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The usefulness of a universal model potential suggested by one of the authors has been
investigated in the augmented-plane-wave calculations of the electronic structure of various
metals. Results of calculations based on universal model potential are compared with results
calculated on the basis of self-consistent-field atomic potentials, and with the free electron
model values.

Introduction

In consequence of its simplicity and its analytical form the universal
model potential (UMP) suggested by one of the authors [1] may be applied
well to calculations based on crystal potentials formed from spherically sym-
metric atomic potentials. The UMP is a simple analytical function and it
depends on spatial coordinates and on atomic numbers only. The UMP differs
more or less from more exact self-consistent-field (SCF) atomic potentials,
and this difference modifies the results of calculations obtained with the SCF
atomic potentials. In the different further applications of the UMP it is useful
to know how large a difference may result with respect to the results of calcula-
tions based on SCF atomic potential. The calculations presented here by the
augmented-plane-wave (APW) method seem to be suitable for the estimation
of this difference.

The APW method and the universal potential

The APW method of calculating electronic energy bands is based on
the independent electron model of solids. The characteristic feature of the
APW method is the subdivision of the crystal into different separated space
regions and the assumption of a different form for the crystal potential and
different expansion functions for the electron wave functions in these regions.
The crystal potential is approximated by a muffin-tin form, which is spheri-
cally symmetrical within spheres surrounding each of the atoms in the erystal
lattice and constant in the region between the spheres. Within each sphere
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the electronic wave functions are expanded in terms of products of radial
wave functions and spherical harmonics. In the regions between the spheres
the expansion is in terms of plane waves. The expansion coefficients are to
be determined on the one hand variationally, on the other hand from the
condition of continuity of the wave functions on the spherical surfaces.

The details of calculating the energy eigenvalues using the APW method
will not be reproduced here. Loucks has given a detailed discussion of the
method of computation [2].

The APW matrix elements are

MU= Q(kjg —E)é, — 47'5253(3“‘“'”65'," s
where the Q is the volume of the unit cell. The kj is magnitude of
kj=k +g,.

k is the wave vector specifying the state for which the energy eigenvalues are
to be calculated. g, is the reciprocal lattice vector and

kij=kj_ki’

The r, is the position of the centre of the v-th APW sphere in the unit
cell, and S, is the radius of the »-th APW sphere. The
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where J,is a spherical Bessel function of order I, and P, is the Legendre poly-
nomial of order I. The

R; (S,. E)
Rl (Sv’ E)

are the logarithmic derivatives, R/(r, E) satisfies the radial Schrodinger equa-

tion:
_L_d_[,z‘;_R) _i_[l(lJr llJr V,,(r)]R:ER,
r

2 dr r?

where V,(r) is the spherically symmetric potential inside the »-th sphere.
The crystal potential which has been observed in this article, determines

the matrix elements through the logarithmic derivatives. Therefore we con-

centrate on the properties of the logarithmic derivatives in this paper.
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1f the V,(r) == 0, as in the free-clectron model, the logarithmic derivatives

Ri(S.E) _ VER(/ES,)
R(S.E)  J(JES,)

are the functions of logarithmic derivatives of the spherical Bessel functions.
The APW matrix elements and so the secular determinant is zero if kzj.: E,
as has been expected in the case of the free-electron model.

The muffin-tin potential has been obtained as a superposition of atomic
potentials. In the method suggested by MarrtHEISS [3] the Coulomb and
exchange contributions to the muffin-tin potential are treated separately.
The Coulomb part is obtained from a direct superposition of the Coulomb
potentials of the central and neighbouring atoms. The charge density obtained
from a similar superposition of the atomic charge densities, and the exchange
part is calculated using the free-electron exchange approximation.

The Coulomb part of UMP in rydbergs

27 e—hx -
r 14+ A4,=x ’

where Z is the atomic number, r is the distance of the electron from the nuc-
leus. The constants of the equation are

Ao =0.1837, A4,=1.05
and the scaled variable x is defined by the relations

r 0.88534137
X =, f=—"—"—8a,

" Zs

where a is the first Bohr radius in the H atom.
The atomic charge density in the UMP

where the constants are given by
C=31qg!, «=0.04, 4=9.0.

The potential of the exchange energy by the Xa method in rydbergs is

Ve(r) = —6a (zf—n o0 -,
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where o(r) is the charge density obtained from the superposition of the atomic
charge densities of UMP form and « is a parameter. Sensitivity of logarithmic
derivatives to changes of the exchange potential was observed by changing
the a parameter.

Results and discussion

The results obtained with the UMP are compared with results based on
SCF atomic potentials. The Coulomb, exchange and crystal potential for the
hexagonal-close-packed beryllium, given by TERReLL [4] on the basis of
SCF atomic-beryllium potentials are shown in Figs. 1—3 together with the
Coulomb and exchange parts, and the crystal potential of the UMP (in the
case a = 1, a = 2/3). Qualitatively the same results have been found for the
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Fig. 1. The Coulomb potential for beryllium in rydbergs
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Fig. 3. The crystal potential for beryllium in rydbergs

Acta Physica Academiae Scientiorum H. icas 50, 1981

D'




UNIVERSAL MODEL POTENTIAL 279

Table I

The average values of erystal potentials for the
metals Be, Cu and Ag (rydbergs)

Vave Be Cu Ag

SCF —1.700 —0.939 —0.370

UMP (o= 2/3) —2.150 —2.069 —0.660
UMP (o =1) —2.233 —2.177 —

metals zirconium and copper, too. The considerable differences present both
in the Coulomb part and in the exchange part of the potential largely compen-
sate in the crystal potential.

