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Abstract: Trust is an important aspect of the design and analysis of secure distributed systems. It is often
used informally to designate those portions of a system that must function correctly in order to achieve the de-
sired outcome. But it is a notoriously diffcult notion to formalize. What are the properties of trust? How is it
learned, propagated, and utilized successfully? How can it be modeled? How can a trust model be used to de-
rive protocols that are effcient and reliable when employed in today's expansive networks? Past work has been
concerned with only a few of these issues, without concentrating on the need for a comprehensive approach to
trust modeling.

In this paper, we take a first step in that direction by studying an artificial community of agents that us-
es a notion of trust to succeed in a game against nature. The model is simple enough to analyze and simulate,
but also rich enough to exhibit phenomena of real-life interactive communities. The model requires agents to
make decisions. To do well, the agents are informed by knowledge gained from their own past experience as
well as from the experience of other agents. Communication among agents allows knowledge to propagate
faster through the network, which in turn can allow for a more successful community. We analyze the model
from both a theoretical and an experimental point of view.
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0 Introduction

Uncertainty about another's likely behavior is

a significant obstacle in establishing productive co-

operative relationships. In everyday life, we re-

duce risk by relying on knowledge of our own past

experiences and on the collective experiences of the

community. We trust another (for a particular ac-

tivity) when we have knowledge that reduces our

perceived risk to an acceptable level (for that activ-

ity). Trust is intimately tied to decision-making,

for having trust means that we may engage in an

activity with another, whereas lack of trust will

lead to avoidance of the activity. Trust can also be
viewed as the distillation of a potentially large

quantity of information that is suffcient to allow a

trust relationship to be established. A successful

distillation requires the ability to update the trust

data to incorporate new experience.

In recent years, increasingly varied activities

are performed on-line, over great distances. For-

merly geographically bound communities are rapid-

ly fused into an expansive collection of world-wide
virtual ones. Familiar informal methods for estab-

lishing trust are overwhelmed by the vastness and

complexity of open networks. We need automated

methods for trust establishment that use the net-

works themselves! This thrusts trust into the fore-

front of secure cooperative distributed systems de-

sign.
The following example illustrates the point :

Suppose you are registering at a secure web site.

Your browser displays a message stating that

Trust'em-all Inc. has signed a certificate for the

site and asks whether you accept the certificate or

not. Your browser provides no helpful information

other than prosaic details (name of the certificate

signer and that of the holder, expiration date, seri-
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al number, etc.) to guide you through the decision
process. Depending on your temperament and the
desirability of the service provided through the web
site, your response could range between proceed-
ing without any further consideration and absolute-
ly refusing to accept the certificate. But what prin-
ciples should guide you in making this decision?
What information would you need in order to de-
cide on the trustworthiness of the web site creator/
maintainer? What about the trustworthiness of
Trust'em-all Inc. ? Should you trust it more or less
than Trust'em-not Inc. , and why? Would you feel
more confident in your decision if you had certifi-
cates from both certification authorities? What
would you do if the certificates were inconsistent?
Reasoning about a decision process seems a
formidable task. A similar set of trust concerns
underlies not only all certificate-based activities
(e. g. , using Java applets or Javascript code em-
bedded in a webpage's HTML source, loading an
encrypted webpage, sending secure e-mail to a
PGP user, etc. ) , but also a number of services
from different areas of secure distributed comput-
ing such as key management and network routing.

In order to answer any of these questions ef-
fectively, we must understand how information
such as beliefs, opinions, and impressions can be
transformed into knowledge, and how that knowl-
edge can be used to guide successful decision-mak-
ing about future actions. In this paper, we present
the results of our initial efforts towards this goal.

We model an interactive community of agents
who choose among available actions and receive re-
wards. Some actions are more valuable than oth-
ers. The success of an agent depends on its ability
to select the more valuable action at each stage.
The success of the community is measured by the
collective success of its agents. We focus attention
on agents that base their actions on an explicit
trust model.

