query operation for q can be omitted because
all objects in q's neighborhood can be fetched by
the region queries of the other objects in p, which
means that q is not necessary to be selected as a
seed for cluster expansion. Therefore, both time
consuming on region query operation for q and

memory requirement for storing q as a core object
can be cut down. In fact, for the dense clusters,
quite a lot of objects in a core object's neighbor-
hood can be ignored being chosen as seeds. So for
the sake of reducing memory usage and I/O costs
to speed up the DBSCAN algorithm, we should
sample some representatives rather than take all of
the objects in a core object's neighborhood as new
seeds. We call these sampled seeds representative
object of the neighborhood where these objects are
held.

Intuitively, the outer objects in the neighbor-
hood of a core object are favorable candidates of
representative object because the neighborhoods of
inner objects tend to being covered by the neigh-
borhoods of outer objects. Hence, sampling the
representative seeds is in fact a problem of select-
ing representative objects, which can accurately
outline the neighborhood shape of a core object.
Fig. 1 illustrates such an example in 2-dimensional
space in which p is a core object in cluster C, qi (i

= 1, 2, 3, 4) are sampled representative objects
which are used as seeds for further cluster expan-
sion.

*Eps

•	 cluster C

• • • 	 •	 o core point:p•••
• •0 •® representative point:

P, ,P„P3 ,p,

Fig. 1 Neighborhood and sampled
representative points

1. 1. 2 Sampling representative objects
A key problem is how many representatives

should be sampled for every core object's neighbor-
hood. This parameter should not be too small and
too large. If it's too small, a lot of lost objects
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may be yielded (we will address this problem in
next section). Otherwise, the advantage of sam-
pling technique cannot be fully exploited. In our
SDBSCAN-1 algorithm, while 2-dimension spatial
data is considered, this parameter is set to 4,
which is equal to the default value of MinPts. The
reason is, intuitively, that the neighborhood of a
core point can be covered approximately by 4 well
scattered representative points' neighborhoods of
the same radius Eps. Our experiments also show
that by using 4 as the number of representatives,
there are very few lost objects generated after the
ordinary DBSCAN clustering process is finished.
Generally, for the case of N-dimensional data
space, 2 * N representative objects may be sam-
pled from neighborhood of each core object for
cluster expansion, i. e. two representatives are
sampled over each dimension.

Without special declaration, we use the terms
point and object equally in this paper. In what fol-
lows, an algorithm for sampling representative
seeds from a core point's neighborhood is given.
This algorithm iteratively samples the number of
Rep_Minpts well-scattered points from a core

point's neighborhood. In the first iteration, the
point farthest from the core point is chosen as the
first representative point. In the subsequent itera-
tion, a point from the core point's neighborhood is
chosen that be farthest from the previously chosen
representative points.
//Algorithm for sampling representative points
Rep_Seeds_Sample(candidate_seeds, rep_seeds,

Rep_Minpts, Point)
rep_seeds : = 0; // initialize the representative

seeds set
FOR i : =1 to Rep_Minpts DO

maxDist : =0;
FOR each point p in candidate_seeds DO

IF i=1 THEN minDist =dist(p,Point);
ELSE minDist : =min {dist(p,q) IgErep_

seeds};
IF (minDist>maxDist) THEN

maxDist : =minDist; maxPoint : =p
END IF; // (minDist>maxDist)

END FOR; // each point p in candidate_
seeds

rep_seeds : =rep_seeds U {maxPoint};

END FOR; // i : =1 to Rep_Minpts

END; //Rep_Seeds_Sample

1. 1. 3 About the lost objects
Theoretically, because we sample only a limit-

ed and fixed number of representative objects in a
core object p's neighborhood as seeds for cluster
expansion, it's likely that some core objects in p's
neighborhood are ignored. In such a case, objects
that are uniquely density-reachable from these ig-
nored core objects will not be included in the clus-
ter when the expansion process is completed. We
call these objects lost objects.

Fig. 2 demonstrates such a case in 2-dimen-
sional space in which lost objects exist. In Fig. 2,
P t and P 2 are uniquely density-reachable from P 3

and p 4 respectively. However, in the clustering
process, p 3 and p 4 are unfortunately not sampled

as representative points, so Pi and P 2 are lost when
C 1 is clustered over. Because P 2 is core point,-but
p, is not, p l is labeled as NOISE and p 2 is assigned
to the cluster C 2 that has a different cluster Id from
C 1 .

