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The calculation of the electronic structure of point defects eausing deep levels is a widely 
investigated problem. Various attempts have been done to solve this by applying defect 
containing elusters with various boundary conditions and semiempirical hamiltonians. We have 
shown in this paper the equivaleney of the methods applying eyclic boundary conditions and 
we proposed for them a very simple and efficient forro. Using this modified version we calcu- 
lated the band strueture of diamond and the electronis strueture of a vacaney in ir by the 
C~TDO/S--CI method with reasonable agreement with the experimental data. 

Introduction 

The deve lopmen t  of  q u a n t u m  chemis t ry ,  s t imula ted  b y  the  appearance  
of fast  and big compute r s ,  opened up  the  road  to the  appl ica t ions  in solid 
s ta te  physics.  A possible field of  appl icat ion m a y  be the  calculat ion of the  
b a n d  spec t ra  of  cova len t  (and pa r t i a l ly  ionic) solids and  the  de t e rmina t ion  of 
defect  electron s t ruc tu re  in these. This pape r  is devo ted  to this l a t t e r  p rob lem 
while the  o ther  p rob lems  will be only ment ioned .  In  Sect ion I the  experiences 
of  ear ly cluster  calculat ions are summar ized .  In  Sect ion I I  a founda t ion  of 
the  cyclic cluster  model  is given in order  to show the equivalence  of the different  
methods  publ ished in the  l i te ra ture .  Final ly ,  in Section I I I  calculat ions on 
d iamond  are p resen ted  app ly ing  a CNDO-hami l ton i an  in order  to inves t iga te  

the  capabil i t ies  of  the  model.  

I. The cluster model 

After  the  "de fec t -molecu le"  model  [1, 2, 3] the cluster  model  has intro- 
duced q u a n t u m c h e m i c a l  methods  in the  calculat ion of deep levels. In  the  clus- 
te r  model  a small  p a r t  of  the solid a round  the  defect  is t r e a t ed  a s a  molecule.  
The energies of the  occupied orbitals  of  such a " m o l e c u l e "  are in tended  to 
correspond to the  valence band ,  while the energies of  the virtual orbitals ate 
thought to reproduce the conduction band. The f i rs t  a t t e m p t s  were inade using 

nonselfconsis tent  me thods  [9], [141 or [5, 61. 
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The experience of the early cluster calculations can be summarized in 
three points. 

i) Unless the symmetry of the cluster is controlled, the identification 
of crystalline k states in the defectless cluster is accidental, and the convergence 
of the band edges with the arbitrary increase of the cluster size is slow [7, 8]. 

ii) The dangling bonds on the defect surface cause "surface states" and 
charge inhomogeneity, moreover they interact with the defect wave function. 
Various attempts were made to push the energy of these states out of the gap 
by  filling them with electrons [9], saturating them with hydrogen [10] or 
with monovalent quasiatoms (a monovalent atom with the same parameters 
as those in the cluster e.g. [11]). However, neither the problem of charge 
inhomogeneity [12, 13] nor that  of interaction with the defect [14, 15] can 
be solved by  these methods. 

iii) Furthermore, in contrast to the valence band, the description of the 
conduction band is not satisfactory [16]. (With various modifications, scaling 
procedures, etc. the results can be improved, but  not with the parameters 
tested in quantum chemistry). And finally, the charge rearrangement cannot 
be neglected (among others, this can increase the localization of the defect 
wavefunetion [14]). While the last problem can be solved by  the IEHT [17] 
making the Fock matrix dependent on net atomic charges, the former two 
problems require a better  approximation. 

Therefore the problems in cluster calculations are the symmetry of the 
cluster, the boundary condition and the hamiltonian applied. 

