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The calculation of the electronic structure of point defects causing deep levels is a widely
investigated problem. Various attempts have been done to solve this by applying defect
containing clusters with various boundary conditions and semiempirical hamiltonians. We have
shown in this paper the equivalency of the methods applying cyclic boundary conditions and
we proposed for them a very simple and efficient form. Using this modified version we calcu-
lated the band structure of diamond and the electronis structure of a vacancy in it by the
CNDO/S—CI method with reasonable agreement with the experimental data.

Introduction

The development of quantum chemistry, stimulated by the appearance
of fast and big computers, opened up the road to the applications in solid
state physics. A possible field of application may be the calculation of the
band spectra of covalent (and partially ionic) solids and the determination of
defect electron structure in these. This paper is devoted to this latter problem
while the other problems will be only mentioned. In Section I the experiences
of early cluster calculations are summarized. In Section II a foundation of
the eyclic cluster model is given in order to show the equivalence of the different
methods published in the literature. Finally, in Section III calculations on
diamond are presented applying a CNDO-hamiltonian in order to investigate
the capabilities of the model.

I. The cluster model

After the “defect-molecule” model [1, 2, 3] the cluster model has intro-
duced quantumchemical methods in the calculation of deep levels. In the clus-
ter model a small part of the solid around the defect is treated as a molecule.
The energies of the occupied orbitals of such a “molecule” are intended to
correspond to the valence band, while the energies of the virtual orbitals are
thought to reproduce the conduction band. The first attempts were made using
nonselfconsistent methods [9], [14] or [5, 6].
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The experience of the early cluster calculations can be summarized in
three points.

i) Unless the symmetry of the cluster is controlled, the identification
of crystalline k states in the defectless cluster is accidental, and the convergence
of the band edges with the arbitrary increase of the cluster size is slow [7, 8].

ii) The dangling bonds on the defect surface cause ““surface states’ and
charge inhomogeneity, moreover they interact with the defect wave function.
Various attempts were made to push the energy of these states out of the gap
by filling them with electrons [9], saturating them with hydrogen [10] or
with monovalent quasiatoms (a monovalent atom with the same parameters
as those in the cluster e.g. [11]). However, neither the problem of charge
inhomogeneity [12, 13] nor that of interaction with the defect [14, 15] can
be solved by these methods.

iii) Furthermore, in contrast to the valence band, the description of the
conduction band is not satisfactory [16]. (With various modifications, scaling
procedures, etc. the results can be improved, but not with the parameters
tested in quantum chemistry). And finally, the charge rearrangement cannot
be neglected (among others, this can increase the localization of the defect
wavefunction [14]). While the last problem can be solved by the IEHT [17]
making the Fock matrix dependent on net atomic charges, the former two
problems require a better approximation.

Therefore the problems in cluster calculations are the symmetry of the
cluster, the boundary condition and the hamiltonian applied.

II. The cyclic cluster model
A) QLUC (MUCA ) method

By applying the methods of band structure calculation, most of the
problems mentioned above can be avoided. Instead of the elementary cell one
can use a cluster which is the L? times that (or is a Bravais cell) and which
is containing the defect (supercell method). Then applying periodic boundary
conditions, an appropriate hamiltonian and a reasonable basis set, all but
one of the difficulties shall be over (e.g. [18]). This only one is the fact that
the interaction of the defect with the cluster surface is substituted by the
interaction between the periodically repeated defects. We note, however,
that this latter is considerably lower because the defect separation is twice
as long as the defect—surface distance and, on the other hand, the number
of first neighbour defects is much lower than that of the surface atoms. There-
fore a much faster convergence can be expected with cluster size, than for free
clusters. For the case of the perfect cluster, the reproduction of the experimen-
tal band structure obviously depends only on the approximation used to solve
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the Schridinger equation. However, the conventional methods applied to
covalent materials result in uncertainties in some points. E.g. in the case of
diamond, selfconsistent OPW calculations result in a 8.7 €V direct gap between
I'y; and I';; [61], while the DVM of [20] resulted in 6.0 eV for the same separa-
tion. Moreover, the application of a pseudopotential yielded a direct gap between
I'y; and I, [20]. On the other hand the direct parametrization methods depend
on the experimental data chosen for fitting, which are not always unambiguous
either as it is just the case for the direct gap of diamond. Much higher uncer-
tainties appear in the case of partially ionic materials as e.g. Si0,. Presum-
ably, the advanced LCAO—MO type quantumchemical methods, which apply
atomic orbitals and well tested hamiltonians may help to clear the dark points.
Even more promising is their application for deep levels. The general formulas
of the extension of quantumchemical LCAO—MO to band structure calcula-
tion was performed by ANDRE et al [21].