Section 1 of the paper presents an overview of
related work on trust. Section 2 describes our
game environment in detail. Section 3 presents the
learn_trust agent algorithm which is the main fo-

cus of this paper, along with other algorithms to
provide a basis for comparison. Section 4 analyzes
learn_trust from a theoretical and an experimental

point of view and summarizes our observations.

Section 5 outlines possible ways to modify learn_

trust to improve its asymptotic behavior.

1 Related Work

Most related work has resulted from efforts to
use trusted authorities in solving the authentication
problem for public-key cryptography. In such a
setting, users can communicate securely only if
they can retrieve each other's public-key. The tra-
ditional solution to establishing the binding be-
tween the intended recipient of a message and his/
her public key is for the sender to find a sequence
of authorities such that each authority in the se-
quence can authenticate the next, while the last
one can authenticate the recipient, and the first
one can be authenticated by the sender. Such a
construction was first presented in Ref. [1] and
was later used in Ref. [2-5] etc. Since the success
of this approach depends on the correctness of all
authorities in the sequence, the use of multiple
such sequences was proposed, along with metrics
that measure the confidence in the derived binding
given the collection of found sequences ( e.
g 15-97 O).

However, trusted authorities are not necessar-
ily trustworthy, and some metrics consider this

possibilityE G-'l. They operate in the context of a di-
rected graph, whose configuration and semantics
vary from metric to metric. For example, in Ref.
[6] and [7], the graph nodes represent, entities
that possess and use private/public key pairs,
while in Ref. [5], they represent public keys. In
Ref. [7], an edge from the node of entity A to that
of B can represent a relationship between the two
(e. g. , A trusts B to authenticate other entities),
while in Ref. [6], it can represent a 3-place rela-
tionship between the user evaluating the metric,
A, and B (e. g. , the user holds a certificate for B's
public key issued and signed by A). Depending on
the metric, the nodes or edges of the graph are la-
belled with numbers signifying degrees of trust,
assigned by either the entities or the user evaluat-
ing the metric. Each metric then allows specific
calculations to be performed over the trust assign-

Ref. [5] and [8] were not proposed as metrics. They were
first interpreted as such in Ref. [10].
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ments in order to measure the confidence in the
binding between an entity and its suggested public
key. Nevertheless, no procedures are supplied for
the entities or the user to arrive at those initial
trust assignments, and no trust semantics are
specified. For example, in Ref. [6], the relation-
ship between reality and the trust values used in
the model is unspecified. The lack of algorithms
for learning trust, along with ambiguities in the in-
terpretation of the trust relationships, makes it im-
possible to assign clear semantics to the result pro-
vided by the metric. These works seem to be con-
cerned primarily with the issue of how trust is
propagated. They ignore other aspects of the trust
modeling problem such as providing unambiguous
semantics and efficient algorithms for learning and
using trust

We should note here what our work is not
concerned with. Our efforts are not in the direction
of providing a trust logic or a solution to the trust
management problem introduced in Ref. [ 4 ].
Trust logics[58h115] are tools that draw conclu-
sions from given initial trust relationships, while
trust management systems, (e. g. , KeyNote 131 ,

PolicyMakerl4] , REFEREEC 6 J) , are tools that al-
low the user to express security policies, creden-
tials and trust relationships, in a flexible and uni-
fied fashion. Neither trust logics nor trust manage-
ment systems are concerned with the questions of
where trust comes from, how it is learned, or how
it should be used to guide action successfully, all
of which are vital issues underlying the design and
analysis of a trust policy.

2 The Game

Our game is one of imperfect information and
chance. A group of n, fully competent, honest a-
gents participate. Their goal is to maximize the ex-
pected earnings of the group. Each agent is charac-
terized by two features: a unique identifier i E G=
0,2,•••,n}, and a number r ; E (0,1), which is the
agent's degree of reliability. The reliability values
are chosen independently at random according to a
fixed probability distribution R when the agents
are created. The unique identifier is public infor-
mation, as is the distribution R. However, the de-
gree of reliability for each individual agent is pri-

vate®. It affects the agent's behavior in a specific
fashion described below. Values are assigned to all
agents' features before the game starts, and those
values remain constant throughout the execution of
the game.