II. The eyelie cluster model 

A) QLVC (MUCA) method 

By applying the methods of band strueture calculation, most of the 
problems mentioned above can be avoided. Instead of the elementary eell one 
can use a cluster which is the L 3 times that  (or is a Bravais cell) and which 
is containing the defeet (supereell method). Then applying periodic boundary 
eonditions, an appropriate hamiltonian a n d a  reasonable basis set, all but  
one of the diffieu]ties shall be over (e.g. [18]). This only one is the fact that  
the interaction of the defect with the cluster surface is substituted by the 
interaction between the periodieal]y repeated defects. We note, however, 
that  this ]atter is considerab]y lower because the defeet separation is twice 
as long as the defeet--surface distance and, on the other hand, the number 
of first neighbour defects is much lower than that  of the surfaee atoms. There- 
fore a much faster convergence can be expected with cluster size, than for free 
clusters. For the case of the perfect c]uster, the reproduction of the experimen- 
tal band strueture obviously depends only on the approximation used to solve 
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the SchrSdinger equation. However,  the conventional  methods applied to 
covalent materials resuh in uncertaint ies in some points. E.g. in the case of 
diamond, selfconsistent OPW calculations resuh in a 8.7 eu  direct gap between 
/,25 and/"15 [61], while the DVM of [20] resuhed in 6.0 eV for the same separa- 
tion. Moreover, the  application of a pseudopotent ial  yielded a direct gap between 
/,2s and 1'2 [20]. On the other hand the direct parametr izat ion methods depend 
on the experimental  da ta  chosen for f i t t ing,  which ate not  always unambiguous 
either as ir is jus t  the case for the direct gap of diamond. Much higher uncer- 
tainties appear in the case of part ial ly ionic materials as e.g. SiO 2. Presum- 
ably, the advanced LCAO--MO type  quantumchemical  methods,  which apply 
atomic orbitals and well tested hamihonians  m a y  help to clear the dark points. 
Even more promising is their  application for deep levels. The general formulas 
of the extension of quantumchemical  LCAO--MO to band structure calcula- 
t ion was performed by Ar~I)R~ et al [21]. 

This procedure is based on the construction of crystalline orbitals (CO) 
a s a  linear combinat ion of Bloch sums, which are in tu rn  given from the 
identical orbitals in the various primitive cells: 

h d 
~pn(k) = 2 2 ca ( k )  q~A ( k )  , (la) 

A = I  g = l  

N - 1  

~~(k) = N-1/2 ~ ' x~(r - -  R l - -  dA)  e i k ~  . (lb) 
/ = 0  

Here and in the following n, m will mean the band index: i , j ,  k ,  I will correspond 
to one of the N cells of the crystal,  and 

x ~ ( r  - -  R t - -  d A )  (r  = 1 . . . .  , ~; A = 1 , . . . ,  h) 

is the atomic orbital  of type  r on the centre A of the l-th primitive cell. For 
the sake of brevi ty  we shall write: 

x t t ( r - -  . R  l - -  d A )  = : r A . 

The periodic boundary  condition is fulfilled by the s ta tement :  

r g N  = r A �9 (2) 

Within  this scheme a modified set of Roothaan 's  equations must  be solved 
with a n y  kind of quantumchemical  methods:  

~ "  ~ [Fsv(k) -- ~n (k) S~v (k)] c B (k) = 0 ,  (3) 
B v 
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where: 
F~~(k) = . ~  F ~ eikR' . (4) 

J 

Fs~(k ) is the element of the Fock matr ix  between Bloch sums which are con- 
s t ructed from # orbitals of the A-type centres and v orbitals of B- type centres, 
respectively, and 

FOO~ HO~ + ~ _ ~ _ ~  P~~(k') 8 [  A,B = (r0 j l~~~?) -- 
k" C,D ~,. N k,t L 

1 (roA ,~C k I VB . .  %]eik "(R~-RO. (5) - -~  , ~ , j  

In (5) H~ is the core hamihon ian  mat r ix  between the # orbital of the 0-th 
cell and  the v orbital of the j - t h  one, and: 

occ 

Pz~(k) = 2 ~ cC~m (k ' )* C~m(k'), (6) 
m 

S~~(k) = . ~  S~ e ikR~ = . ~  (q A I vŸ ~) e ikR~ �9 (7) 
J J 

Eq. (3) has to be solved for all k states of the reduced Brillouin zone (BZ). 
Since the Fock matr ix  contains the A %n(k) coefficients, the solution can be found 
in ah i terative SCF procedure. To perform this with ah ab init io hamihonian  
is quite a hard task regarding the sum of muhicent re  integrals over the BZ 
and over all orbitals in every cell. A simplification of the problem can be reached 
by applying approximate  semiempirical methods,  which is the usual way  of 
the quan tum chemistry for large molecules. This has also the advantage  tha t  
th rough the empirical da ta  a certain par t  of correlation is also accounted 
for in some of the methods.  

