
Wuhan University Journal of Natural Sciences Vol. 6 No. 1-2 2001,012^ 024

Article ID : 1007-1202(2001)01-0012-13

The New Methodology

Martin Fowler
651 W Washington Blvd,Suite 500,Chicago,IL 60661, USA

Abstract :In the past few years there's been a rapidly growing interest in "lightweight" methodologies. Al-
ternatively characterized as an antidote to bureaucracy or a license to hack they've stirred up interest all over
the software landscape. In this essay I explore the reasons for lightweight methods, focusing not so much on
their weight but on their adaptive nature and their people-first orientation. I also give a summary and refer-
ences to the processes in this school and consider the factors that should influence your choice of whether to
go down this newly trodden path.

Key words lightweight method; people-first orietation

CLC number: TP 311.5

1 From Nothing, to Heavy, to Light

Most software development is a chaotic activi-

ty, often characterized by the phrase "code and

fix". The software is written without much of an

underlying plan, and the design of the system is
cobbled together from many short term decisions.

This actually works pretty well as the system is

small, but as the system grows it becomes increas-

ingly difficult to add new features to the system.

Furthermore bugs become increasingly prevalent

and increasingly difficult to fix. A typical sign of

such a system is a long test phase after the system

is "feature complete". Such a long test phase plays

havoc with schedules as testing and debugging is

impossible to schedule.

We've lived with this style of development for

a long time, but we've also had an alternative for a

long time: methodology. Methodologies impose a

disciplined process upon software development

with the aim of making software development more

predictable and more efficient. They do this by de-

veloping a detailed process with a strong emphasis

on planning inspired by other engineering disci-

plines.

These methodologies have been around for a

long time. They've not been noticeable for being

terribly successful. They are even less noted for

being popular. The most frequent criticism of

these methodologies is that they are bureaucratic.

There's so much stuff to do to follow the method-

ology that the whole pace of development slows

down. Hence they are often referred to as heavy

methodologies, or to use Jim Highsmith's term :

monumental methodologies.

As a reaction to these methodologies, a new

group of methodologies have appeared in the last

few years. Although there's no official name for

them, they are often referred to as light method-

ologies - signaling a clear reaction to the heavy-

weight methodologies. For many people the appeal

of these lightweight methodologies is their reaction

to the bureaucracy of the heavy weight methodolo-

gies. These new methods attempt a useful compro-

mise between no process and too much process,

providing just enough process to gain a reasonable

payoff.
The result of all of this is that lightweight

methods have some significant changes in emphasis

from heavyweight methods. The most immediate

difference is that they are less document-oriented,

usually emphasizing a smaller amount of documen-

tation for a given task. In many ways they are

Received date: 2000-12-10
Biography: Martin Fowler(1963-) ,male ,Professor, research direction ; software engineering. E-mail ; fowler@acm. org.

No. 1-2	 Martin Fowler: The New Methodology 	 13

rather code-oriented: following a route that says
that the key part of documentation is source code.

However I don't think this is the key point
about lightweight methods. Lack of documentation
is a symptom of two much deeper differences:

• Light methods are adaptive rather than pre-
dictive.

Heavy methods tend to try to plan out a large
part of the software process in great detail for a
long span of time, this works well until things
change. So their nature is to resist change. The
light methods, however, welcome change. They
try to be processes that adapt and thrive on
change, even to the point of changing themselves.

• Light methods are people-oriented rather
than process-oriented.

They explicitly make a point of trying to work
with peoples' nature rather than against them and
to emphasize that software development should be
an enjoyable activity.

In the following sections I'll explore these dif-
ferences in more detail, so that you can understand
what an adaptive and people-centered process is
like, it's benefits and drawbacks, and whether it's
something you should use: either as a developer or
customer of software.

2 Predictive versus Adaptive

2. 1 Separation of Design and Construction
The usual inspiration for methodologies is en-

gineering disciplines such as civil or mechanical en-
gineering. Such disciplines put a lot of emphasis on
planning before you build. Such engineers will
work on a series of drawings that precisely indicate
what needs to be built and how these things need
to be put together. Many design decisions, such as
how to deal with the load on a bridge, are made as
the drawings are produced. The drawings are then
handed over to a different group, often a different
company, to be built. It's assumed that the con-
struction process will follow the drawings. In prac-
tice the constructors will run into some problems,
but these are usually small.

Since the drawings specify the pieces and how
they need to be put together, they act as the foun-
dation for a detailed construction plan. Such a plan
can figure out the tasks that need to be done and

what dependencies exist between these tasks. This
allows for a reasonably predictable schedule and
budget for construction. It also says in detail how
the people doing the construction work should do
their work. This allows the construction to be less
skilled intellectually, although they are often very
skilled manually.

So what we see here are two fundamentally
different activities. Design which is difficult to pre-
dict and requires expensive and creative people,
and construction which is easier to predict. Once
we have the design, we can plan the construction.
Once we have the plan for the construction, we can
then deal with construction in a much more pre-
dictable way. In civil engineering construction is
much bigger in both cost and time than design and
planning.

So the approach for many methodologies looks
like this: we want a predictable schedule that can
use people with lower skills. To do this we must
separate design from construction. Therefore we
need to figure out how to do the design for soft-
ware so that the construction can be straightfor-
ward once the planning is done.