The game develops in stages of interaction.
During each stage, an ordered pair of agents (i,k)
EGXG,i^k, is chosen and invited to participate
in an encounter. Agent i is called the active agent,
and agent k is the passive agent. The passive agent
always accepts the invitation, while the active a-
gent decides whether or not to do so by use of a de-
cision rule which may depend on the passive
agent's public features and on the contents of the
active agent's private memory. If the active agent
accepts the invitation, then an encounter takes
place.

An agent's degree of reliability determines
how likely it is for the agent to behave "well"
when it participates in an encounter as the passive
agent. Specifically, for each accepted invitation, a
coin is tossed that is biased according to the pas-
sive agent's degree of reliability. Depending on the
result of the toss, the character X of the encounter
is "good" or "bad".

Only the active agent receives a payoff, which
depends on X. If X=good, the profit is Pg. If X=

bad, the profit is Pb (which will generally be zero
or negative). We assume that P,> Pb. All payoff

values are fixed before the game starts and remain
so throughout its execution. They are also known
to all agents. It follows that the expected payoff
for an encounter with agent k of reliability rk is:

E[payoff k ] = rkPg -r- (1 — rk)Pb (1)
Agent k is called good if E[payoffk]>0, bad if

E[payoffk]<O, and neutral if E[payoffk]=0. On
average, the society makes profits from encounters
with good agents, and it suffers losses from en-
counters with bad agents.

As the game progresses, each agent tries to
gauge the other agents' assigned degrees of relia-
bility so that it can be more successful in its future
interactions. The only way an agent receives new

Ql Specifically, the only metric we know how to evaluate effi-
ciently is that proposed in Ref. [5]. The metrics proposed in Ref. [6]
and [7] are exponential in the size of the graph in the worst case.
For an extensive comparison of Ref. [5-,the reader can consult
Ref. [10].

The degree of reliability of an agent is not known to itself
or to any other agent.
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information is by participating in encounters as the
active agent. If X=good, the active agent is given
the contents of the passive agent's memory. We

call this indirect information. In any case, the ac-
tive agent learns X. We call this direct informa-
tion.

An agent i who declines an invitation to par-
ticipate with agent k is said to distrust agent k.
Such an agent gets no new information about k's
reliability from the declined opportunity. Of
course, i continues to revise its opinion about k as
a result of indirect information from subsequent
encounters with third parties, which could later
lead it to reverse its decision to distrust k and de-
cide to participate with k again.

For the experimental results presented in this
paper, we fix the payoffs and the probability dis-
tributions. We take R to be unif (0, 1) , the uni-
form distribution from the real open interval (0,
1). The pairs of agents (i,k) invited to participate
in encounters are chosen uniformly at random from
GXG (subject to the constraint that ilk). We fix
Pg =2 and Pb =-2.

3 Agent Algorithms

We now define several kinds of agents for
playing our game. These agents differ in the
amount of memory they have, in their algorithm
for deciding which invitations to accept, and in
their method for incorporating new information in-
to their memories. A goal of this study is to find
simple algorithms that require relatively small
amounts of memory and do almost as well as the
best possible algorithm. A candidate such algo-
rithm is learn_trust. The other algorithms provide

points of comparison in evaluating the quality of
learn_trust.

3.1 The Learn_trust Agent
A learn_trust agent tries to learn the reliabili-

ty value of each other agent. It maintains a vector

of real-valued registers in its memory, one for each
other agent, which we call its opinion about that a-
gent. All agents' opinions are initialized to the ex-
pected value of the random variable R used for the
assignment of the reliability values. Its behavior is
controlled by a strategy based on its opinions,
which it uses as if they were the true reliability

values.
A learn_trust agent performs two fundamen-

tal operations: It revises its opinions of other
agents based on its own experiences and on those
of other agents, and it uses its opinions to inform
its actions. Hence, in order to define such an a-
gent, we need to describe precisely how these op-
erations are to be performed. For the agent to be
feasible, these operations must also be effciently
computable.

