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The usefulness of a universal  model potent ia l  suggested by  one of the  authors  has  been 
invest igated in the  augmented-plane-wave ealculations of the  electronic s t ructure  of various 
metals.  Results  of calculations based on universal  model potent ia l  are compared wi th  results 
calculated on the basis of self-consistent-field atomic potentials, and with the free electron 
model values. 

Introduction 

In consequence of its simplicity and its analytical form the universal 
model potential (UMP) suggested by  one of the authors [1] may be applied 
well to calculations based on crystal potentials formed from spherieally sym- 
metrie atomic potentials. The UMP is a simple analytical function and ir 
depends on spatial coordinates and on atomic numbers only. The UMP differs 
more or less from more exaet self-consistent-field (SCF)a tomic  potentials, 
and this difference modifies the resuhs of calculations obtained with the SCF 
atomic potentials. In the different further applications of the UMP ir is useful 
to know how large a difference may result with respect to the resuhs of calcula- 
tions based on SCF atomic potential. The caleulations presented here by  the 
augmented-plane-wave (APW) method seem to be suitable for the estimation 
of this difference. 

The APW method and the universal potential 

The APW method of calculating eleetronic energy bands is based on 
the independent electron model of solids. The characteristic feature of the 
APW method is the subdivision of the crystal into different separated space 
regions and the assumption of a different form for the crystal potential and 
different expansion funetions for the electron wave functions in these regions. 
The crystal potential is approximated by  a muffin-tin form, which is spheri- 
eally symmetrieal within spheres surrounding each of the atoms in the erystal 
lattiee and constant in the region between the spheres. Within eaeh sphere 
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the electronic wave functions are expanded in terms of products of radial 
wave functions and spherical harmonics. In the regions between the spheres 
the expansion is in terms of plane waves. The expansion coefficients are to 
be determined on the one hand variat ionally,  on the other hand from the 
condit ion of cont inui ty  of the wave functions on the spherical surfaces. 

The details of calculating the energy eigenvalues using the APW method 
will not  be reproduced here. LoucKs has given a detailed discussion of the 
method  of computa t ion  [2]. 

The APW mat r ix  elements are 

MiJ = /2 ( q  - -  E)  ~,j - 4 =  ~ y  S~ei~,,', ~~ , 

where t h e / 2  is the volume of the uni t  cell. The kj is magni tude of 

kj = kj -}- g j .  

k is the wavc rec tor  specifying the state for which the energy cigenvalaes arc 
to be calculated, gl is the reciprocal lattiee v~ctor and 

k i / =  kj -- k i . 

The r~ is the position of the centre of the v-th APW sphere in the unit  
eell, and S~ is the radius of the v-th APW sphere. The 

2 ~ ( k ~ k / I  G~J = (k~ -- E) J1 (k,l S~)/k~j -- ~1= ( 2 / +  1)Pz [ k,~~~ / J '  (k~ S~) x 

xj~(kjS.)[ RŸ k~JŸ 
Rl (S~, E) Jl (kj S~) ' 

where J t  is a spherical Bessel function of order l, and Pi is the Legendre poly- 
nomial  of order I. The 

RŸ (S~, E) 

R, (&, E) 

are the logarithmic derivatives,  Rl(r, E) satisfies the radial SchrSdinger equa- 
t ion:  

l d (tedR I [ l ( l+ l )  + Vv(r)}R=ER, 
,~ ar l --~-r l + ,~ - 

w h e r e  V~(r) is the spherically symmetr ic  potential  inside the v-th sphere. 
The crystal  potent ia l  which has been observed in this artiele, determines 

the matr ix  elements through the logari thmic derivatives. Therefore we con- 
eentrate  on the properties of the logarithmic derivatives in this paper. 