•P2:• c2

®•

0C,

P,

.3 • • • •4 	Pa•

• ®	 •	 • •o core point: p

• • •	 •	 •	 0® representative
point

Eps

Fig. 2 Lost objects in a cluster

The lost objects are resulted from sampling.
When the ordinary clustering phase is over, the
lost border objects are labeled as noise, and the
lost core objects forms new clusters with other ob-
jects. The task of handling the lost objects is, on
the one hand, to reassign the lost border objects to
the corresponding clusters to which these lost bor-
der objects should belong. And on the other hand,
to merge the clusters where the lost core objects
locate with other clusters in which these lost core
objects should have been.

There is no obvious difference between the
lost border objects and real noises, so we have to
re-examine all noise objects to find the lost border
objects. The process is as follows. For a noise ob-
ject, firstly, we get its neighborhood. If all objects
in its neighborhood are marked as noise, then it is
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a real noise. Otherwise, if some objects are classi-

fied, we should further check whether they are

core objects. If the answer is yes, then we assign

the noise object to the cluster to which its nearest

classified core object belongs. Otherwise, it is still

a real noise object. As to handling the lost core ob-

jects, it is in fact an issue of clusters merging prob-

lem. Generally, the divided clusters must locate

close to each other. We can directly use the repre-

sentative objects of one cluster to carry out region

query and get the neighborhood of these represen-

tative objects. If one of the representative objects

is core object and in its neighborhood there are

some objects labeled as another cluster and at least

one of them is core object, then we treat the two

clusters as one similar cluster, i. e. the two clus-

ters are merged. Clearly, lost objects handling will

trade off efficiency of SDBSCAN-1. Practically, an

extra lost objects handling procedure is not indis-

pensable. Our strategy is to accept the reality of

lost objects' existence. The underlying reasons are

as follows:

1) That some border points are assigned to

noise will not greatly degrade the whole clustering

quality. The border points are actually in a status

between noise and genuine cluster members, so

classifying some of them to noise is not unaccept-

able.

2) The possibility of splitting a cluster due to

loss of core objects is very low. Usually, two adja-

cent parts of a cluster are density-reachable from

each other side through multiple core objects. So it

is very rare, if not impossible, for all core objects

density-connecting the two parts to be lost alto-

gether.
3) The number of the sampled representative

objects and the sampling algorithm are crucial to

the occurrence of lost objects. Through selecting

an appropriate number of representative objects in

core object's neighborhood and adopting a proper

sampling algorithm, the lost objects can be con-

trolled at a very low level.

Our experiments also show that in 2-dimen-

sional space, by choosing 4 as the number of sam-

pled representative points and using the sampling

algorithm in Fig. 2, the ratio of lost points over

genuine noise points is less than one percent. Prac-

tically and empirically, the lost points handling

procedure can be ignored.

1. 1. 4 Algorithm description
In SDBSCAN-1, when the first core point is

found in a new cluster, the first batch of represen-

tative points is sampled as seed points for the first

iteration of cluster expansion. And in the subse-

quent iterations, more representative seeds are

added up for cluster expansion till rep_seeds turns

empty, which means the expansion of the current

cluster is finished. SDBSCAN-1 differs from DB-

SCAN mainly in two aspects: 1) In the main pro-

cedure, there is an additional lost objects handling

procedure; 2) In procedure responsible for cluster

expansion, a procedure is added up to sample rep-

resentative objects for cluster expansion.

1. 2 Outside Sampling: SDBSCAN-2
Generally speaking, outside sampling is in fact

a traditional sampling technique used in cluster-

inga 5 . 9.10J A naive outside sampling DBSCAN al

gorithm may consist of three major steps as fol-

lows:

1) Sample database DB to produce the sam-

pled data set sdb;

2) Carry out clustering over the sampled data

set sdb with DBSCAN;
3) Label the un-sampled data from disk file or

database.
In this naive outside sampling DBSCAN algo-

rithm, we need only create R * -tree for the sam-

pled data set and do clustering over it with DB-

SCAN. The un-sampled data is stored in file or

database. It can be labeled directly from disk file

or database. Unfortunately, whatever traditional

labeling method may be used, the labeling efficien-

cy is still un-tolerable. So in our SDBSCAN-2 al-
gorithm, a novel and efficient labeling mechanism

is adopted to implementing the labeling process of

the unsampled data on the basis of R * - tree. The

scheme of SDBSCAN-2 is like this:

1) Sample database DB to produce sampled

dataset sdb;

2) Create R * -trees for DB and sampled data

set sdb;

3) Cluster sampled data set sdb with DB-

SCAN;

4) FOR each core point p in sampled data set

sdb DO:
(A) resultP ; =DB. regionquery (p, Eps),
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(B) DB. changeCllds (resultP, p. Cl1d).
Here, Step 1 is the sampling procedure. A

sampling algorithm proposed in Ref. [11] is used
for drawing a sample randomly from data in file in
one pass and using constant space. In order to
guarantee the clustering quality, the same analyti-
cal limitation on minimum sampled data amount as
in Ref. [5] is used. Step 2 is responsible for build-
ing R * -trees for DB and the sampled data set sdb.
Step 3 and 4 are the key steps that are used for
clustering and labeling respectively. We cluster the
sampled data set sdb with DBSCAN algorithm.
Once a core point is found in sdb, all points in its
neighborhood of the same radius in DB, UNCLAS-

SIFIED or CLASSIFIED as NOISE, sampled or
un-sampled, are labeled as members of the current
cluster. Hence, the clustering process (over the
sampled data set sdb) and the labeling process
(over un-sampled points in DB ) are in fact carried
out concurrently. When clustering is over, label-
ing is also finished. Fig. 3 demonstrates the pro-
cesses of clustering and labeling in 2-dimensional
space. Fig. 3(a) illustrates the sampled data set
sdb and the clustering process in sdb, where p i is a

core point in sdb and the radius of its neighborhood
is Eps. Fig. 3(b) shows the labeling process in
DB. Points in the neighborhood of core point p t

are all labeled as members of cluster C 1 .
® core point	 O sampled point	 • un-sampled point

OEps

OO••• 0
O0 O 	O•	 O •• •••

0	 •• 0 •	 ••• • • • O
 • ••
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O	 OCi	 •O O..%,,.t P• • Ci
•• ••0 	 0 O•• •• O

ONJ Eps

(a)
	

(b)

Fig. 3 Illustration of SDBSCAN-2
(a) Before labeling, (b) After labeling

However, just as in SDBSCAN-1, also due to
similar reason, some un-sampled points may be
lost or can not be covered by the neighborhoods of
the core points in the sampled data set during the
clustering process of sdb, which consequently
leads to some un-sampled points in DB not being
labeled in the labeling process. So we should have
an extra procedure to cope with these lost points,
which is similar to the lost points handling process
in SDBSCAN-1 methodologically. However, if the
data set is sampled in a sufficiently even way, the
number of lost points can be controlled at a very
low or acceptable level.

Further improvement on SDBSCAN-2 algo-
rithm can be done as follows. While building R*-
tree, we do not create a separate R * -tree for the
sampled data set sdb. Instead, we build only one

R * -tree for DB. In other words, we merge the

R* -trees of DB and sdb in the former version of

SDBSCAN-2 into one single R * -tree , in which we
mark out which point is sampled and which is not.
Therefore, the operations of clustering and label-
ing are carried out over the same R * -tree. And for

each core point in sdb only one time of region query
operation is executed, which is apparently unlike
in the former version of SDBSCAN-2 where two
times is needed: the first time for clustering over

the R a -tree of sdb, and the second time for label-

ing over the R* -tree of DB. Obviously, this kind
of improvement will result in almost half of the re-
gion queries being cut down.

2 Discussions and Performance

Like the DBSCAN algorithm, the average run
time complexity of SDBSCAN-1 and SDBSCAN-2
is also 0(nlog n) (n is the number of objects in the
database ). However, the frequency of region
query execution is cut down dramatically both in
SDBSCAN-1 and SDBSCAN-2. The number of re-
gion query operation in DBSCAN is n, while in
SDBSCAN-2, this value is at most 2n * s (s is sam-
pling ratio), and for the improved version of SDB-
SCAN-2, it's about n * s. As for SDBSCAN-1, it
is difficult to estimate the exact frequency of region
query execution, which depends on the selection of
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Eps (supposes MinPts is fixed) and nr (n r is the

number of sampled representative objects in the
neighborhood of a core object) values. Only in
these neighborhoods that hold more than nr objects
could the number of region query execution be cut
down. Generally, when MinPts is settled, the
larger Eps is, the more the number of region query
execution can be cut down, and consequently the
more the run-time of clustering can be reduced.
Clustering quality of SDBSCAN-2 relies on the
sampling ratio and sampling algorithm. If the ran-
dom sampling is sufficiently even and the sampling
size satisfies the chernoff bounds, clustering quali-
ty can be guaranteed. As for SDBSCAN-1, clus-
tering quality depends on nr value and the sampling

algorithm. In fact, there is a problem of trade-off
between efficiency and quality. While clustering
very large-scale databases or data warehouses, it is
a realistic strategy to achieve better efficiency at
the cost of losing certain clustering quality.