So what form does this plan take? For many,
this is the role of design notations such as the
UML. If we can make all the significant decisions
using the UML, we can build a construction plan
and then hand these designs off to coders as a con-
struction activity.

But here lies crucial questions. Can you get a
design that is capable of turning the coding into a
construction activity? And if so, is construction
sufficiently larger in cost and time to make this ap-
proach worthwhile?

All of this brings a few questions to mind.
The first is the matter of how difficult it is to get a
UML-like design into a state that it can be handed
over to programmers. The problem with a UML-
like design is that it can look very good on paper,
yet be seriously flawed when you actually have to
program the thing. The models that civil engineers
use are based on many years of practice that are
enshrined in engineering codes. Furthermore the
key issues, such as the way forces play in the de-
sign, are amenable to mathematical analysis. The
only checking we can do of UML-like diagrams is
peer review. While this is helpful it leads to errors

14	 Wuhan University Journal of Natural Sciences
	

Vol. 5

in the design that are often only uncovered during
coding and testing. Even skilled designers, such as
I consider myself to be, are often surprised when
we turn such a design into software.

Another issue is that of comparative cost.
When you build a bridge, the cost of the design ef-
fort is about 10 ° o of the job, with the rest being
construction. In software the amount of time spent
in coding is much, much less (McConnell suggests
that for a large project, only 15 ° 0 of the project is
code and unit test, an almost perfect reversal of
the bridge building ratios. Even if you lump in all
testing as part of construction, then design is still
50% of the work.) This raises an important ques-
tion about the nature of design in software com-
pared to its role in other branches of engineering.

These kinds of questions led Jack Reeves to
suggest that in fact the source code is a design doc-
ument and that the construction phase is actually
the use of the compiler and linker. Indeed anything
that you can treat as construction can and should
be automated.

This thinking leads to some important conclu-
sions:

• In software : construction is so cheap as to
be free

• In software all the effort is design, and
thus requires creative and talented people

• Creative processes are not easily planned,
and so predictability may well be an impossible tar-
get.

• We should be very wary of the traditional
engineering metaphor for building software. It's a
different kind of activity and requires a different
process

2.2 The Unpredictability of Requirements
There's a refrain I've heard on every problem

project I've run into. The developers come to me
and say "the problem with this project is that the
requirements are always changing". The thing I
find surprising about this situation is that anyone
is surprised by it. In building business software re-
quirements changes are the norm, the question is
what we do about it.

One route is to treat changing requirements as
the result of poor requirements engineering. The
idea behind requirements engineering is to get a
fully understood picture of the requirements before

you begin building the software, get a customer
sign-off to these requirements, and then set up
procedures that limit requirements changes after
the sign-off.

One problem with this is that just trying to
understand the options for requirements is tough.
It's even tougher because the development organi-
zation usually doesn't provide cost information on
the requirements. You end up being in the situa-
tion where you may have some desire for a sun roof
on your car, but the salesman can't tell you if it
adds $10 to the cost of the car, or $ 10, 000.
Without much idea of the cost, how can you figure
out whether you want to pay for that sunroof?

Estimation is hard for many reasons. Part of
it is that software development is a design activity,
and thus hard to plan and cost. Part of it is that
the basic materials keep changing rapidly. Part of
it is that so much depends on which individual peo-
ple are involved, and individuals are hard to predict
and quantify.

Software's intangible nature also cuts in. It's
very difficult to see what value a software feature
has until you use it for real. Only when you use an
early version of some software do you really begin
to understand what features are valuable and what
parts are not.

This leads to the ironic point that people ex-
pect that requirements should be changeable. After
all software is supposed to be soft. So not just are
requirements changeable, they ought to be change-
able. It takes a lot of energy to get customers of
software to fix requirements. It's even worse if
they've ever dabbled in software development
themselves, because then they "know" that soft-
ware is easy to change.

But even if you could settle all that and really
could get an accurate and stable set of require-
ments you're probably still doomed. In today's e-
conomy the fundamental business forces are chang-
ing the value of software features too rapidly.
What might be a good set of requirements now, is
not a good set in six months time. Even if the cus-
tomers can fix their requirements, the business
world isn't going to stop for them. And many
changes in the business world are completely un-
predictable: anyone who says otherwise is either
lying, or has made a billion on stock market trad-

No. 1-2	 Martin Fowler : The New Methodology	 15

ing.
Everything else in software development de-

pends on the requirements. If you cannot get sta-
ble requirements you cannot get a predictable plan.
2.3 Is Predictability Impossible?

In general, no. There are some software de-
velopments where predictability is possible. Orga-
nizations such as NASA's space shuttle software
group are a prime example of where software de-
velopment can be predictable. It requires a lot of
ceremony, plenty of time, a large team, and stable
requirements. There are projects out there that are
space shuttles. However I don't think much busi-
ness software fits into that category. For this you
need a different kind of process.

One of the big dangers is to pretend that you
can follow a predictable process when you can't.
People who work on methodology are not very
good at identifying boundary conditions: the places
where the methodology passes from appropriate in
inappropriate. Most methodologists want their
methodologies to be usable by everyone, so they
don't understand nor publicize their boundary con-
ditions. This leads to people using a methodology
in the wrong circumstances, such as using a pre-
dictable methodology in a unpredictable situation.