The simplest case is the EHT [19], which neglects electron--electron (and 
also core--core) interaction,  making the sum in Eq. (5) disappear. The remain- 
ing te rm H~ is parametr ized semiempirically. In this case the energies at  various 
k points can be calculated independent ly  (e.g. [4]). 

I f  one applies a supercell, all K points of the corresponding BZ collect 
more k points of the original one. By a careful choice of the supercell [22, 23] 
the impor tan t  symmet ry  points (all branches of a given k*) can be involved 
in the K = 0 state. This is impor tan t  from the viewpoint of the defect calcu- 
lation, because it was shown [24] tha t  the defect levels originate from the 
critical points of the banal structure,  which are in turn  usually at or near to 
the high symmet ry  points of the BZ. Therefore, to obtain the defect levels ir 
is sufficient to calculate the K = 0 state of the appropriately chosen large 
unir cell. For the case of the EHT,  when all K states are independent ,  this 
supercell calculation is equivalent  to a cluster model with periodic boundary  
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conditions as applied by [25], [26] and [27], [24] [14], [28]. The procedure was 
cMled MUCA (molecular unit ceU approach) by MESSMER and WXTKINS and 
QLUC (quasimolecular large unit eell) by  EVXR~.STOV et al. 

Regarding the shortcomings of the EHT as mentioned previously, a 
somewhat better  approximation of the Fock matrix is necessary. The next 
step in approximation is usually the CNDO with different parametrizations 
which ate very suitable for calculating wavefunction related properties (e.g. 
dipole moments and geometry) as the CNDO/2 [29], [30], [311, or for energy 
values as the CNDOq [32], [33] and CNDOq [341, [35] and [36]. The for- 
mulae of the LCAO--CO in the CNDO approximation were elaborated by  
[37]. The Roothaan equations are redueed to 

2 FAk)  ~~(k) - ~.(k) ~~.(k) (8) 

and the Foek matrix is (/z E A): 

"S Oj eikRI (1 ~oj) ~~B q- 
i B j 

P~~(k') ~. ,oJ 1 2 '  P~,,(k') 2 '  �88 ~' (~ + ~'~ '~' 
? ' A B  - -  (9) 

+ . 2 ' 2  N j 2 k' N y k' B 

and the off diagonal elements (/~ # v and/z E A, v C B) are 

1 1_ Pt,~(k') 
F~v(k) = 2 (flA + flB) . ,~ S~ eikR~ -- 2 

j 2 k" N 

2 ~ ' ~  j ei(k+ k') RI, (10) 

J 

where PBB = ~ Pxx; ZB is the core charge and 6ij is the Kronecker symbol. 

The first three members in (9) and the first in (10) correspond to Hg~(k), while 
the remaining terrns express the electron--electron interactions because of the 
basic limitation of the CNDO: 

(~~ ~?1 ff ~~) = O f zAI ff ~~) ~,j ~k~ ~AB ~C~ 

(11) 

for all/z on A in the i-th cell and for all ). on C in the k-th one. Ug~, flA and 
;v~ j are the parameters selected according to the type of the CNDO. As can 
be seen the CNDO maintains a certain part of the two-electron integrals and 
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the coupling of the k states appears again. To avoid the integration over the 
BZ EVARESTOV et al returned to a cluster type calculation by neglecting the 
interactions between the various K states in the BZ of the superceU (but preserv- 
ing them between the k states involved in the K ---- 0 state) [38]. As it was 
mentioned above this restriction has a minor effect on the defect levels, how- 
ever, it is important from the viewpoint of simulating the bmad structure. 
EVARESTOV et al [24] have shown that  the energy of a given k state converges 
to its exact value as the number of k' states interacting with it increases. 
However, the improvement of the results is not monotonous by all means 
increasing the cluster arbitrarily [39]. In spite of this, such ah extension of 
the QLUC model resulted in an encouraging valence bmad for a diamond cluster 
containing only the F,  X mad L points of the original BZ. EVARESTOV et al 
interpret this success by means of the special k-point theorem of CHADr 
and COHEN [40]. Namely, ir was shown tha t  the average of a smoothly varying 
function f(k) over the BZ can be calculated a s a  weighted sum of the values at 
some special k points 

1 f f (k)  d k ~ .~~i f (k~)  �9 (12) 
< f ( k ) > -  Vez Bz i 

The results ate extremely good even f o r a  few number of k states. Since the 
supercell bmad structure calculation decreases the dispersion of the bmads 
[41], one can expect the function Psv(K) to be smooth enough for applying 
the theorem in Eq. (5) with success. By the use of the summation raethod of 
[42 ] for the electron--electron integrals the reaching of ma ab initio selfconsistent 
band structure would be also possible with a r~asonable computing time. 