This procedure is based on the construction of crystalline orbitals (CO)
as a linear combination of Bloch sums, which are in turn given from the
identical orbitals in the various primitive cells:

ph) = 3 St (D ap B, (1a)
A=1 p=1
FA0) = N7 S a(r — R, — d,) ekRe, (1b)
i=0

Here and in the following n, m will mean the band index: i, j, k, l will correspond
to one of the IV cells of the crystal, and

x(r— R —dy)) (p=1...,8 4=1,...,h)

is the atomic orbital of type y on the centre A4 of the [-th primitive cell. For
the sake of brevity we shall write:

%, (r — Ry —dy) = .
The periodic boundary condition is fulfilled by the statement:
BN = pf . )

Within this scheme a modified set of Roothaan’s equations must be solved
with any kind of quantumchemical methods:

%‘ 2 [Funk) — €n (k) S, (K)] (k) = O, (3)
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where:

= 12 FY, eikRy . (4)

Fy(k) is the element of the Fock matrix between Bloch sums which are con-
structed from y orbitals of the A-type centres and » orbitals of B-type centres,
respectively, and

Fl=HY+ 33 30 P“’(k' z[wé‘v}?l AL aP) —

k' C,D Ae k.l

— g A )| e, )

In (5) Hﬁlj, is the core hamiltonian matrix between the y orbital of the 0-th
cell and the » orbital of the j-th one, and:

Pu(k) =2 3 &, (k')* Bl) , (6)
S, (k) = 2 Su e*Ri — 2 (ug | vF) etRi. W)
J

Eq. (3) has to be solved for all k states of the reduced Brillouin zone (BZ).
Since the Fock matrix contains the c:‘n(k) coefficients, the solution can be found
in an iterative SCF procedure. To perform this with an ab initie hamiltonian
is quite a hard task regarding the sum of multicentre integrals over the BZ
and over all orbitals in every cell. A simplification of the problem can be reached
by applying approximate semiempirical methods, which is the usual way of
the quantum chemistry for large molecules. This has also the advantage that
through the empirical data a certain part of correlation is also accounted
for in some of the methods.

The simplest case is the EHT [19], which neglects electron —electron (and
also core—core) interaction, making the sum in Eq. (5) disappear. The remain-
ing term H}} is parametrized semiempirically. In this case the energies at various
k points can be calculated independently (e.g. [4]).

If one applies a supercell, all K points of the corresponding BZ collect
more k points of the original one. By a careful choice of the supercell [22, 23]
the important symmetry points (all branches of a given k*) can be involved
in the K = 0 state. This is important from the viewpoint of the defect calcu-
lation, because it was shown [24] that the defect levels originate from the
critical points of the band structure, which are in turn usually at or near to
the bigh symmetry points of the BZ. Therefore, to obtain the defect levels it
is sufficient to calculate the K = 0 state of the appropriately chosen large
unit cell. For the case of the EHT, when all K states are independent, this
supercell calculation is equivalent to a cluster model with periodic boundary
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conditions as applied by [25], [26] and [27], [24] [14], [28]. The procedure was
called MUCA (molecular unit cell approach) by MEssMER and WATKINS and
QLUC (quasimolecular large unit cell) by Evarestov et al.