There's a strong temptation to do that. Pre-
dictability is a very desirable property. However if
you believe you can be predictable when you can't,
it leads to situations where people build a plan ear-
ly on, then don't properly handle the situation
where the plan falls apart. You see the plan and
reality slowly drifting apart. For a long time you
can pretend that the plan is still valid. But at some
point the drift becomes too much and the plan falls
apart. Usually the fall is painful.

So if you are in a situation that isn't pre-
dictable you can't use a predictive methodology.
That's a hard blow. It means that many of the
models for controlling projects, many of the mod-
els for the whole customer relationship, just aren't
true any more. The benefits of predictability are so
great, it's difficult to let them go. Like so many
problems the hardest part is simply realizing that
the problem exists.

However letting go of predictability doesn't
mean you have to revert to uncontrollable chaos.
Instead you need a process that can give you con-

trol over an unpredictability. That's what adaptivi-
ty is all about.
2.4 Controlling an Unpredictable Process

So how do we control ourselves in an unpre-
dictable world? The most important, and still diffi-
cult part is to know accurately where we are. We
need an honest feedback mechanism which can ac-
curately tell us what the situation is at frequent in-
tervals.

The key to this feedback is iterative develop-
ment. This is not a new idea. Iterative develop-
ment has been around for a while under many
names : incremental, evolutionary, staged, spiral
.•• lots of names. The key to iterative development
is to frequently produce working versions of the fi-
nal system that have a subset of the required fea-
tures. These working systems are short on func-
tionality, but should otherwise be faithful to the
demands of the final system. They should be fully
integrated and as carefully tested as a final deliv-
ery.

The point of this is that there is nothing like a
tested, integrated system for bringing a forceful
dose of reality into any project. Documents can
hide all sorts of flaws. Untested code can hide
plenty of flaws. But when people actually sit in
front of a system and work with it, then flaws be-
come truly apparent: both in terms of bugs and in
terms of misunderstood requirements.

Iterative development makes sense in pre-
dictable processes as well. But it is essential in
adaptive processes because an adaptive process
needs to be able to deal with changes in required
features. This leads to a style of planning where
long term plans are very fluid, and the only stable
plans are short term plans that are made for a sin-
gle iteration. Iterative development gives you a
firm foundation in each iteration that you can base
your later plans around.

A key question for this is how long an itera-
tion should be. Different people give different an-
swers. XP suggests iterations of between one and
three weeks. SCRUM suggests a length of a
month. Crystal will stretch further. The tenden-
cy, however, is to make each iteration as short as
you can get away with. This provides more fre-
quent feedback, so you know where you are more
often.

16	 Wuhan University Journal of Natural Sciences
	

Vol. 6

2.5 The Adaptive Customer
This kind of adaptive process requires a differ-

ent kind of relationship with a customer than the

ones that are often considered, particularly when

development is done by a separate firm. When you

hire a separate firm to do software development,

most customers would prefer a fixed-price con-

tract. Tell the developers what they want, ask for

bids, accept a bid, and then the onus is on the de-

velopment organization to build the software.

A fixed price contract requires stable require-

ments and hence a predictive process. Adaptive

processes and unstable requirements imply you

cannot work with the usual notion of fixed-price.

Trying to fit a fixed price model to an adaptive pro-

cess ends up in a very painful explosion. The nasty

part of this explosion is that the customer gets hurt

every bit as much as the software development

company. After all the customer wouldn't be

wanting some software unless their business need-
ed it. If they don't get it their business suffers. So

even if they pay the development company noth-

ing, they still lose. Indeed they lose more than

they would pay for the software (why would they

pay for the software if the business value of that

software were less?)

So there's dangers for both sides in signing a

fixed price contract in conditions where a predictive

process cannot be used. This means that the cus-

tomer has to work differently.
In an adaptive process the customer has much

finer-grained control over the software develop-

ment process. At every iteration they get both to

check progress and to alter the direction of the

software development. This leads to much closer

relationship with the software developers, a true

business partnership. This level of engagement is

not for every customer organization, nor for every

software developer; but it's essential to make an

adaptive process work properly.

The key benefit for the customer is a much

more responsive software development. A usable,

although minimal, system can go into production

early on. The customer can then change its capa-

bilities according to changes in the business, and

also from learning from how the system is used in

reality.

3 Putting People First

Executing an adaptive process is not easy. In

particular it requires a very effective team of devel-

opers. The team needs to be effective both in the

quality of the individuals, and in the way the team

blends together. There's also an interesting syner-

gy: not just does adaptivity require a strong team,

most good developers prefer an adaptive process.

3. 1 Plug Compatible Programming Units
One of the aims of traditional methodologies is

to develop a process where the people involved are

replaceable parts. With such a process you can
treat people as resources who are available in vari-

ous types. You have an analyst, some coders,

some testers, a manager. The individuals aren't so

important, only the roles are important. That way

if you plan a project it doesn't matter which ana-

lyst and which testers you get, just that you know

how many you have so you know how the number
of resources affects your plan.

But this raises a key question: are the people

involved in software development replaceable

parts? One of the key features of lightweight meth-
ods is that they reject this assumption.