Let agent pair (i, k) be invited to an en-
counter, and let O;,k be i's opinion about k's degree
of reliability. As mentioned above, agent k always
accepts the invitation. Agent i decides whether to
accept or decline by use of the following formula:

accept if E[payoff; , k] a ri
decision ;

 k — decline otherwise.

(2)

E[payoff1,k]=0;,k * Pg +(1-0;,k) * Pk is what a-
gent i believes the expected payoff of an encounter
with k is ,and r i is a constant.

After the encounter takes place, agent i calcu-
lates its new opinion O ; ,k of k according to a simple
exponential-decay rule:

Oi,k = (1 — adirect) * Oi,k + adirect * v (3)

adirect is a decay constant that has the same value
for all agents, and v is 1 or 0 depending on whether.
X is good or bad, respectively.

If the encounter is good, agent k shares all of
its opinions with agent i, except for Oh,, and

Ok,k @ . Agent i uses the information received from
k to update its opinion about each other agent j,
also according to a simple exponential-decay rule:

o;,j = (1 — aindirect) ' Oi,j +• a indirect * Ok,j (4)

aindirect is a decay constant that has the same value
for all agents (but is not necessarily the same as
adireet). If the encounter is bad, agent k shares no
information with agent i.

For the computer simulations, we set r, = 0

for all i. All agents' opinion are initialized to 0. 5,
since R-^' unif (0, 1). Notice that because we also
assume Pg =2 and Pb=-2, i decides to participate
in an encounter with k iff O;,k>1/2. Finally, we
set both decay constants adirect and ai„direct to 0. 1.

Ql Recall that agents do not maintain opinions about them-
selves.
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3.2 Memoryless agents
In order to establish a baseline for the learn_

trust algorithm, we consider two kinds of memory-

less agents:
Play_ always: This agent always accepts an

invitation to an encounter. Because each r k is a uni-

formly distributed random variable, its expected
value is 1/2. Hence, from equation 1, the expected
earnings per encounter are

E[earnings] = Z (Pg + Pb)	 (5)

In our simulations, Pg =—P6= 2, so E[earnings]

=0.
Play_never: This agent always declines an in-

vitation to an encounter. The expected total earn-
ings for the society are 0.
3.3 The know_reliability agent

The know_reliability agent is an idealized a-
gent with perfect information about the reliability
values of each other agent. Thus, it can play opti-
mally. It accepts an invitation to an encounter if
the expected payoff from the encounter is nonnega-
tive, and it declines otherwise. The expected pay-
off for an encounter with agent k with reliability rk
is given by (1). This number is non-negative if

rk > P — Pb 	(6)
K g -

Hence, the know_reliability agent sets

(7)r Pg — P6

and it accepts an invitation to participate with a-
gent k whenever r r. Thus, from (1) , the ex-
pected earnings for a know— reliability agent of-

fered an encounter with agent k are
E[earnings k ] = max(0,rkPB + (1 — rk)Pb)

(8)
For the computer simulations, (7) simplifies to r
=1/2, and (8) simplifies to

E[earnings k ] = 4 • max(0,r k — 2 )	 (9)

Treating rk as a random variable	 unif (0,1) , the

expected value of max(0,rk-1/2) is

f max(0,x — 2 )dx = fi^z (x- - 2 )dx = 8
(10)

From (9) and (10), the expected earnings per in-
vitation for a know relability agent is

E[earnings] = 4 X (1/8) = 1/2 	 (11)

However, for a particular society, the rks are fixed

once and for all. Using (9), the expected earnings

per invitation, given the rks, are
E[earningsIr l ,•••,r„] _

4 	max(0,rk — 1 )	 (12)n k _ 1 2
This averages to 1/2 over all possible values for
the rks, but it could be greater or less than 1/2 for

any particular society.
Because know— reliability accepts invitations

to participate exactly when its expected payoff is
non-negative, we have:

Theorem 1 No agent without prior knowledge
of the outcome of encounters has larger expected
earnings per invitation than know_reliability.