B) The SPC method 

The problem of interactions between the periodically repeated defects 
appeaxs also in the QLUC model. This problem is thought to be eluded in the 
SPC (small periodic cluster) approach which applies periodic boundary condi- 
tions directly to the cluster. This memas the prescription that  the interaction of 
atoms A mad B (both in the cluster) has to be replaced by the A B '  interaction, 
B'  being ah equivalent of B closest to A in the crystalline environment (Fig. 1). 
I f  all /{AB" distances are longer than RAB then A B  is maintained [26]. Due 
to this conception, the length of allowed interactions is restricted to be less 
than the half of the cluster size. This limitation excludes the direct interactions 
between the defects and lowers the indirect ones also considerably because 
all atoms interact with one defect only. The SPC was applied first in the chemi- 
sorption theory of graphite mad boron nitride by [43], [44] with CNDO 
and by [45] with EHT, but later on it was used in other problems too (e.g. 

Acta Physica Aeademiae Seientiarum Hungarieae 50, 1981 



CYCLIC CLUSTER MODELS 2,~~ 

~ 0  
0,~~,) /0,,-,-,\ 

" E x ' I - I - l O  I I I  ~~,o,�91 ,,, ~,-,-, o , /  
\ I  1-1-I O /  

Fig.  1. The in tera tomic  distance and direct ion cosine matrices in a one dimensional SPC. 
(Roman  numbers  correspond to appropriate  neighbour  distances) 

[46] or [11]). The name SPC originates from ZISr~CER who analysed this method 
[39, 47] in detail for one- and two-dimensional systems [48, 49]. In his formula- 
tion the interatomic distance and direction cosine matrices (Fig. 1) were 
eonstrueted to be eyclic and these were used in the construction of the Fock 
matrix. This proeedure is obviously equivalent to that  described by  [26]. 

C) Generalization of the SPC toward the QLUC: the cyclic cluster 

The SPC was cziticized by EVAR~,STOV et al [50] in comparison with 
the QLUC. However,  it can be shown on the basis of a somewhat different 
conception of SPC [51] that  the two approaches are essentially equivalent. 
The periodic boundary conditions of the SPC can be visualized by joining the 
one end of the cluster to the other, i.e. making cyclic the cluster itself (Fig. 2). 
If  the interaetion length is shorter than the half of the cluster size, the orbital 
# on atom A "winds"  (onefold) on the cluster (Fig. 3/a). However the same 
can be done also without limiting the interaction length, only the "winding" 
will be manifold (Fig. 3/b). This causes e.g. the "self-overlap" of #o A, however, 
as can be seen comparing Fig. 3/b, and Fig. 4, this is identical with the diagonal 
element of the overlap matrix on the basis r  where 

1 , ~  #q (13) 
~ 2 -  VN , 

and l runs over the cells equivalent to the cluster in the whole crystal. But  (13) 
is just the basis which is used in the QLUC after neglecting interactions between 
the K states (K = 0 is calculated only and the sum over K" disappears also, 

Fig.  2. Cyclic visualizat ion of the  B o r n - - K • 2 2 5  boundary  conditions in one dimension 
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A 

o) 
! 

Re 

b) 
Fig. 3. The application of the cyclic boundary conditions with: a) finite range of interaction; 

b) infinite range of interaction 

A-2 A-~ Ao A~ A2 

Fig. 4. Periodic visualization of the Born--K•225 boundary conditions in one dimension 
with infinite interaetion length 

in Eqs.  9--10) .  Therefore ,  if  one carries out  the  choice of the cluster in a way  
prescribed in [23], the only  difference is in the  l imita t ion of the in te rac t ion  
length.  The res t r ic t ion of this,  however,  has pract ical  advantages .  In  addi t ion 
to el iminating lat t ice sums (which causes a significant reduct ion of the  com- 
pu ta t iona l  t ime if  one calculates the electron-electron integrals theoret ical ly) ,  
the  in te rac t ion  of defects is also s t rongly suppressed. 