Perhaps the most explicit rejection of people

as resources is Alistair Cockburn. In his paper

Characterizing People as Non-Linear, First-Order

Components in Software Development, he makes

the point that predictable processes require compo-

nents that behave in a predictable way. However

people are not predictable components. Further-

more his studies of software projects have led him

to conclude the people are the most important fac-

tor in software development.
In the title, [of his article] I refer to people as

"components". That is how people are treated in

the process / methodology design literature. The

mistake in this approach is that "people" are highly

variable and non-linear, with unique success and

failure modes. Those factors are first-order, not

negligible factors. Failure of process and method-

ology designers to account for them contributes to

the sorts of unplanned project trajectories we so of-

ten see.
[Cockburn, non-linear]

Although Cockburn is the most explicit in his

No. 1-2	 Martin Fowler : The New Methodology 	 17

people-centric view of software development, the
notion of people first is a common theme with
many thinkers in software. The problem, too of-
ten, is that methodology has been opposed to the
notion of people as the first-order factor in project
success.

This creates a strong positive feedback effect.
If you expect all your developers to be plug com-
patible programming units, you don't try to treat
them as individuals. This lowers morale (and pro-
ductivity). The good people look for a better place
to be, and you end up with what you desire : plug
compatible programming units.

Deciding that people come first is a big deci-
sion, one that requires a lot of determination to
push through. The notion of people as resources is
deeply ingrained in business thinking, it's roots
going back to the impact of Frederick Taylor's Sci-
entific Management approach. In running a facto-
ry, this Taylorist approach makes sense. But for
the highly creative and professional work, which I
believe software development to be, this does not
hold. (And in fact modern manufacturing is also
moving away from the Taylorist model.)
3.2 Programmers are Responsible Professionals

A key part of the Taylorist notion is that the
people doing the work are not the people who can
best figure out how best to do that work. In a fac-
tory this may be true for several reasons. Part of
this is that many factory workers are not the most
intelligent or creative people, in part this is be-
cause there is a tension between management and
workers in that management makes more money
when the workers make less.

Recent history increasingly shows us how un-
true this is for software development. Increasingly
bright and capable people are attracted to software
development, attracted by both its glitz and by po-
tentially large rewards. (Both of which tempted
me away from electronic engineering.) Such
schemes as stock options increasingly align the
programmers interests with the company's.

(There may well be a generational effect here.
Some anecdotal evidence makes me wonder if more
brighter people have ventured into software engi-
neering in the last ten years or so. If so this would
be a reason for why there is such a cult of youth in
the computer business, like most cults there needs

to be a grain of truth in it.)
When you want to hire and retain good peo-

ple, you have to recognize that they are competent
professionals. As such they are the best people to
decide how to conduct their technical work. The
Taylorist notion of a separate planning department
that decides how to do things only works if the
planners understand how to do the job better than
those doing it. If you have bright, motivated peo-
ple doing the job then this does not hold.
3.3 Managing a People Oriented Process

People orientation manifests itself in a number
of different ways in lightweight processes. It leads
to different effects, not all of them are consistent.

One of the key elements is that of accepting
the process rather the imposition of a process. Of-
ten software processes are imposed by management
figures. As such they are often resisted, particu-
larly when the management figures have had a sig-
nificant amount of time away from active develop-
ment. Accepting a process requires commitment,
and as such needs the active involvement of all the
team.

This ends up with the interesting result that
only the developers themselves can choose to fol-
low an adaptive process. This is particularly true
for XP, which requires a lot of discipline to exe-
cute. This is where Crystal is such an effective
complement as it aims at being minimally disci-
plined.

Another point is that the developers must be
able to make all technical decisions. XP gets to the
heart of this where in its planning process it states
that only developers may make estimates on how
much time it will take to do some work.

Such technical leadership is a big shift for
many people in management positions. Such an ap-
proach requires a sharing of responsibility where
developers and management have an equal place in
the leadership of the project. Notice that I say
equal. Management still plays a role, but recog-
nizes the expertise of developers.

An important reason for this is the rate of
change of technology in our industry. After a few
years technical knowledge becomes obsolete. This
half life of technical skills is without parallel in any
other industry. Even technical people have to rec-
ognize that entering management means their tech-

18	 Wuhan University Journal of Natural Sciences
	

Vol. 6

nical skills will wither rapidly. Ex-developers need
to recognize that their technical skills will rapidly
disappear and they need to trust and rely on cur-
rent developers.
3.4 The Role of Business Leadership

But the technical people cannot do the whole
process themselves. They need guidance on the
business needs. This leads to another important
aspect of adaptive processes : they need very close
contact with business expertise.

This goes beyond most projects involvement
of the business role. Lightweight teams cannot ex-
ist with occasional communication . They need
continuous access to business expertise. Further-
more this access is not something that is handled at
a management level, it is something that is present
for every developer. Since developers are capable
professionals in their own discipline, they need to
be able to work as equals with other professionals
in other disciplines.

A large part of this, of course, is due to the
nature of adaptive development. Since the whole
premise of adaptive development is that things
change quickly, you need constant contact to ad-
vise everybody of the changes.

There is nothing more frustrating to a devel-
oper than seeing their hard work go to waste. So
it's important to ensure that there is good quality
business expertise that is both available to the de-
veloper and is of sufficient quality that the develop-
er can trust them.

4 The Self-Adaptive Process

So far I've talked about adaptivity in the con-
text of a project adapting its software frequently to
meet the changing requirements of its customers.
However there's another angle to adaptivity: that
of the process changing over time. A project that
begins using an adaptive process won't have the
same process a year later. Over time, the team will
find what works for them, and alter the process to
fit.