4 Analysis of Learn_Trust

In order to determine how good the learn_

trust algorithm is, we simulated it and compared
its performance with that of the idealized know_

reliability algorithm, which we know by Theorem
1 will outperform any implementable algorithm.
4. 1 Simulation method

Our simulations comprise three parts. First,
10 random societies of 100 agents each are generat-
ed. Second, for each society, 10 random encounter

schedules of 10 6 encounters each are generated.
Third, each algorithm of interest is run 10,0 times,
once for each society and each corresponding en-
counter schedule. The results from the 100 simula-
tion runs are averaged together and the averages
plotted on graphs. Although the socities and en-
counter schedules are randomly generated, the dif-
ferent algorithms are all run on the same data sets,
making comparisons among the algorithms more
meaningful.

The agents in each society are created with re-
liability values drawn from the distribution unif (0,
1). An encounter schedule consists of a sequence
of triples (i , k, X). The pair (i , k) is chosen uni-
formly at random from {(i,k) It,kEG,i^k}. Xis
chosen randomly from { good, bad } , where the
probability that X= good is r k .

Given a society, an encounter schedule, and
an algorithm, the simulation proceeds step by

step. At step t, the t`h encounter from the en-
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counter schedule is used. Call it (i,k,X). A simu-
lation step proceeds as follows :

1) Agents i and k are invited to participate in
an encounter, where i is the active agent and k the
passive agent.

2) Agent i's decision rule is evaluated to see
whether or not it chooses to accept the invitation.
If it declines the invitation, nothing further is done

and the simulation step is complete.

3) If agent i accepts the invitation, then the
character of the encounter is X.

4) Agent i's direct updating function is evalu-
ated with X as an argument.

5) If X=good, then agent i's indirect updating
function is evaluated with agent k's memory as an
argument.

6)Agent i's accumulated earnings are incre-
mented by Pg if X=good and by Pb if X=bad.
4.2 Observations

Earnings per step. The first quantity of inter-
est is the society earnings per step , averaged over
the first t steps. This is the total society earnings
through step t divided by t. Note that this quantity
is undefined for t=0.

In the case of know_ reliability, it follows
from (12) that the expected average earnings per
step are

10 n

4 Z max(0,r• — I) (13)
lOn 5_1 k=1 2

where rk is agent k's reliability value in the 5th soci-
ety of the simulation (1 < s < 10 ). No algorithm
can do better than this. We wish to see how close
learn_trust comes to achieving this value.

The graphs of Fig. 1 show the results of our

simulations for the first 10 3 , 10 4 , 10 5 , and 10 6

steps, respectively. We observe from these
graphs that know_reliability earns about 0. 52 per

encounter, slightly above its expected value of
0. 5. This is presumably due to statistical variation
in the samples of reliability values comprising the
society. Learn_ trust starts out behaving like

play_always since each agent's initial opinion of 1/

2 causes it to accept its first encounter. After ap-
proximately 3000 steps, learn— trust's average

earnings per encounter have risen to about 50%
that of know reliability. As time continues up to

106 steps, we see that learn— trust has average
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Fig. 1 Society earning per invitation

earnings about 0. 5, only 4%o below that of know_

reliability. We can safely conclude that most a-
gents at this point in time are making pretty accu-

rate decisions about which encounters to accept and
which to reject. In fact, we note that the same is

Q Each graph shows 20 evenly spaced points from the simula-
tion interval.
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true already after about 200 000 steps. Learn_

trust's performance improves very little after that
time. Since the performance of know reliability is
an upper bound on the performance of any algo-
rithm that operates without prior knowledge of the
reliability values, we conclude:

Observation 1 After an initial learning peri-
od, the average performance of learn_trust agents
appears to be close to optimal.

One might hope that the performance of
learn_trust would approach that of know_reliabili-
ty in the limit. However, the graphs do not seem
to support that conclusion. Between 200 000 and 1
000 000 steps, the lines are pretty much flat and
parallel. Analysis of the algorithm suggests three
reasons why the performance of learn_trust might
not get arbitrarily close to that of know_reliabili-

ty.

1) Agent i's opinion of agent k does not con-
verge to rk. Indeed, even if O ; , k=rk just before an
invitation to an encounter between i and k, it will
not equal rk afterwards if the invitation is accepted.
This is because the new value of O;,k will be either
0. 9 * O;,k+0. 1>O oror 0. 9 * O,,k<O,,k, depend-
ing on whether the outcome is good or bad.