The infinite range of  in terac t ion  is kept  in the QLUC to ensure exact  
t rans la t ional  invariance,  i.e. the long range order.  However ,  as it was shown 
[52, 53], the band  charac te r  in covalent  solids is de termined by  the  short  
range order.  (This holds even more for e.g. SiO2. ) Therefore,  the improvemen t  
in t roduced  taking into considerat ion the long range order can be of  the same 
order  of magni tude  as the error  caused by  involving the interact ions  of the 
defects in the superlat t ice.  

In  the light of these we th ink  tha t  the  arguments  in Section 5 of [23] 
can be ignored, except  the  one tha t  the restr ict ion of R c below the  ha l l  of 
the  cluster  size leads to the  necessi ty of calculat ing too large clusters. There-  
fore, we suggest a compromise for keeping R c to be equal to the hal f  of the 
cluster  size increasing the effect of indirect  defect  interact ions bu t  excluding 
the  direct  ones fur ther .  As will be shown in the nex t  Section, this l i t t le  con- 
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cession makes a considerable improvement possible. We note that  lattice 
sums do not appear ir care is taken to preserve charge neutrali ty in a similar 
manner as in the Madelung summation [51]. 

H I .  C a l e u l a t i o n s  

We present calculations for the vacancy in diamond applying the model 
described above, in order to investigate its convergence properties (between 
our limited possibilities) and to compare its results with experimental data. 
Perhaps the diamond vacancy is not the best choice for such a purpose, because 
the localization of its wavefunction is questionable (but very likely not too 
strong), however, most of the previous works were carried out for the vacancy 
in diamond and in silicon. (The examination of Si requires further work, because 
no parameters exist for it in the CNDO/S scheme involving d orbitals.) Our 
final goal is the oxygen vacancy in SiO 2 whieh is a partially ionic material 
dominated by the short range order, i.e. with highly loealized bonds. 

We shall use a cyclic cluster representing the F,  X and L points of the 
diamond BZ (i.e. the C16 cluster), with an interaction length equal to the radius 
of the cluster (i.e. 4th neighbour). This means the reduetion of Eq. (8) to 
the original Roothaan equation in the CNDO approximation, i.e.: 

and 

~ ~ ( F ~ ~ -  % J~~) c~ = 0 (14) 

1 
Fst, = Uf, ~ d- 2 Ps 7~gA -4- .~ (Pss -- ZB) 7~AS, (15) 

B 

1 P (16) 
2 

Such a procedure involves threc kinds of convergcnce problems 

-- convergence with k states involved in K = 0; 
- -  eonvergence with the rauge of interaction; 
- -  convergence with defect separation. 

The first two are needed to achieve a good simulation of the perfeet crystal 
band structure, while the third is required to eliminate indirect defeet--defeet 
interactions (direct ones are exeluded automatically by Re). 

A) Simulation of the band structure (perfect cluster) 

In Fig. 5 the occupied orbitals, i.e. the valence bands of various diamond 
clusters ate plotted. The a), b), and c) parts of the Figure show the C2(F ), 
Cs(F, X) and C~6(F, X, L) clusters in the same first neighbour approximation. 
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Fig. 5. Occupied orbitals of a) C e, b) C s, c), d), e), f) Cle diamond clusters with first (a, b, c) 
second (d), third (e) and fourth (f) neighbour approximations, applying CNDO/S 

(The C64 cluster was too large for our computer ) .  The c, d, e and f par ts  show 
the  same C16 cluster wi th  increasing in te rac t ion  lengths (from first  to  four th  
neighbour) .  The results confirm the i m p o r t a n t e  of short  range interaet ions,  
showing a fast convergence with R c. On the  o ther  hand  the results show ve ry  
slight dependence of the  included k set. Ahhough ,  the few number  of  results 
do not  allow far reaching conclusions, we shall see t ha t  the C16 cluster  repro- 
duces the exper imenta l  band  s t ruc ture  fair ly well. 