The first part of self-adaptivity is regular re-
views of the process. Usually you do these with
every iteration. At the end of each iteration, have
a short meeting and ask yourself the following
questions (culled from Norm Kerth)

What did we do well?
What have we learned?
What can we do better?
What puzzles us?
These questions will lead you to ideas to

change the process for the next iteration. In this
way a process that starts off with problems can im-
prove as the project goes on, adapting better to the
team that uses it.

If self-adaptivity occurs within a project, it's
even more marked across an organization. To
deepen the process of self-adaptivity I suggest
teams do a more formal review and major project
milestones following the project retrospective ses-
sions outlined by Norm Kerth. These retrospec-
tives involve a 2 - 3 day offsite meeting and a
trained facilitator. Not only do they provide learn-
ing for the team, they also provide learning for the
whole organization.

A consequence of self-adaptivity is that you
should never expect to find a single corporate
methodology. Instead each team should not just
choose their own process, but should also actively
tune their process as they proceed with the project.
While both published processes and the experience
of other projects can act as an inspiration and a
baseline, the developers professional responsibility
is to adapt the process to the task at hand.

This self-adaptivity is most marked in ASD
and Crystal. XP's rigid rules seem to disallow it,
but that is only a surface impression since XP does
encourage people to tune the process. The main
difference with XP is that its advocates suggest do-
ing XP by the book for several iterations before
adapting it. In addition reviews are neither empha-
sized, nor part of the process, although there are
suggestions that reviews should be made one of the
XP practices.

5 The Methodologies

Several methodologies fit under this
lightweight banner. While all of them share many
characteristics, there are also some significant dif-
ferences. I can't highlight all the points in this
brief survey, but at least I can point you to some
places to look.

I also can't speak with significant experience

No. 1-2	 Martin Fowler: The New Methodology	 19

about most of these. I've done quite a lot of work
based on XP ,and seen RUP around in many guis-
es, but with most of the others my knowledge is
primarily the less adequate book knowledge.

5. 1 XP (Extreme Programming)
Of all the lightweight methodologies, this is

the one that has got the most attention. Partly this
is because of the remarkable ability of the leaders
of XP, in particular Kent Beck, to get attention.
It's also because of the ability of Kent Beck to at-
tract people to the approach, and to take a leading
role in it. In some ways, however, the popularity
of XP has become a problem, as it has rather
crowded out the other methodologies and their
valuable ideas.

The roots of XP lie in the Smalltalk communi-
ty, and in particular the close collaboration of Kent
Beck and Ward Cunningham in the late 1980's.
Both of them refined their practices on numerous
projects during the early 90's, extending their
ideas of a software development approach that was
both adaptive and people-oriented.

The crucial step from informal practice to a
methodology occurred in the spring of 1996. Kent
was asked to review the progress of a payroll pro-
ject for Chrysler. The project was being carried
out in Smalltalk by a contracting company, and
was in trouble. Due to the low quality of the code
base, Kent recommended throwing out the entire
code base and starting from scratch his leadership.
The result was the Chrysler C3 project (Chrysler
Comprehensive Compensation) which since became
the early flagship and training ground for XP.

The first phase of C3 went live in early 1997.
The project continued since and ran into difficulties
later, which resulted in the canceling of further de-
velopment in 1999. As I write this, it still pays the
original 10,000 salaried employees.

XP begins with four values : Communication,
Feedback, Simplicity, and Courage. It then builds
up to a dozen practices which XP projects should
follow. Many of these practices are old, tried and
tested techniques, yet often forgotten by many, in-
cluding most planned processes. As well as resur-
recting these techniques, XP weaves them into a
synergistic whole where each one is reinforced by
the others.

One of the most striking, as well as initially

appealing to me, is its strong emphasis on testing.
While all processes mention testing, most do so
with a pretty low emphasis. However XP puts
testing at the foundation of development, with ev-
ery programmer writing tests as they write their
production code. The tests are integrated into a
continuous integration and build process which
yields a highly stable platform for future develop-
ment.

On this platform XP builds an evolutionary
design process that relies on refactoring a simple
base system with every iteration. All design is cen-
tered around the current iteration with no design
done for anticipated future needs. The result is a
design process that is disciplined, yet startling,
combining discipline with adaptivity in a way that
arguably makes it the most well developed of all
the adaptive methodologies.

XP has developed a wide leadership, many of
them springing from the seminal C3 project. As a
result there's a lot of sources for more informa-
tion. The best summary at the moment is written
by an outsider, Jim Highsmith, whose own
methodology I'll cover later. Kent Beck wrote Ex-
treme Programming Explained the key manifesto of
XP, which explains the rationale behind the
methodology and enough of an explanation of it to
tell folks if they are interested in pursuing it fur-
ther.