Regarding the shortcomings of the EHT as mentioned previously, a
somewhat better approximation of the Fock matrix is necessary. The next
step in approximation is usually the CNDO with different parametrizations
which are very suitable for calculating wavefunction related properties (e.g
dipole moments and geometry) as the CNDO/2 [29], [30], [31], or for energy
values as the CNDO/SW [32], [33] and CNDO/S [34], [35] and [36]. The for-
mulae of the LCAO—CO in the CNDO approximation were elaborated by
[37]. The Roothaan equations are reduced to

22 Fy,v(k) cvn(k) = é‘n(k cun(k) (8)
and the Fock matrix is (u € A):

Fo k) = Uy + Ba Z(Sth — 8y)) ™R — 3Z5 3(1 — 8apdy) ¥Yp +
j B j

k’ ; 1 k . .
+22 BB( ) 5‘7/?43—?§ ’FI%T“M)’Z?}%A elk+ kK)Ry (9)

and the off diagonal elements (u = v and p € 4, v € B) are

F (k) = %(ﬂA -+ B5) 2 S0J eikRi — %2 Pu;fjkl) .
j

K

2»); 0J e’(k+k)R1 (10)

where Ppp = > P,;; Zp is the core charge and J;; is the Kronecker symbol.
iR
The first three members in (9) and the first in (10) correspond to H,,(k), while

the remaining terms express the electron—electron interactions because of the
basic limitation of the CNDO:

(uft Vi Mk oP) = (uft Mf\llg %) 0,011 08 0cp
6;1.1167\.0 = Vi/la{c 51] 01 84 Ocp 5#1; 0o (11)
for all u on A in the i-th cell and for all 1 on C in the k-th one. U,,, 84 and

»%s are the parameters selected according to the type of the CNDO. As can
be seen the CNDO maintains a certain part of the two-electron integrals and
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the coupling of the k states appears again. To avoid the integration over the
BZ EvARESTOV et al returned to a cluster type calculation by neglecting the
interactions between the various K states in the BZ of the supercell (but preserv-
ing them between the k states involved in the K = 0 state) [38]. As it was
mentioned above this restriction has a minor effect on the defect levels, how-
ever, it is important from the viewpoint of simulating the band structure,
Evarestov et al [24] have shown that the energy of a given k state converges
to its exact value as the number of Lk’ states interacting with it increases.
However, the improvement of the results is not monotonous by all means
increasing the cluster arbitrarily [39]. In spite of this, such an extension of
the QLUC model resulted in an encouraging valence band for a diamond cluster
containing only the I', X and L points of the original BZ. EvArEsTOV et al
interpret this success by means of the special k-point theorem of CHADI
and ConEN [40]. Namely, it was shown that the average of a smoothly varying
function f(k) over the BZ can be calculated as a weighted sum of the values at
some special k points

1
fk)) = >

BZ

k) dk ~ 3o f(k) . (12)
BZ i

The results are extremely good even for a few number of k states. Since the
supercell band structure calculation decreases the dispersion of the bands
[41], one can expect the function P,,(K) to be smooth enough for applying
the theorem in Eq. (5) with success. By the use of the summation method of
[42] for the electron—electron integrals the reaching of an ab initio selfconsistent
band structure would be also possible with a reasonable computing time,

B) The SPC method

The problem of interactions between the periodically repeated defects
appears also in the QLUC model. This problem is thought to be eluded in the
SPC (small periodic cluster) approach which applies periodic boundary condi-
tions directly to the cluster. This means the prescription that the interaction of
atoms 4 and B (both in the cluster) has to be replaced by the 4B’ interaction,
B’ being an equivalent of B closest to 4 in the crystalline environment (Fig. 1).
If all R,p distances are longer than R,y then AB is maintained [26]. Due
to this conception, the length of allowed interactions is restricted to be less
than the half of the cluster size. This limitation excludes the direct interactions
between the defects and lowers the indirect ones also considerably because
all atoms interact with one defect only. The SPC was applied first in the chemi-
sorption theory of graphite and boron nitride by [43], [44] with CNDO
and by [45] with EHT, but later on it was used in other problems too (e.g.
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Fig. 1. The interatomic distance and direction cosine matrices in a one dimensional SPC.
(Roman numbers correspond to appropriate neighbour distances)