~eta Physica Ar ~ n t i a r u m  Hungaricao 50, 1981 



UNIVERSAL MODEL POTENTIAL 277 

I f t h e  V.(r)  ~ O, as in the free-electron model,  the logari thmic derivat ives 

R~ (s~, E) J, (V~ s~) 

are the bmct ions  of  logarithnfic der ivat ives  of the spherical Bessel functions.  
2 The AP W  mat r ix  elements and so the secular de te rminan t  is zero ir k j  ~~- E ,  

as has been expec ted  in the case of the free-electron model. 
The muff in- t in  potent ia l  has been obta ined ab a superposi t ion of atomic 

potential~. In the method  suggested by  MATTHE~SS [3] the Coulomb and 
exchange contr ibut ions  to the muff in- t in  potent ia l  are t r ea t ed  separately.  
The Coulomb par t  is obta ined from a direct  superposi t ion of the Coulomb 
potential~ of the central  and ncighbouring atoms. The charge densi ty  obta ined 
from a similar superposi t ion of the atomic charge densities, and the exchange 
par t  is calculated using the free-electron exchange approximat ion .  

The Coulomb par t  of UMP in rydbergs  

v e ( r )  - - -  

2Z e-~o x 

r l + A o x  

where Z is the a tomic numbcr ,  r is the distance of the  electron from the nuc- 
leus. The constants  of  the equat ion are 

~o = 0.1837, A 0 = 1.05 

and the scaled variable x is defined by  the relations 

r 0.88534137 
x = - - ,  ~ - -  

# Z 113 a 0 

where a 0 is the f i rs t  Bohr  radius in the H atom. 
The atomic charge densi ty  in the UMP 

C e - ~ X  13 

~ = z ' l i ~ - - 2 ~  } , 

where the constants  are given by  

C =  3 . 1 a o  1, ~ = 0 . 0 4 ,  A = 9 . 0 .  

The potent ia l  of the exchange energy by  the X~r me thod  in rydbergs  is 

= q(r  , 
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where ~(r) is the charge density obtained from the superposition of the atomic 
charge densities of UMP form and ~ is a parameter. Sensitivity of logarithmic 
derivatives to ehanges of the exchange potential was observed by changing 
the ~ parameter. 

Results and discussion 

The results obtained with the UMP ate compared with resuhs based on 
SCF atomic potentials. The Coulomb, exchange and crystal pote-t ial  for the 
hexagonal-close-packed beryllium, given by TER~ELL [4] on the basis of 
SCF atomic-beryllium potentials ate shown in Figs. 1--3 together with the 
Coulomb and exchange parts, and the crystal potential of the UMP (in the 
case ~ ~ 1, ~ = 2/3). Qualitatively the same results have been found for the 

r  ' ' ' ; ; t -1 

- - - .  S C F  .,,**"' 
" "  UMP . ,~__ ; 

rV Ir '  

-10 

Fig. I. The Coulomb potential for beryllium in rydbergs 

in r -1 0 I 

- - - -  Ut.tP (X=I ~ r V I r }  

1 

F ~ .  2. The exchange potential,for beryllium in:rydbergs 

lar "1 0 
m n ~ 2 3 7  

" ' "  S C F  
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- "  UMP ==1  

r V ( r )  

-10 

Fig. 3. The crystal potential for beryUium in rydbergs 
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Table  I 

T h e  ave rage  v a l u e s  o f  c ry s t a l  po t en t i a l s  for  t h e  
m e t a ] s  Be,  Cu a n d  Ag  ( rydbe rgs )  

VAV G Be Cu Ag 

SCF 

U M P  (~ = 2 / 3 )  

U M P  (~ = 1) 

- -  1.700 

- -2 .150  

- -2 .233  

- -0 .939  

- -2 .069  

- -2 .177  

- -0 .370  

- -0 .660  

metals zirconium and copper, too. The considerable differences present both 
in the Coulomb part  and in the exchange part of the potential largely compen- 
sate in the crystal potential. 

The universal model crystal potential is more negative, than that  based 
on the SCF calculations. This may be seen from the average values of the 
potentials for the metals beryllium, copper and silver, too, which are given 
in Table I. 