Two further books have recently appeared.
Three members of the C3 project: Ron Jeffries,
Ann Anderson, and Chet Hendrickson wrote Ex-
treme Programming Installed, an explanation of
XP based on the C3 experience. Kent Beck and I
wrote Planning Extreme Programming, which dis-
cusses how you do planning in this adaptive man-

ner.
As well as books, there are a fair number of

web resources. Much of the early advocacy and de-
velopment of the XP ideas occurred on Ward
Cunningham's wiki web collaborative writing envi-
ronment. The wiki remains a fascinating place to
discover, although its rambling nature does lead
you into being sucked in. To find a more struc-
tured approach to XP, it's best to start with two
sites from C3 alumni: Ron Jeffries's xProgram-
ming. com and Don Wells's extremeProgramming.
org. Bill Wake's xPlorations contains a slew of

20	 Wuhan University Journal of Natural Sciences
	

Vol. 6

useful papers. Robert Martin, the well known au-
thor on C + + and 00 design has also joined the
list of XP promoters. His company, ObjectMen-
tor, has a number of papers on its web site, in-
cluding an XP instance of RUP called dX. They al-
so sponsor the xp discussion egroup.
5.2 Cockburn's Crystal Family

Alistair Cockburn has been working on
methodology ever since he was tasked by IBM to
write about methodology in the early 90's. His ap-
proach is unlike most methodologists, however.
Instead of building on solely personal experience to
build a theory of how things should be done, he
supplements his direct experience with actively
seeking to interview projects to see how they
work. Furthermore he isn't afraid to alter his
views based on his discoveries: all of which make
him my favorite methodologist.

His book, Surviving Object-Oriented Pro-
jects, was his first piece of advice on running pro-
jects, and remains my number one book recom-
mendation for running iterative projects.

Since that book he's explored light methods
further, coming up with the Crystal family of
methodologies. It's a family because he believes
that different kinds of projects require different
kinds of methodologies. He looks into this varia-
tion along two axes: the number of people in the
project, and the consequences of errors. Each
methodology fits into a different part of the grid,
so a 40 person project that can lose discretionary
money has a different methodology than a six per-
son life-critical project.

The Crystals share a human orientation with
XP, but this people-centeredness is done in a dif-
ferent way. Alistair considers that people find it
hard to follow a disciplined process, thus rather
than follow XP's high discipline, Alistair explores
the least disciplined methodology that could still
succeed, consciously trading off productivity for
ease of execution. He thus considers that although
Crystal is less productive than XP, more people
will be able to follow it.

Alistair also puts a lot of weight in end of iter-
ation reviews, thus encouraging the process to be
self-improving. His assertion is that iterative de-
velopment is there to find problems early, and then
to enable people to correct them. This places more

emphasis on people monitoring their process and
tuning it as they develop.
5.3 Open Source

You may be surprised by this heading. After
all open source is a style of software, not so much
a process. However there is a definite way of doing
things in the open source community, and much of
their approach is as applicable to closed source pro-
jects as it is to open source. In particular their pro-
cess is geared to physically distributed teams,
which is important because most adaptive process-
es stress co-located teams.

Most open source projects have one or more
maintainers. A maintainer is the only person who
is allowed to commit a change into the source code
repository. However people other than the main-
tainer may make changes to the code base. The
key difference is that other folks need to send their
change to the maintainer, who then reviews it and
applies it to the code base. Usually these changes
are made in the form of patch files which make this
process easier. The maintainer thus is responsible
for coordinating the patches and maintaining the
design cohesion of the software.

Different projects handle the maintainer role
in different ways. Some have one maintainer for
the whole project, some divide into modules and
have a maintainer per module, some rotate the
maintainer, some have multiple maintainers on the
same code, others have a combination of these
ideas. Most open source folks are part time, so
there is an issue on how well such a team coordi-
nates for a full time project.

A particular feature of open source develop-
ment is that debugging is highly parallelizable. So
many people can be involved in debugging. When
they find a bug they can send the patch to the
maintainer. This is a good role for non-maintainers
since most of the time is spent finding the bug. It's
also good for folks without strong design skills.

The process for open-source isn't well written
up as yet. The most famous paper is Eric
Raymond's The Cathedral and the Bazar, which
while an excellent description is also rather brief.
Klaus Fogel's book on the CVS code repository al-
so contains several good chapters on open-source
process that would be interesting even to those
who never want to do CVS update.

No. 1-2	 Martin Fowler: The New Methodology 	 21

5.4 Highsmith's Adaptive Software Development
Jim Highsmith has spent many years working

with predictive methodologies. He developed
them, installed them, taught them, and has con-
cluded that they are profoundly flawed: particular-
ly for modern businesses.

His recent book focuses on the adaptive nature
of new methodologies, with a particular emphasis
on applying ideas that originate in the world of
complex adaptive systems (commonly referred to
as chaos theory.) It doesn't provide the kind of de-
tailed practices like the XP work does, but it does
provide the fundamental groundwork for why
adaptive development is important and the conse-
quences at the deeper organizational and manage-
ment levels.

At the heart of ASD are three non-linear,
overlapping phases: speculation, collaboration,
and learning.

Highsmith views planning as a paradox in an
adaptive environment, since outcomes are natural-
ly unpredictable. In traditional planning, devia-
tions from plans are mistakes that should be cor-
rected. In an adaptive environment, however, de-
viations guide us towards the correct solution.

In this unpredictable environment you need
people to collaborate in a rich way in order to deal
with the uncertainty. Management attention is less
about telling people what to do, and more about
encouraging communication so that people can
come up with creative answers themselves.

In predictive environments, learning is often
discouraged. You lay out things in advance and
then follow that design.

In an adaptive environment, learning chal-
lenges all stakeholders - developers and their cus-
tomers - to examine their assumptions and to use
the results of each development cycle to adapt the
next.
—[Highsmith]

As such learning is a continuous and impor-
tant feature, one that assumes that plans and de-
signs must change as development proceeds.