Applying the cyclic cluster model,  two of the problems connected  with 
E H T  t runca ted  cluster calculations (see Sect ion I) are overcome.  The  th i rd  
one is the quest ion of the choice of the hamil tonian.  The CNDO is selfconsistent 
and its CNDO/2 version is excellent for geomet ry  determinat ion.  The applica- 
t ion  of semiempirical  methods ,  as the CNDO, to  molecules allows the compari-  
son of  resuhs  with exper iments  which are in the case of the electronic s t ruc ture  
the  photoelec t ron  and UV spectroscopy.  Similarly for solids the valenee band  
levels can be de te rmined  direct ly  re la t ive to  the vacuum level, while those 
of  the  conduct ion band  are de termined only  relat ive to the valence band  via 
electronic transi t ions.  In  a solid, the exc i ta t ion  of the removal  of ah electron 
does not  al ter  the  s ta te  of  the whole sys tem considerably.  This is not  the case 
in molecules and consequent ly  in our molecular  cluster. By  removing ah electron 
f rom bis level, the  pos i t i on  of the ionic cores m a y  alter, the  sys tem of the  
remaining eleetrons m a y  relax,  and the error  caused by  the neglect ion of  the 
correlat ion effects m a y  change. Therefore  a method,  which is well pa ramet r i zed  
in the  ground state,  can give unreliable results for exci ta t ion or ionizat ion 
energies, even if  these are calculated as the difference between the  initial 

and the  final s ta te  energies. 
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Fortunately,  for the ionization potentials the Koopmans' theorem gene- 
rally holds with good accuracy, i.e. the energies of the occupied orbitals are 
equal to the negative of the ionization energies. This statement justifies the 
correctness of identifying the valence band with the occupied orbitals of the 
eluster. 

However, this is not valid for the excitation energies. The calculation 
of these simply from the difference between the energies of the virtual orbital, 
(for which the electron will be excited) and of the occupied orbital leads to 
very poor resuhs. Therefore, in the case of electronic transitions selfconsistent 
calculation must be carried out taking the correlation also into account. Hence 
a conduction band, comparable with experimental data, must be deduced 
in a cluster model from such a calculation. 

Such a procedure is not possible in the EHT, while the CNDOq 
was elaborated even for calculating eleetronic transitions. In this method the 
parametrization takes into account a part of the correlation, and the transi- 
tions are calculated selfconsistently followed by a limited configuration inter- 
action (CI) calculation. We used a reparametrized form of it which yields 
both ionization and excitation energies (similarly to CNDOq of [54], but 
optimized for saturated hydrocarbons [55]). Our resuhs for the C16 cluster 
(4th neighbour appr.) are shown in Fig. 6 together with experimental resuhs 
[56, 57] and with resuhs of OPW [61] and DVM [20] band strueture calcula- 
tions. In the lower part of the Figure the energy of the strongest transition 

dk~rnond 
C-16 exp. LWM OPW-SCF 

CNDO/S 
eV 

-20 �84 

-40 

--r's__ --~s __q 
- -X1 - -X1  

- - r l s  -~. r~..~ o __% --rzs. 
- -  - ' - - L y  

-- - -  Ly 
- -X~  - - X 4  

=,_~, = ~ ~  -,,-x' _=~ 
- - L z  r l ~  LŸ - - L r  

- - q  --r~ 

--el 

x4-x~ 11.e i 12.6 [ 11-6 I 13-6 
~s'-~s 9.0 &? 6.0 7.4 

Fig. 6. Comparison of the electronie structure and electronic transitions of a [Cz6 cluster 
with experimental O P W - - S C F  and DVM data 
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and the width of the direet gap are indieated. As can be seen the siinulation 
of the band structure is satisfactory despite the small cluster and the limited 
interaetion length. (We note that  applying the special parameters of [11] 
which were obtained by fitt ing to the valence band of [20], the conduetion 
band calculated in the way described above fits also better). The energy of 
1"2 is predicted also in our calculation to be below that  of/"15 (not shown in 
the Figure). This is eonnected with the fact tha t  3a 1 preceeds 2t 2 in CH 4. 

After all these results support the use of a cyclic cluster model suppos- 
ing that  the cluster is chosen appropriately and the conduction band is cal- 
culated in a eorrect way, too. Of course the particular size of the cluster depends 
on the Inaterial examined and the desired accuracy, however, ir is surely in 
the treatable region. 