In the Figs. 4 and 5 are shown the logarithmic derivatives (at the radius 
of the APW sphcre) a s a  function of energy for two nearly frec-electron metals, 

. . . . .  - . . . . .  tffi3 

"(15 
t t t t t t 

(10 0.5 E(Ry) 

Fig. 4. L o g a r i t h m i c  de r i va t i ve s  ( a t  A P W  sphe re  r ad ius )  a s a  f u n c t i o n  of  e n e r g y  for  b e r y l l i u m  
. . . . . . .  SCF a f t e r  J .  H .  TE~RELL [4] in  t h e  case  l ~ 0, - -  f ree-e lec t ron  model ,  

. . . . .  b a s e d  on  U M P  g = 2/3 a n d  S C F  a f te r  J .  H.  Tv.altELL, in t h e  case  1 = 1 

4 ~ t = 3 [  
0 I--2 

L ....... ~ z i . ~ ' " ' l  

09 05 E (Ry) 

Fig. 5. L o g a r i t h m i c  de r iva t i ve s  ( a t  A P W  sphe re  rad ius )  a s a  f u n c t i o n  o f  ene rgy  for  sod ium.  
SCF a f t e r  J .  C. SLATER [7], f ree -e lec t ron  mode l ,  - - - - b a s e d  on  U M P  �9 : 2/3 
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for  t h e  b e r y l l i u m  a n d  s o d i u m .  L o g a r i t h m i c  d e r i v a t i v e s  a s a  f u n c t i o n  o f  t h e  

e n e r g y  c o m p a r i n g  w i t h  t h e  l o g a r i t h m i c  d e r i v a t i v e s  of  t h e  f r e e - e l e c t r o n  m o d e  

show t h a t  t h e s e  m e t a l s  a t e  n e a r l y  f r e e - e l e c t r o n  c r y s t a l s .  

I n  e o n t r a s t  to  t h i s  we show in  F ig .  6 t h e  c o r r e s p o n d i n g  c u r v e  for  z i rco-  

n i u m  in  t h e  case  1 -~ 2. F o r  t h e  d e l e c t rons ,  l = 2, t h e r e  is no a g r e e m e n t  a t  

MI b e t w e e n  t h e  a c t u a l  c u r v e  a n d  t h a t  for  t h e  f r e e - e l e c t r o n  m o d e l .  A s a  conse-  

q u e n c e  of  t h i s ,  t h e  f r e e - e l e c t r o n  a p p r o x i m a t i o n  is e n t i r e l y  e r r o n e o u s  for  zir-  

e o n i u m ,  as for  o t h e r  t r a n s i t i o n  e l e m e n t s ,  w h i c h  h a v e  p a r t i a U y  f i l l ed  d shel ls .  

T h e  e n e r g y  b a n d s  o f  t h e s e  t r a n s i t i o n  e l e m e n t s  d e p a r t  r a d i c a l l y  f r o m  t h e  free-  

e l e c t r o n  r e su l t s .  

T h e  s a m e  r e s u l t s  a t e  g iven  for  t h e  n o b l e  m e t a l  c o p p e r ,  l o g a r i t h m i c  

d e r i v a t i v e s  o f  w h i c h  are  seen  in  F ig .  7. T h o u g h  t h e  a g r e e m e n t  b e t w e e n  t h e  

l o g a r i t h m i c  d e r i v a t i v e s  c a l c u l a t e d  w i t h  U M P  a n d  S C F  p o t e n t i a l  is n o t a s  

g o o d  fo r  th i s  m e t a l ,  as  i t  is for  t h e  t r a n s i t i o n  e l e m e n t  z i r c o n i u m .  T h e  l o g a r i t h m i c  

d e r i v a t i v e s  o f  t h e  n o b l e  m e t a l  c o p p e r  in  c o n t r a s t  to  t h e  e l e m e n t  z i r c o n i u m ,  

as t h e y  are  s h o w n  in  F i g s .  8 a n d  9 are  v e r y  s e n s i t i v e  t o  e h a n g e  o f  t h e  g p a r a -  

m e t e r ,  t h a t  is to  s m a l l  d i f f e renees  of  t h e  p o t e n t i a l .  