The overriding, powerful, indivisible, pre-
dominant benefit of the Adaptive Development Life
Cycle is that it forces us to confront the mental
models that are at the root of our self-delusion. It
forces us to more realistically estimate our ability.

—[Highsmith]
With this emphasis, Highsmith's work focus-

es directly on to foster the hard parts of adaptive
development, in particular how to foster collabora-
tion and learning within the project. As such his
book helps provide ideas to foster these "soft" ar-
eas which makes a nice complement to the ground-
ed practice based approaches such as XP, FDD,
and SCRUM.
5.5 SCRUM

SCRUM has been around for a while in object-
oriented circles, although I'll confess I'm not too
au fait with its history or development. Again it
focuses on the fact that defined and repeatable pro-
cesses only work for tackling defined and repeat-
able problems with defined and repeatable people
in defined and repeatable environments.

SCRUM divides a project into iterations
(which they call sprints) of 30 days. Before you
begin a sprint you define the functionality required
for that sprint and then leave the team to deliver
it. The point is to stabilize the requirements during
the sprint.

However management does not disengage dur-
ing the sprint. Every day the team holds a short
(fifteen minute) meeting, called a scrum, where
the team runs through what it will do in the next
day. In particular they surface to the management
blocks: impediments to progress that are getting in
the way that management needs to resolve. They
also report on what's been done so management
gets a daily update of where the project is.

SCRUM literature focuses mainly on the itera-
tive planning and tracking process. It's very close
to the other lightweights in many respects and
should work well with the coding practices from
XP.

There isn't any book on SCRUM at the mo-
ment, but there are a number of web resources.
Ken Schwaber hosts controlChaos. corn which is
probably the best overview of SCRUM. Jeff
Sutherland has always has an active web site on
object technology issues and includes a section on
SCRUM. There's also a good overview of SCRUM
practices in the PLoPD 4 book.
5. 6 Coad's Feature Driven Development

Feature Driven Development (FDD) was de-
veloped by Jeff De Luca and long time 00 guru Pe-

22	 Wuhan University Journal of Natural Sciences
	

Vol. 6

ter Coad. Like the other adaptive methodologies,
it focuses on short iterations that deliver tangible
functionality. In FDD's case the iterations are two
weeks long.

FDD has five processes:
• Develop an Overall Model;
• Build a Features List;
• Plan by Feature;
• Design by Feature;
• Build by Feature.
The first three are done at the beginning of

the project.
The last two are done within each iteration.

Each process is broken down into tasks and is giv-
en verification criteria

The developers come in two kinds: class own-
ers and chief programmers. The chief programmer
are the most experienced developers. They are as-
signed features to build. However they don't build
them alone. Instead the chief programmer identi-
fies which classes are involved in implementing the
feature and gathers their class owners together to
form a feature team for developing that feature.
The chief programmer acts as the coordinator, lead
designer, and mentor while the class owners do
much of the coding of the feature.

The main description of FDD is in Peter Coad
et al's UML in Color book. His company, Togeth-
erSoft, also does consulting and training on FDD.
5.7 DSDM (Dynamic System Development
Method)

DSDM started in Britain in 1994 as a consor-
tium of UK companies who wanted to build on the
RAD and iterative development. Starting with 17
founders it now boasts over a thousand members
and has grown outside its British roots. Being de-
veloped by a consortium, it has a different flavor
to many of the other lightweight methods. It has a
full time organization supporting it with manuals,
training courses, accreditation programs, and the
like. It also carries a price tag, which has limited
my investigation of the methodology. However
Jennifer Stapleton has written a book which gives
an overview of the methodology.

Using the method begins with a feasibility and
a business study. The feasibility study considers
whether DSDM is appropriate to the project at
hand. The business study is a short series of work-

shops to understand the business area where the
development takes place. It also comes up with
outline system architectures and project plan.

The rest of the process forms three interwo-
ven cycles : the functional model cycle produces
analysis documentation and prototypes, the design
and build cycle engineers the system for opera-
tional use, and the implementation cycle handles
the deployment to operational use.

DSDM has underlying principles that include
active user interaction, frequent deliveries, em-
powered teams, testing throughout the cycle. Like
other light methods they use short timeboxed cy-
cles of between two and six weeks. There's an em-
phasis on high quality and adaptivity towards
changing requirements.

I haven't seen much evidence of its use outside
the UK, but DSDM is notable for having much of
the infrastructure of more mature traditional
methodologies, while following the principles of
the light methods approach.

There does seem to be an issue as to whether
question on whether it's materials encourage more
of a process-orientation and more ceremony than 1
would like.
5. 8 Is RUP a light method?

Whenever we start discussing methods in the
00 arena, we inevitably come up with the role of
the Rational Unified Process. The Unified Process
was developed by Phillipe Kruchten, Ivar Jacobson
and others at Rational as the process complement
to the UML. RUP is a process framework and as
such can accommodate a wide variety of processes.
Indeed this is my main criticism of RUP - since it
can be anything it ends up being nothing. I prefer a
process that tells you what to do rather than pro-
vide endless options.

As a result of this process framework mentali-
ty, RUP can be used in a very traditional waterfall
style or in an adaptive lightweight manner. So as a
result you can use RUP as a lightweight process,
or as a heavyweight process - it all depends on how
you tailor it in your environment.