We implement the two SDBSCAN algorithms
in Borland C++5.0 under the software frame-
work of the original DBSCAN algorithm ['] . All
experiments have been completed on a PC with a
P2 CPU (350 MHz) , 128 M memory and 9.6 G
secondary storage volume. Both synthetic sample
databases and real world databases are used for al-
gorithms test. Fig. 4 illustrates the typical results
of scale-up experiments with DBSCAN, SDB-
SCAN-1 and SDBSCAN-2. The curves in Fig. 4
show that SDBSCAN algorithms have better scala-
bility over data set size than DBSCAN, and SDB-
SCAN-2 shows advantage over SDBSCAN-1.

s0

	E 40	 L
	20	 `

0
5000 10000 20000 50000 100000

size of dataset

Fig. 4 Performance comparison : DBSCAN,

SDBSCAN -1 and SDBSCAN-2
(sampling ratio is 20%)

3 Related Work

rithms. The first type constructs a partition of a
database D of n objects into a set of k clusters, and
the second type creates a hierarchical decomposi-
tion of database D. While handling large-scale
databases, one common used technique in cluster-
ing analyses is data samplingE a,s,bo] , which selects
a relatively small number of representatives from
databases or data warehouses and apply the clus-
tering algorithms only to these representatives.
CLARA (Clustering LARge Applications) E 1° is a
k-medoid clustering algorithm that relies on sam-
pling. It draws a sample of the data set, and ap-
plies PAM algorithm [103 on the sample, then finds
the medoids of the sample. A sampling technique
for the CLARANS algorithm is presented in Ref.
[9] based on R*-tree. This approach consists of
two steps. First, extract one representative for

each page of the R * -tree. From each data page of

the R * -tree, the most central object is taken as a
representative. Second, Cluster the representa-
tives using CLARANS and return the k medoids.
The clustering strategy of the R * - tree, which min-
imizes the overlap between directory rectangles,
yields a well-distributed set of representatives.
Another case of using data sampling technique in
clustering large databases is CUREF 51 , which is a
hierarchical clustering algorithm that can find clus-
ters of arbitrary shapes. CURE uses chernoff
bounds to analytically derive values for sample
sizes for which the probability of missing clusters
is low. However, to the best of our knowledge, up
to now there is no report on research that combines
sampling technique with DBSCAN algorithm. Al-
though Ref. [9] also used the sampling technique
on the basis of R* -tree, it is entirely different
from our algorithms proposed in this paper in

terms of how and what for R * -trees are used. On
the one hand, Ref. [9] introduced data sampling to
improve the efficiency of CLARANS algorithm,
and we use sampling technique to extend DBSCAN
algorithm to cluster large-scale databases more ef-
ficiently. On the other hand, Ref. [9]  used R * -

tree only as an approach of data sampling, while

we use R * - tree in the process of clustering.

4 Conclusion
Generally, there are two types of clustering

algorithm: partitioning and hierarchical algo- 	 Based on the DBSCAN algorithm, in this pa-
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per, we developed two new sampling-based clus-
tering algorithms, i. e. sampling-based DBSCAN
(SDBSCAN) algorithms by combining the sam-
pling technique with DBSCAN algorithm. SDB-
SCAN-1 introduces sampling technique inside DB-
SCAN, and SDBSCAN-2 applies sampling proce-
dure outside DBSCAN. Both algorithms can cut
down I/O cost and memory requirement for clus-
tering large-scale spatial databases dramatically,
and consequently reduce the run-time of clustering
considerably. Experimental results show that
these algorithms are effective and efficient in clus-
tering large spatial databases. In the future, we
prepare to integrate SDBSCAN-1 and SDBSCAN-2
into one single algorithm applies the SDBSCAN al-
gorithms to high dimension data clustering.
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