R2 
3 

',. ",,X 

\ \  

0,5 1.0 1.5 E(Ry) 

Fig. 6. Logarithmic derivatives (at APW sphere radius) a s a  function of energy for zirconium 
in the case I = 2. SFC after T. L. Loucgs [6], - - -  free-electron model, 

-x-x-x-x- based on UMP g ~ 2/3, - . . . .  based on UMP g = 1 

Rt 'sr~~.~." 
3 ~ -x - -x" -  
�9 ~" "x ' '~~~"* '~~t.--- . .x~.~.x--x-~ >|=3 

" " - -  t = 2  I >- 

O :.: ---'�91 L=I 
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0.0 0.5 E{Ry) 

Fig. 7. Logarithmic derivatives (at APW sphere radius) a s a  function of energy for copper. 
SCF aftcr J. C. SLATER [7] in the case l ~ 2, - -  free-electron model, - - - - 

based on UMP g = 2/3, -x-x-x- based on UMP r = 2/3 and SCF given by SLATER [7] 
in  t h e  case  l ~ 3 
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Fig. 8. Logarithmic derivatives (at APW sphere radius) asa  function of energy for copper 

In Table I I  the energy eigenvalues are listed for the hexagonal-close- 

packed beryll ium, computed  for the free-electron model, with the SCF poten-  
tial, and with the UMP, respectively.  The energy eigenvalues of the free- 

electron model, and those computed  on the basis of the relativistic SCF poten- 

Table II 

Energy eigenvalues computed by the APW method for 
beryllium. The energies are in rydbergs. 

Points of the SCF after 
Brillouin-zone Free-electron J.  H TERIKELL UMP 

(given in Fig. 11) model [4] ~t ~ 2/3 

K 

A 

H 

0.000 

0.861 
0.861 

0.941 

0.941 
1.801 

1.801 

0.529 

0.529 

1.390 

1.390 
1.390 

0.215 

1.936 

1.156 
1.156 

1.156 

0.000 

0.519 

0.900 

0.642 

0.761 
1.304 

1.313 

0.465 
0.605 

1.292 

1.300 
1.096 

0.161 
1.595 

0.847 

1.257 

0.759 

0 . 0 0 0  

0 . 5 2 0  

0.905 

0.641 

0.757 
L318 

1.327 

0.465 

0.610 
1.294 

1 .300  

1.108 

0.157 

1.590 

0.847 
1.262 

0.766 

Acta Physica Academiae Scientiarum Httrtgaricae 50, 1981 



2 8 2  R.G.~SPXR and Gy. B�93 

-G 

Q5 1.o E{~} 

Fig. 9. Logari thmic derivat ives (a t  APW sphere radius) a s a  funet ion  of energy for zirconium 

Table HI  

Energy eigenvalues computed  b y  the  A P W  method for 
zirconium. The energies ate in rydbergs.  

Points of the SCF after 
BriIlouin-zone Free-electron T . L .  LOUCKS UMP 

(given in Fig. 11.) model [6] ~ = 2/3 

F 

K 

M 

A 

H 

L 

0.000 

0.417 

1.412 

0.471 

0.471 

0.471 

0.471 

0.353 

0.353 

0.770 

0.104 

0.939 

0.939 

0.575 

0.575 

0.457 

O.457 

1.292 

1.292 

0.000 

0.185 

0.437 

0.218 

0.289 

0.299 

0.305 

0.196 

0.224 

0.376 

0.119 

0.426 

0.436 

0.275 

0.293 

0.180 

0.186 

0.312 

0.316 
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0.000 

0.230 

0.490 

0.274 

0.335 

0.371 

0.376 

0.249 

0.274 

0.427 

0.133 

0.488 

0.491 

0.362 

0.371 

0.221 

0.226 

0.404 

0.408 
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F. ig. 10. Energy bands for zirconium along FK symmetry directions computed with the SCF 
given by T. L. LOUCKS and with the UMP 

l L H 
2'~bl v 

Fig. 11. Half of the Brillouin zone for the exchange-close-packed crystal strueture 

tial [6] and those of the UMP for hexagonal-close-packed zirconium are 
listed in Table I I I .  I n  Fig. 10 energy bands are shown for zirconium along the 

F K  s y m m e t r y  directions of the Brillouin zone, calculated with the relativistic 
SCF potent ia l  and with the UMP. The Brillouin zone of hexagonal-close- 

packed beryll ium and zirconium for which eigenvalues ate given, is shown in 

Fig. 11. The Tables and Fig. 10 show relat ively good agreement  between 
calculations for beryll ium and zirconium, based on SCF atomic potentials  
and on the UMP. 

The authors would like to thank for the assistance of Mrs. I. MOL•�93 and 
Mrs. K. SZILŸ in carrying out the calculations and preparing the manuscript. 
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