B) The energy levels of the vacancy 

The third eonvergenee problem, eonneeted with defeet separation, has 
Ineant the hardest task, because at the Inoment we ate notable to treat  clusters 
as large as necessary. (The next suitable cluster after C1~ would be the C64 -- 
about 1.3 Mbyte). The tate of convergence is determined by the localization 
of the defect wavefunetion, which is, however, questionable for the case of 
the vacaney in a purely covalent material. The only "experimental" fact is 
the conclusion of WATKIr~S [58] from the analysis of EPR data on silicon, 
namely that  the wavefunction is loealized about 65% to the first neighbours. 
The EHT ealculation of MESSMER and WATKINS [14] for C63V and the pseudo- 
potential ealculation of LOVIE et al [18] for Sis3V (both in supercell model) 
resulted equally in a dispersion of about 1.0 eV in the vaemacy level (lying 
in the gap). However, in the former the delocalization can follow from the 
lack of self-eonsistency [14], while in the latter from the plane wave expan- 
sion. The Koster--Slater method (which iinplies the perfect crystal Green func- 
tion) with a localized basis set [59] yielded a 70~ localization to the first 
neighbours and a more diffuse rail. However these authors and also [60] 
reported that  the change in the total charge distribution is praetically zero 
out of the second neighbours. (We note that  although these latter methods do 
not apply a superlattiee of defects, their results are comparable with those of 
[18] regarding both the energies and electron density maps). 

Our model caleulation on a C15V cluster applying the CNDO/2 para- 
inetrization which is suited for calculating wavefunetion related properties 
resulted in a localization of 75~o, 17~/o, 7yo and 1% of the wavefunction for 
1st, 2nd, 3rd and 4th neighbours, respectively. The CNDO/S parametrization 
(which is suited for calulating energy related properties) worsens this to about 
90~ on first neighbours. Froin the viewpoint of the defect energy level, our 
Inethod can be characterized by the following: 
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- -  res t r ic t ing the  in te rac t ion  length  we app ly  the  same a p p r o x i m a t i o n  

for the localized v a c a n c y  wavefunc t ion  as for the ex tended  wavefunc t ions  
of  the  crystal .  Therefore ,  the  error  in the  energy  re la t ive  to the  "de fec t  b a n d "  
m u s t  be also similar  and the resul t  devia tes  t oward  the  isolated case; 

- -  the  energy  difference be tween  the  isolated v a c a n c y  level and  the  
defect  band  is caused b y  the indirect  in terac t ions  (the direct  ones are excluded 
b y  the res t r ic t ion  of the  in te rac t ion  length) ,  i.e. by  the  change in the charge 
dis t r ibut ion of i n t e rmed ia t e  a toms due to the  ad jacen t  vacancies .  The ma in  
cont r ibu t ion  or iginates  f rom the a t o m  on the  ha l fway,  which is inf luenced 
b y  bo th  vacancies .  The  fur ther  ones are affected b y  the  change of this a t o m  

only; 
- -  the  Fock  m a t r i x  in the  CNDO eontains the  bond  order m a t r i x  

P~,~ : 2 ~ c'n% n therefore  it  does not  depend direct ly  on the par t icu la r  change 
n 

in charge d is t r ibu t ion  caused b y  the  v a c a n c y  wave funct ion.  
Therefore ,  to ob ta in  reliable resul ts  for the  energy  levels of  ah isolated 

vaeancy ,  it is necessary  to  cons ide ra  cluster  in which the  middle  point  be tween  
ad jacent  defects is f a r the r  t h a n  the  dis tance where the  change in the  to t a l  
charge d is t r ibut ion  due to the defect  becomes negligible. For  the  case of  silicon 
and d i amond  the  l a t t e r  ensue af ter  the  second neares t  ne ighbour  dis tance 
(it diminishes to abou t  1/20 a t  th i rd  ne ighbour  distance),  therefore  the  lowest  
defect  separa t ion  should be grea ter  t h a n  twice the  2nd ne ighbour  dis tance.  
This is realised b y  the  54 a t o m  cluster,  where the lowest  defect  separa t ion  is 
twice the  5th  ne ighbour  dis tance (2a 01/19/4 = 0.776 nm for d iamond) .  Indeed ,  
the  resul ts  of [18] for  Sis3V are v e r y  close to  t h a t  of  [60] (0.5 eV and 0.7 eV 
above  the  valence band ,  respect ively) .*  Regard ing  the  C15V cluster,  the  ha l f  
of  the shor tes t  v a c a n c y  separa t ion  is a t  the  second neighbours  in the  <110> 
direction, i.e. the  effect of  indirect  in te rac t ion  is not  negligible. The direct  
compar i son  of the  resul ts  for this cluster  (Fig. 7) wi th  exper imen t s  is not  
possible, because the  re laxa t ion  effects would require  a larger  cluster.  However ,  
the t rans i t ions  a t  the  v a c a n c y  are well in the  region of those of the  GR centres,  
usual ly  a t t r i bu t ed  to the  vacancy .  This shows t h a t  the  error  cannot  be too 
much  even for this small  cluster,  too (the reason  for this is pe rhaps  the  cont rac t -  
ing effect of  the  energy-or ien ted  pa ramet r i za t ion) .  F u r t h e r m o r e ,  the v a c a n c y  
in d iamond  and silicon can be regarded  as the  wors t  case. For  example  the  
local izat ion of the  wavefunc t ion  of a n i t rogen  subs t i tuen t  in d i amond  is much  
higher [14]. The same can be expec ted  for vacancies  in par t i a l ly  ionic solids [49]. 