[46] or [11]). The name SPC originates from ZuNGER who analysed this method
[39, 47] in detail for one- and two-dimensional systems [48, 49]. In his formula-
tion the interatomic distance and direction cosine matrices (Fig. 1) were
constructed to be cyclic and these were used in the construction of the Fock
matrix. This procedure is obviously equivalent to that described by [26].

C) Generalization of the SPC toward the QLUC: the cyclic cluster

The SPC was criticized by EvVARESTOV et al [50] in comparison with
the QLUC. However, it can be shown on the basis of a somewhat different
conception of SPC [51] that the two approaches are essentially equivalent.
The periodic boundary conditions of the SPC can be visualized by joining the
one end of the cluster to the other, i.e. making cyclic the cluster itself (Fig. 2).
If the interaction length is shorter than the half of the cluster size, the orbital
@ on atom A ‘““winds” (onefold) on the cluster (Fig. 3/a). However the same
can be done also without limiting the interaction length, only the “winding”
will be manifold (Fig. 3/b). This causes e.g. the “self-overlap’ of ug', however,
as can be seen comparing Fig. 3/b, and Fig. 4, this is identical with the diagonal
element of the overlap matrix on the basis @7 where

1
Oh = —— £, 13
15 VN ;M! ( )

and ! runs over the cells equivalent to the cluster in the whole crystal. But (13)
is just the basis which is used in the QLUC after neglecting interactions between
the K states (K = 0 is calculated only and the sum over K’ disappears also,

D Qe Qe QO O]
A BC D E FA

Fig. 2. Cyclic visualization of the Born—Kdrmdn boundary conditions in one dimension
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b)

Fig. 3. The application of the cyclic boundary conditions with: a) finite range of interaction;
b) infinite range of interaction

- g

- <D

A, Al Ao A Az

Fig. 4. Periodic visualization of the Born—Kdrmén boundary conditions in one dimension
with infinite interaction length

in Eqs. 9—10). Therefore, if one carries out the choice of the cluster in a way
prescribed in [23], the only difference is in the limitation of the interaction
length. The restriction of this, however, has practical advantages. In addition
to eliminating lattice sums (which causes a significant reduction of the com-
putational time if one calculates the electron-electron integrals theoretically),
the interaction of defects is also strongly suppressed.

The infinite range of interaction is kept in the QLUC to ensure exact
translational invariance, i.e. the long range order. However, as it was shown
[52, 53], the band character in covalent solids is determined by the short
range order. (This holds even more for e.g. Si0,.) Therefore, the improvement
introduced taking into consideration the long range order can be of the same
order of magnitude as the error caused by invelving the interactions of the
defects in the superlattice.

In the light of these we think that the arguments in Section 5 of [23]
can be ignored, except the one that the restriction of R, below the half of
the cluster size leads to the necessity of calculating too large clusters. There-
fore, we suggest a compromise for keeping R, to be equal to the half of the
cluster size increasing the effect of indirect defect interactions but excluding
the direct ones further. As will be shown in the next Section, this little con-

Acta Physica Academiae Scientiarum Hi icae 50, 1981

5



CYCLIC CLUSTER MODELS 255

cession makes a considerable improvement possible. We note that lattice
sums do not appear if care is taken to preserve charge neutrality in a similar
manner as in the Madelung summation [51].

III. Calculations

We present calculations for the vacancy in diamond applying the model
described above, in order to investigate its convergence properties (between
our limited possibilities) and to compare its results with experimental data.
Perhaps the diamond vacancy is not the best choice for such a purpose, because
the localization of its wavefunction is questionable (but very likely not too
strong), however, most of the previous works were carried out for the vacancy
in diamond and in silicon. (The examination of Si requires further work, because
no parameters exist for it in the CNDO/S scheme involving d orbitals.) Our
final goal is the oxygen vacancy in SiO, which is a partially ionic material
dominated by the short range order, i.e. with highly localized bonds.