2) It might happen for some agent i that, at
some point in time, its opinion of all other agents
drops below 0. 5. We call such an agent paranoid
since it distrusts everyone. A paranoid agent de-
clines all invitations to participate in encounters,
so it never changes its opinions henceforth. A
paranoid agent results in a loss of potential earn-
ings for the society since it forgoes the positive ex-
pected payoffs from encounters with good agents
that it would otherwise enjoy.

3) It might happen for some agent k that, at
some point in time, it is distrusted by all agents
ilk, that is, all have opinions O;,k<O. 5 and all
will refuse invitations to participate with k. We
call such an agent an outcast and say that it has
been dropped. This condition of being an outcast
persists forever, for there is no way for the maxi-
mum opinion max; #k0;,k of the other agents to in-

crease. Without further encounters with k, there
will be no new direct information to cause opinions
about k to change. While an individual opinion Oi,k

can increase as a result of indirect information from
some agent j, its new value cannot be larger than

the greater of its old value and O. Thus, the

maximum opinion across the society cannot in-
crease after indirect updates, so it remains below
0. 5, and k remains an outcast. When a good agent
k is dropped, every declined invitation to partici-
pate with k results in a loss of potential earnings
for the society.

How important are these three factors in prac-
tice? Intuitively, the non-convergence of the opin-
ion to the actual reliability value is not very impor-
tant. The reason is that good performance only re-
quires making the right decision most of the time,
and the further away r; is from 0. 5, the greater the
effect the decision has on earnings. But the further
away r; is from 0. 5, the more likely it is that the

right decision will be made even if the opinion dif-
fers considerably from r; .

For the question of paranoid and outcast a-
gents, we turn again to our simulations. In none of
our simulations did we observe a paranoid agent,
suggesting that it is highly unlikely for an agent to
become paranoid.

Observation 2 Learn_ trust rarely produces

paranoid agents in practice.
To get some intuition about why this is true,

note that gossip (the exchange of indirect informa-
tion) tends to keep the other agents' opinions
about an agent k clustered together. As we ob-
served above, gossip cannot raise the maximum
opinion about k; similarly, it cannot lower the
minimum opinion. Moreover, if the holder of an
extreme opinion receives gossip, its new opinion
will be less extreme (except in the case that it re-
ceived gossip from another equally extreme agent).

Now, to become paranoid, agent is opinion
of all other agents must simultaneously drop below
0. 5. However, for an agent k with a high reliabili-
ty value (say rk a 0. 9) , the clustering phe-

nomenon will tend to keep the other agents' opin-

ions about k well above 0. 5. While agent i's opin-

ion about k might well drop below 0. 5 as a result
of a series of bad encounters with k (already a low
probability event) , gossip stemming from subse-
quent good encounters with other agents will tend
to push its opinion of k upwards. So becoming
paranoid requires the constellation of a large num-
ber of low probability events.

The situation with dropped agents is differ-
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ent. An agent k becomes an outcast when other
agents' opinions drop below 0. 5. The lower rk ,

the more rapidly we expect this to happen. Indeed,
it is by dropping bad agents that learn trust is able
to approach the performance of know_reliability.

Unfortunately, it is both possible and fairly
likely for a good agent to be dropped, particularly
near the beginning of the simulation run. If a good
agent is the passive agent in a few bad encounters,
it will get a bad reputation which then gets propa-
gated throughout the society via gossip. Fig. 2
shows the number of dropped good agents, aver-
aged over the 100 runs, as a function of time. In
the first 10 000 steps, only about. 43 good agents
are dropped. But after that the number rises
steeply. Almost 3 are dropped after 20 000 steps.