The universal model crystal potential is more negative, than that based
on the SCF calculations. This may be seen from the average values of the
potentials for the metals beryllium, copper and silver, too, which are given
in Table I.

In the Figs. 4 and 5 are shown the logarithmic derivatives (at the radius
of the APW sphere) as a function of energy for two nearly free-electron metals,

L
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Fig. 4. Logarithmic derivatives (at APW sphere radius) as a function of energy for beryllium
—_— SCF after J. H. TERRELL [4] in the case | = 0, ————— free-electron model,
----- based on UMP « = 2/3 and SCF after J. H. TERRELL, in the case [ = 1

Fig. 5. Logarithmic derivatives (at APW sphere radius) as a function of energy for sodinm.
——————— SCF after J. C. SLATER [7], free-electron model, - - - - based on UMP a = 2/3
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for the beryllium and sodium. Logarithmic derivatives as a function of the
energy comparing with the logarithmic derivatives of the free-electron mode
show that these metals are nearly free-electron crystals.

In contrast to this we show in Fig. 6 the corresponding curve for zirco-
nium in the case I = 2. For the d electrons, I = 2, there is no agreement at
all between the actual curve and that for the free-electron model. As a conse-
quence of this, the free-electron approximation is entirely erroneous for zir-
conium, as for other transition elements, which have partially filled d shells.
The energy bands of these transition elements depart radically from the free-
electron results.

The same results are given for the noble metal copper, logarithmic
derivatives of which are seen in Fig. 7. Though the agreement between the
logarithmic derivatives calculated with UMP and SCF potential is not as
good for this metal, as it is for the transition element zirconium. The logarithmic
derivatives of the noble metal copper in contrast to the element zirconium,
as they are shown in Figs. 8 and 9 are very sensitive to change of the « para-
meter, that is to small differences of the potential.
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Fig. 6. Logarithmic derivatives (at APW sphere radius) as a function of energy for zirconium
in the case ] = 2. —.—.—.— SFC after T. L. Loucgs [6], ————- free-electron model,
-X-X-X-X- based on UMP o« = 2/3, - - - - - based on UMP o« = 1
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Fig. 7. Logarithmic derivatives (at APW sphere radius) as a function of energy for copper.
————— +— SCF after J. C. SLATER [7] in the case | = 2, ———— free-electron model, - - - -
based on UMP o = 2/3, -x-X-X- based on UMP o = 2/3 and SCF given by SLATER (7]
in the case I == 3
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Fig. 8. Logarithmic derivatives (at APW sphere radius) as a function of energy for copper

In Table II the energy eigenvalues are listed for the hexagonal-close-
packed beryllium, computed for the free-electron model, with the SCF poten-
tial, and with the UMP, respectively. The energy eigenvalues of the free-
electron model, and those computed on the basis of the relativistic SCF poten-

Table II

Energy eigenvalues computed by the APW method for
beryllium. The energies are in rydbergs.

g:i;l.ll‘::izfz;l:n: Free-elcctron J. Sl'fr:l‘;:ﬁl.l. UMP

(given in Fig, 11) model [4] «=2/3
r 0.000 0.000 0.000
0.861 0.519 0.520

0.861 0.900 0.905

K 0.941 0.642 0.641
0.941 0.761 0.757

1.801 1.304 1.318

1.801 1.313 1.327

M 0.529 0.465 0.465
0.529 0.605 0.610

1.390 1.292 1.294

1.390 1.300 1.300

1.390 1.096 1.108

A 0.215 0.161 0.157
1.936 1.595 1.590

H 1.156 0.847 0.847
1.156 1.257 1.262

1.156 0.759 0.766
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Fig. 9. Logarithmic derivatives (at APW sphere radius) as a function of energy for zirconium

Table IIX

Energy eigenvalues computed by the APW method for
zirconium. The energies are in rydbergs.

B | i | 0 | o
(given in Fig. 1L.) model [6] @ =2/3
r 0.000 0.000 0.000
0.417 0.185 0.230

1.412 0.437 0.490

K 0.471 0.218 0.274
0.471 0.289 0.335

0.471 0.299 0.371

0.471 0.305 0.376

M 0.353 0.196 0.249
0.353 0.224 0.274

0.770 0.376 0.427

A 0.104 0.119 0.133
0.939 0.426 0.488

0.939 0.436 0.491

H 0.575 0.275 0.362
0.575 0.293 0.371

L 0.457 0.180 0.221
0.457 0.186 0.226

1.292 0.312 0.404

1.292 0.316 0.408
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Fig. 10. Energy bands for zirconium along I'K symmetry directions computed with the SCF
’ given by T. L. Loucks and with the UMP
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Fig. 11. Half of the Brillouin zone for the exchange-close-packed crystal structure

tial [6] and those of the UMP for hexagonal-close-packed zirconium are
listed in Table III. In Fig. 10 energy bands are shown for zirconium along the
I'K symmetry directions of the Brillouin zone, calculated with the relativistic
SCF potential and with the UMP. The Brillouin zone of hexagonal-close-
packed beryllium and zirconium for which eigenvalues are given, is shown in
Fig. 11. The Tables and Fig. 10 show relatively good agreement hetween
calculations for beryllium and zirconium, based on SCF atomic potentials
and on the UMP.

The authors would like to thank for the assistance of Mrs. I. MoLNAR and
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