We shall use a cyclic cluster representing the I', X and L points of the
diamond BZ (i.e. the Cyq cluster), with an interaction length equal to the radius
of the cluster (i.e. 4th neighbour). This means the reduction of Eq. (8) to
the original Roothaan equation in the CNDO approximation, i.e.:

S S (Fu— endu) B =0 (14

and
1
pr = U,m + ?I)p.y. Yaa + g(PBB — Zg) Yas>» (15)
1 1 16
F‘uv:—é‘(ﬁA_*—ﬂB) Sy.v—?Py.vyAB' ( )

Such a procedure involves three kinds of convergence problems

— convergence with k states involved in K = 0;
— convergence with the range of interaction;
— convergence with defect separation.

The first two are needed to achieve a good simulation of the perfect crystal
band structure, while the third is required to eliminate indirect defect—defect
interactions (direct ones are excluded automatically by R)).

A) Simulation of the band structure (perfect cluster )

In Fig. 5 the occupied orbitals, i.e. the valence bands of various diamond
clusters are plotted. The a), b), and ¢) parts of the Figure show the Cy(I'),
Ce(I", X) and C,(I", X, L) clusters in the same first neighbour approximation.
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Fig. 5. Occupied orbitals of a) C;, b) Cq, c), d), ), f) ;¢ diamond clusters with first (a, b, c)
second (d), third (e) and fourth (f) neighbour approximations, applying CNDO/

(The Cg, cluster was too large for our computer). The ¢, d, e and f parts show
the same C,4 cluster with increasing interaction lengths (from first to fourth
neighbour). The results confirm the importance of short range interactions,
showing a fast convergence with R,. On the other hand the results show very
slight dependence of the included k set. Although, the few number of results
do not allow far reaching conclusions, we shall see that the C,4 cluster repro-
duces the experimental band structure fairly well.

Applying the cyclic cluster model, two of the problems connected with
EHT truncated cluster calculations (see Section I) are overcome. The third
one is the question of the choice of the hamiltonian. The CNDO is selfconsistent
and its CNDO/2 version is excellent for geometry determination. The applica-
tion of semiempirical methods, as the CNDO, to molecules allows the compari-
son of results with experiments which are in the case of the electronic structure
the photoelectron and UV spectroscopy. Similarly for solids the valence band
levels can be determined directly relative to the vacuum level, while those
of the conduction band are determined only relative to the valence band via
electronic transitions. In a solid, the excitation or the removal of an electron
does not alter the state of the whole system considerably. This is not the case
in molecules and consequently in our molecular cluster. By removing an electron
from his level, the position of the ionic cores may alter, the system of the
remaining electrons may relax, and the error caused by the neglection of the
correlation effects may change. Therefore a method, which is well parametrized
in the ground state, can give unreliable results for excitation or ionization
energies, even if these are calculated as the difference between the initial
and the final state energies.
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Fortunately, for the ionization potentials the Koopmans’ theorem gene-
rally holds with good accuracy, i.e. the energies of the occupied orbitals are
equal to the negative of the ionization energies. This statement justifies the
correctness of identifying the valence band with the occupied orbitals of the
cluster.

However, this is not valid for the excitation energies. The calculation
of these simply from the difference between the energies of the virtual orbital,
(for which the electron will be excited) and of the occupied orbital leads to
very poor results. Therefore, in the case of electronic transitions selfconsistent
calculation must be carried out taking the correlation also into account. Hence
a conduction band, comparable with experimental data, must be deduced
in a cluster model from such a calculation.