Craig Larman is a strong proponent of using
the RUP in a lightweight manner. His excellent in-
troductory book on 00 development contains a
process that's very much based on his light RUP
thinking. His view is that much of the recent push

No. 1-2	 Martin Fowler : The New Methodology 	 23

to lightweight methods is nothing more than ac-
cepting mainstream 00 development that's been
captured as RUP. One of the things that Craig
does is spend the first two or three days of a month
long iteration with the whole team using the UML
to outline the design of the work to be done during
the iteration. This is not a blueprint that can't be
deviated from, but rather a sketch that gives peo-
ple a perspective on how things can be done over

the iteration.
Another tack at light RUP is Robert Martin's

dX process. The dx process is a fully compliant in-
stance of RUP, that just happens to be identical to
XP (turn dX upside down to see the joke). dX is
designed for folks that have to use RUP, but want
to use XP. As such it is both XP and RUP and
thus a good example of the lightweight use of

RUP.
For me, one of the key things that needs to

happen with RUP is that the leaders of RUP in the
industry need to emphasize their approach to soft-
ware development. More than once I have heard
people using RUP who are using a waterfall style
development process. Due to my contacts in the in-
dustry I know that Philippe Kruchtem and his team
are firm believers in iterative development. Clarify-
ing these priciples and encouraging lightweight in-
stances of RUP such as Craig's and Robert's work
will have an important effect.
5.9 Other Sources

There are a number of other papers and dis-
cussions about this theme of light methods. While
these may not be full methodologies, they do offer
insights into this growing field.

The Patterns Language of Programming con-
ferences has often contained material that touches
on this subject, if only because many of the folks
interested in patterns are also interested in more
adaptive and humane methods. A leading early pa-
per was Jim Coplein's paper at PLoPl. Ward
Cunningham's Episodes pattern language appeared
in PLoP2. Jim Coplein now hosts the OrgPatterns
site, a wiki which collects together patterns for or-
ganizational patterns.

Dirk Riehle sent a paper to XP2000 that com-
pares the value systems of XP and Adaptive Soft-
ware Development. The July edition of the Coad
letter compares XP to FDD. The July edition of

IEEE Software includes several articles on "pro-
cess diversity" which touch on these methodolo-
gies.

6 Should you go light?

Using a light method is not for everyone.
There are a number of things to bear in mind if you
decide to follow this path. However I certainly be-
lieve that the these new methodologies are widely
applicable and should be used by more people than
currently consider them.

In today's environment, the most common
methodology is code and fix. Applying more disci-
pline than chaos will almost certainly help, and the
lightweight approach has the advantage that it is
much less of a step than using a heavyweight
method. Here much of the advantage of the
lightweight methods is indeed their weight. Sim-
pler processes are more likely to be followed when
you are used to no process at all.

One of the biggest limitations to these new
methodologies is how they handle larger teams.
Crystal has been used up to about fifty people, but
beyond that size there is little evidence as to how
you can use an adaptive approach, or even if such
approaches work at all.

Hopefully one message that's clear from this
article is that adaptive approaches are good when
your requirements are uncertain or volatile. If you
don't have stable requirements, then you aren't in
the position to have a stable design and follow a
planned process. In these situations an adaptive
process may be less comfortable, but it will be
more effective. Often the biggest barrier here is
the customer. In my view it's important for the
customer to understand that following a predictive
process when requirements change is risky to them
just as much as it is to development.

So you'll notice I've said that if you have more
than fifty people you should use a traditional pre-
dictive process and if you change changing require-
ments you should use an adaptive process. What if
you have both a large project and changing require-
ments? I don't have a good answer to this, so I'd
suggest you seek a second opinion. I can tell you
that things will be very difficult, but I suspect you
already know that.

24	 Wuhan University Journal of Natural Sciences
	

Vol. 6

If you are going to take the adaptive route,
you need to trust your developers and involve them
in the decision. Adaptive processes rely on you
trusting your developers, so if you consider your
developers to be of low quality and motivation then
you should use a predictive approach.

So to summarize. The following factors sug-
gest an adaptive process:

• Uncertain or volatile requirements;
• Responsible and motivated developers;
• Customer who understands and will get in-

volved.
These factors suggest a predictive process:

• A team of over fifty.
Fixed price, or more correctly a fixed scope, con-
tract.

7 Which Adaptive Process?

All of these processes are new, and I-can only
give some first hand experience to guide you. In
my choice the question lies in the team size and
how much discipline they are prepared to go for.

With a dozen developers or less that are in-
clined to try it, I'd certainly push for XP. It may
be that the team won't go all out in the XP pro-

cess, at least initially, but you still get a lot of
benefit by a partial XP approach. For me the key
test of using this process well is automated unit
testing. If the team are prepared to do that, then
the technical foundations will be in place. If they
can't do that, then I don't suspect they'll handle
the rest.

If the discipline isn't there, or the team is too
large, then I'd be inclined to follow Crystal's ad-
vice. It's certainly the lightest of the light, and
Cockburn is particularly adaptive to the lessons of
development. I'd still use the XP planning process
in these cases.

Having said that, however, I'm working with
a team of forty who are successfully trying many
XP practices and are pretty close to full XP, so
with determination and a committed team you can
adapt your process outside at least some of these
boundaries.

And that's really the key message. Whatever
process you start with will not be the process
that'll really work for you. You have to take
charge of your process, monitor it and adapt it to
your circumstances. In the end it must become
your process, any other labels are secondary.