* The value 0.5 eV was obtained from the "defect band" by a t ight  binding method, 
using the values at P and X. Since the direet interactions ate included, the dispersion is quite 
large causing some uncertainty. On the other hand the 0.2 eV difference seems to be quite 
large relative to the 1.1 eV direct gap in Si. However, the results of two similar calculations 
[60], [59] differ also by 0.1 eV. 
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L z ~ -  2,9 
30 

IP(tz)5CF=�91 eV 

Fig. 7. Electronic strueture of an unrelaxed vacancy in diamond (C15). E]ectronic transitions 
at the vacancy in the first column ate to be compared with those at the GR centre in the 

second eolumn 

Finally,  we m a y  devote  some words to the re laxat ion problem, which is 
inves t iga ted  ve ry  in tensively  in the present  days. Since the CNDO/2 para- 
met r iza t ion  is f i t t ed  to dipole moments ,  it  is quite  well applicable for geomet ry  
de terminat ion .  Therefore ,  the geomet ry  a round a defect can be calculated in 
the  course of a conformat ional  analysis procedure  on a suff icient ly large cluster 
(64 atoms for a d iamond cluster with first  neighbour  displacements)  as in 
the  quan tum chemis t ry  of molecules. Demons t ra t ing  the accuracy  of the 
CNDO/2 we note  t ha t  for the equil ibr ium lat t ice cons tant  of d iamond we 
obta ined  0.354 nm compared  to the exper imenta l  0.356 nm. 

Conclusions 

The early t r unca t ed  cluster approaches to  the deep level problem have 
had  serious shortcomings.  These can be avoided by  using an appropr ia te  
cluster  represent ing the  special k points of the BZ and applying periodic 
b o u n d a r y  condit ions.  We have pointed  out  the equivalency of the  various 
models developed independen t ly  and we have shown tha t  such a cluster  model  
wi th  balanced restr ict ions is effective a l ready for medium size clusters (and 
i f  the  defect wavefunc t ion  is s t rongly localized even for small clusters, too).  

The cluster model  makes it possible to apply  semiempirical  quan tum-  
chemical  methods,  which yield resuhs  comparable  with exper iments  for mole- 
eules. We ¡  shown tha t  also the conduct ion band levels can be s imulated 
in a cluster model  well, ir  one calculates them selfconsistently (including 
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co r r e l a t i on  effects) as f i na l  s ta tes  of e lec t ron ic  t r a n s i t i o n s .  A p p l y i n g  the  

C N D O q  m e t h o d  for a C1~ c lus t e r  we r e p r o d u c e d  the  energies  of some 

h i g h - s y m m e t r y  p o i n t s  of the  d i a m o n d  b a n d  s t r u c t u r e  w i t h  r e a s o n a b l e  accuracy .  

This  i nd i ca t e s  the  p e r s p e c t i v i t y  of the  a p p l i c a t i o n  of SCF LCAO CO m e t h o d s  

c o m b i n e d  wi th  the  special  k po in t  t h e o r e m  for b a n d  s t r u c t u r e  ca l cu la t ion .  

We  have  i n v e s t i g a t e d  the  e n e r g y  levels  of a v a c a n c y  in  d i a m o n d ,  wh ich  

is p r o b a b l y  the  wors t  case for possible  app l i ca t ions .  The  resu l t s  of the  C15V 
c lus te r  ( the l a rges t  we could  c o m p u t e ) ,  however ,  seem to  be s e m i q u a n t i t a t i v e l y  

correct  e n c o u r a g i n g  us to a p p l y  th is  mode l  for our  f i na l  goal  S i 0  2. 
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