Such a procedure is not possible in the EHT, while the CNDO/S-CI
was elaborated even for calculating electronic transitions. In this method the
parametrization takes into account a part of the correlation, and the transi-
tions are calculated selfconsistently followed by a limited configuration inter-
action (CI) calculation. We used a reparametrized form of it which yields
both ionization and excitation energies (similarly to CNDO/S3 of [54], but
optimized for saturated hydrocarbons [55]). Our results for the C,; cluster
(4th neighbour appr.) are shown in Fig. 6 together with experimental results
[56, 57] and with results of OPW [61] and DVM [20] band structure calcula-
tions. In the lower part of the Figure the energy of the strongest transition

diamond
C-16 exp. OVM  OPW-SCF
CNDO/S
eV
/s
RS , —_
%1 =)Lz‘5 _)é
1 ——
59 R 58 1
—bs f—
—l 25'
X% —Ly
""‘X‘
-20 —X =L1
L —)L(;-
—L
)
-40 —0
X-X] 18 | @6 ] ne | 138
Beisl 9 | 87 | 60 | 7

Fig. 6. Comparison of the electronic structure and electronic transitions of a [C,; cluster
with experimental OPW —SCF and DVM data
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and the width of the direct gap are indicated. As can be seen the simulation
of the band structure is satisfactory despite the small cluster and the limited
interaction length. (We note that applying the special parameters of [11]
which were obtained by fitting to the valence band of [20], the conduction
band calculated in the way described above fits also better). The energy of
I, is predicted also in our calculation to be below that of I'|5 (not shown in
the Figure). This is connected with the fact that 3a, preceeds 2t, in CH,.

After all these results support the use of a cyclic cluster model suppos-
ing that the cluster is chosen appropriately and the conduction band is cal-
culated in a correct way, too. Of course the particular size of the cluster depends
on the material examined and the desired accuracy, however, it is surely in
the treatable region.

B) The energy levels of the vacancy

The third convergence problem, connected with defect separation, has
meant the hardest task, because at the moment we are not able to treat clusters
as large as necessary. (The next suitable cluster after C,4 would be the Cg, —
about 1.3 Mbyte). The rate of convergence is determined by the localization
of the defect wavefunction, which is, however, questionable for the case of
the vacancy in a purely covalent material. The only “experimental’ fact is
the conclusion of WATKINs [58] from the analysis of EPR data on silicon,
namely that the wavefunction is localized about 659, to the first neighbours.
The EHT calculation of MEssMER and WATKINS [14] for Cy,V and the pseudo-
potential calculation of LouiEe et al [18] for Si;,V (both in supercell model)
resulted equally in a dispersion of about 1.0 eV in the vacancy level (lying
in the gap). However, in the former the delocalization can follow from the
lack of self-consistency [14], while in the latter from the plane wave expan-
sion. The Koster—Slater method (which implies the perfect crystal Green func-
tion) with a localized basis set [59] yielded a 709, localization to the first
neighbours and a more diffuse tail. However these authors and also [60]
reported that the change in the total charge distribution is practically zero
out of the second neighbours. (We note that although these latter methods do
not apply a superlattice of defects, their results are comparable with those of
[18] regarding both the energies and electron density maps).

Our model calculation on a C;;V cluster applying the CNDO/2 para-
metrization which is suited for calculating wavefunction related properties
resulted in a localization of 759, 17%,, 7%, and 1%, of the wavefunction for
1st, 2nd, 3rd and 4th neighbours, respectively. The CNDQ/S parametrization
(which is suited for calulating energy related properties) worsens this to about
909, on first neighbours. From the viewpoint of the defect energy level, our
method can be characterized by the following:
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— restricting the interaction length we apply the same approximation
for the localized vacancy wavefunction as for the extended wavefunctions
of the crystal. Therefore, the error in the energy relative to the “defect band”
must be also similar and the result deviates toward the isolated case;

— the energy difference between the isolated vacancy level and the
defect band is caused by the indirect interactions (the direct ones are excluded
by the restriction of the interaction length), i.e. by the change in the charge
distribution of intermediate atoms due to the adjacent vacancies. The main
contribution originates from the atom on the halfway, which is influenced
by both vacancies. The further ones are affected by the change of this atom
only;

— the Fock matrix in the CNDO contains the bond order matrix

Py, =2 3 ctc,, therefore it does not depend directly on the particular change
n

in charge distribution caused by the vacancy wave function.