By 50 000 steps, the number is up around 6. After
1 000 000 steps, it has risen to above 7. 5, and it
appears not to be leveling off. From a total popula-
tion of approximately 50 good agents in all, the
7.5 dropped represents a considerable fraction of
the whole.
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Fig. 2 Dropped good agents for learn_trust

One would of course expect the rate at which
good agents are dropped to decrease over time, if
only because fewer and fewer good agents remain.
But the good agents most likely to get dropped are
those with low reliability values (those only slight-

ly above 0. 5). They are also the ones most likely
to be dropped early on, so as time goes on, the re-
liability values of the population of remaining good
agents tend to increase, making those agents less
likely to get dropped in the future.

Observation 3 Learn_trust drops a consider-
able number of good agents, but the rate at which
they are dropped increases at first and then gradu-
ally decreases.

It would be interesting to see what might hap-
pen were the simulation to be continued far beyond

106 steps. While we were not able to do this, we
were able to simulate a much smaller society (only
10 agents) for 2X10 7  steps. Thus, each agent par-
ticipated in approximately 200 times as many en-
counters as in the bottom graph of Fig. 2. The re-
sults are shown in Fig. 3. We note that an average
of about 3.8 good agents are dropped after 2 X 10'
steps. Since the expected number of good agents is
only 5, this means that about 75 ° o of the good a-
gents have been dropped by the end of this run. A-
gain the graph has a very noticeable positive slope,
suggesting that all good agents will eventually be
dropped. The next theorem justifies this claim.
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Fig. 3 Dropped good agents in a 10-agent society

Theorem 2 With probability 1, learn_ trust

eventually drops all agents.
PROOF. The proof depends on the fact that

there is a fixed encounter sequence v k that will

cause agent k to be dropped whenever it appears in

the simulation. Let
1

t = ^— log
2 (1 — adirect)^	

(14)

Let o i , k =(i,k,bad)`, that is, t copies of the triple

(i,k, bad). Let o=v l , k , ••• , 6k-1,kOk+1 ,k, •'•,Q,,.k
Thus, for each agent i^k,vk contains t consecutive

bad encounters of i with k.
We must show that agent k is dropped after



80	 Wuhan University Journal of Natural Sciences
	

Vol. 6

executing ok , no matter what the state of the soci-

ety when ak begins. We must also show that ak has

a fixed positive probability of occurring during the

next I vk I steps of the simulation.

The fact that agent i distrusts k by the end of
ck follows from the facts that O,,k <1 at the begin-

ning of vk , and (1 — edirect) t <0. 5. Suppose to the
contrary that agent i does not distrust It during rk.

Then 0 = ,k>0. S throughout 6k , which means that i

accepts all t invitations to encounters with k. But
since the character of each such encounter is bad,

0; , k is reduced by a factor of (1— adirect) after each.

If 0 k denotes agent i's opinion at the start of ak

and 0;`k is its opinion at the end, we have

0r tk = ( 1 —' adirect) t0 k < 0.5 (15 )
Contradicting the assumption that i doesn't

distrust k. This proof relies on the fact that agent i
never receives any indirect information about It
during vk , which is true since agent i has no en-

counters with agents other than It during ak.

We now analyze the probability of the next I ak

encounters being exactly those in ak . The probabil-

ity is 1 /(n(n -1))>0 that the next invitation to an
encounter will be between agents i and k, with i

active and It passive. Given that it is, if the invita-
tion is accepted, the probability is (1 —rk)>0 that

the outcome will be bad. Hence, the probability
that the next encounter is consistent with ak is at

least.
1 — rk

n(n — 1) 0 (16)

Since I ak I =t (n-1) , the probability of Qk is at

least

Fk= ( 1 — rk )t(n-1) >0	 (17)
n(n — 1)

We now divide the simulation steps into

blocks of length I ak 1. With probability Ek , the j th

block is equal to ak, in which case agent It is
dropped. Once dropped, it remains dropped forev-
er after, as has been previously observed. Since v k

has positive probability, the probability is 1 that ak

eventually occurs and It is eventually dropped. In
fact, the expected number of blocks until It is
dropped is 1 /Ek.

To complete the proof, observe that the above
argument applies equally to all agents k. Since
each It is eventually dropped with probability 1, all

agents are eventually dropped with probability 1.
The expected number of blocks before all agents

are dropped is thus at most 7 k l/Ek .

Note that when all but one agent have been
dropped, the remaining agent is paranoid, and
when it is finally dropped, then all agents are para-
noid. By Theorem 2, all agents are eventually
dropped, establishing:

Corollary 1 With probability 1, all agents
eventually become paranoid in learn_trust.

In contrast to Observation 2, Corollary 1
shows that all agents in learn_trust do eventually

become paranoid, but only after a very long time.
Theorem 2 and its corollary show that in the

long run, learn_trust actually does very poorly.

Its performance deteriorates until eventually agents
cease playing altogether, effectively reverting to
the play_never strategy. This stands in sharp con-

trast to Observation 1, which shows that learn_

trust does well for a very long time. Intuitively,
there are two processes at work: Agents learn
pretty quickly who the good and bad agents are,
after which their play is close to optimal. Howev-
er, in parallel with this, there is a random process
that produces a false negative in regard to the relia-
bility of the agents. With probability 1, a good a-
gent will eventually behave badly enough for long
enough to make the society believe it is bad. Un-
fortunately, a false negative results in permanent
dropping of an agent, so once a good agent is
dropped, the mistake is never henceforth correct-
ed .

One way to control the effects of the random
dropping process is to lengthen the period of bad
behavior needed to establish a false negative. A
possible way to accomplish this might be by adjust-
ing the values of the decay parameters in order to
lengthen the time that agents retain old memories.
The further the memory stretches into the past,
the greater the number of past good encounters re-
membered about a good agent, which in turn dic-
tates a longer period of future bad encounters need-
ed for the agent to be perceived as bad. However,
if the agents base their decisions to participate in

Q1 False positives are also inevitable, a bed agent will eventu-
ally behave well for long enough to be perceived as good. However,
this will only be a temporary belief, in contrast to the permanent
dropping of a good agent caused by a false negative.
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encounters on longer memories, not only will the
rate of dropping good agents decrease, but so will
the rate of learning, since more encounters will be
required for a bad agent to be identified as such.
One of our future research directions is to investi-
gate the tradeoff between the rate of learning and
the rate of dropping good agents, as well as to cali-
brate the decay parameters in order to achieve the
best possible performance for learn_trust for a giv-
en number of encounter opportunities.

5 Asymptotically Good Agents

An obvious question in light of Theorem 2 is
whether learn_trust can be modified so as to per-
form better than play_always in the long run, or

for that matter, whether there is any algorithm at
all that has positive expected payoff per invitation
in the limit.

We suggest three possibilities for avoiding the
consequences of Theorem 2. The first is a birth/
death model. Assume from time to time that a-
gents die and are replaced by new agents whose
memories are in the initial state for the algorithm.
This is of course equivalent to simply resetting an
agent's memory from time to time to the initial
state. This clearly prevents agents from being
permanently dropped, since a newly-born agent is
always willing to accept an invitation to partici-
pate. On the other hand, every time an experi-
enced agent that has accurate opinions about the
other agents dies, it is replaced by a new agent
that will do less well for a while until it learns
through experience and gossip whom to trust. So
there is a tradeoff here between the advantage of e-
liminating agents who distrust good agents and the
disadvantage of losing valuable knowledge about
which agents are bad.

Another possibility for circumventing Theo-
rem 2 is to consider agent algorithms that are al-
lowed to whitelist other agents. Once agent i
whitelists agent k, it forever after accepts all invi-
tations to participate with k. If all agents are even-
tually whitelisted or blacklisted, and if the average
reliability value of the whitelisted agents is asymp-
totically positive, the asymptotic earnings per invi-
tation to encounter will be positive rather than 0.

A third possibility for getting around Theorem

2 is to look for algorithms in which the probability
of eventually dropping good agents is less than 1.
This can occur for agent algorithms that make it
harder and harder to drop agents as time progress-
es, so that an encounter sequence that causes ev-
eryone to distrust agent k if it occurs at step t will
not necessarily have that effect if it occurs later
than t. Depending on the details, the probability of
eventually dropping k could be bounded by any-
thing between 0 and 1.

We plan to explore these ideas in future work.
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