Therefore, to obtain reliable results for the energy levels of an isolated
vacancy, it is necessary to consider a cluster in which the middle point between
adjacent defects is farther than the distance where the change in the total
charge distribution due to the defect becomes negligible. For the case of silicon
and diamond the latter ensue after the second nearest neighbour distance
(it diminishes to about 1/20 at third neighbour distance), therefore the lowest
defect separation should be greater than twice the 2nd neighbour distance.
This is realised by the 54 atom cluster, where the lowest defect separation is
twice the 5th neighbour distance (2a,Y19/4 = 0.776 nm for diamond). Indeed,
the results of [18] for Si;;V are very close to that of [60] (0.5 eV and 0.7 eV
above the valence band, respectively).* Regarding the C,;V cluster, the half
of the shortest vacancy separation is at the second neighbours in the (110}
direction, i.e. the effect of indirect interaction is not negligible. The direct
comparison of the results for this cluster (Fig. 7) with experiments is not
possible, because the relaxation effects would require a larger cluster. However,
the transitions at the vacancy are well in the region of those of the GR centres,
usually attributed to the vacancy. This shows that the error cannot be too
much even for this small cluster, too (the reason for this is perhaps the contract-
ing effect of the energy-oriented parametrization). Furthermore, the vacancy
in diamond and silicon can be regarded as the worst case. For example the
localization of the wavefunction of a nitrogen substituent in diamond is much
higher [14]. The same can be expected for vacancies in partially ionic solids [49].

* The value 0.5 eV was obtained from the ‘“‘defect band” by a tight binding method,
using the values at I" and X. Since the direct interactions are included, the dispersion is quite
large causing some uncertainty. On the other hand the 0.2 eV difference seems to be quite
large relative to the 1.1 eV direct gap in Si. However, the results of two similar calculations

[60], [59] differ also by 0.1 eV.
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Fig. 7. Electronic structure of an unrelaxed vacancy in diamond (C,;). Electronic transitions
at the Vacancy in the first column are to be compared with those at the GR centre in the
second column

Finally, we may devote some words to the relaxation problem, which is
investigated very intensively in the present days. Since the CNDO/2 para-
metrization is fitted to dipole moments, it is quite well applicable for geometry
determination. Therefore, the geometry around a defect can be calculated in
the course of a conformational analysis procedure on a sufficiently large cluster
(64 atoms for a diamond cluster with first neighbour displacements) as in
the quantum chemistry of molecules. Demonstrating the accuracy of the
CNDO/2 we note that for the equilibrium lattice constant of diamond we
obtained 0.354 nm compared to the experimental 0.356 nm.

Conclusions

The early truncated cluster approaches to the deep level problem have
had serious shortcomings. These can be avoided by using an appropriate
cluster representing the special k points of the BZ and applying periodic
boundary conditions. We have pointed out the equivalency of the various
models developed independently and we have shown that such a cluster model
with balanced restrictions is effective already for medium size clusters (and
if the defect wavefunction is strongly localized even for small clusters, too).

The cluster model makes it possible to apply semiempirical quantum-
chemical methods, which yield results comparable with experiments for mole-
cules. We have shown that also the conduction band levels can be simulated
in a cluster model well, if one calculates them selfconsistently (including
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correlation effects) as final states of electronic tranmsitions. Applying the
CNDO/S—CI method for a C;4 cluster we reproduced the energies of some
high-symmetry points of the diamond band structure with reasonable accuracy.
This indicates the perspectivity of the application of SCF LCAO CO methods
combined with the special k point theorem for band structure calculation.

We have investigated the energy levels of a vacancy in diamond, which
is probably the worst case for possible applications. The results of the C;;V
cluster (the largest we could compute), however, seem to be semiquantitatively

correct encouraging us to apply this model for our final goal SiO,.
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