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Homogeneous solutions of self-gravitating perfect fluids in spherically symmetric and
also cylindrically symmetric cases have been presented. In spherically symmetric case, the condi-
tion of comoving coordinates has been imposed whereas in the case of cylindrical symmetry it
follows from the homogeneity condition.

L. Introduction

Recently a number of papers [1, 2, 3, 4, 5] have appeared on self-gravitat-
ing perfect fluid. While TABENskY and TAus [1] developed the theory of a
fluid where the density of the distribution equals the pressure in relativistic
units and also solved the problem in case of a plane symmetric distribution,
LeTeLIER [2] attacked the problem in case of acylindrically symmetric distri-
bution. Ray [3] rectified some oversights committed in LETELIER’s paper.
However, in all previous works, the complete solution of the space-time
geometry was not attained.

In the present paper, the authors present exact solutions of self-gravitat-
ing perfect fluids having spherical symmetry and cylindrical symmetry. How-
ever, in both cases, the spatial part of the metric was conformally flat, so enly
homogeneous solutions are considered. Besides, in spherical symmetric case,
the restriction of a comoving coordinate system is imposed from the beginning,
while this situation comes out automatically in cylindrically symmetric case
from the homogeneity condition. Under these circumstances, our equations
simplified to a great extent which helped us to find out complete solutions.

In Part II, the general field equations are given, while in Part III, the
spherically symmetric solution is presented. The cylindrically symmetric
solution is given in Part IV. The paper ends with a discussion in Part V.

II. Field equations

Einstein’s field equations for a self-gravitating perfect fluid with pressure

P equal to rest energy ¢ and four-velocity u, are equivalent to the field equa-
tions [1]:

R,y = —20,0,, (2.1)

(o= (/=8 0.8)V—8=0. (22)
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When irrotationality is imposed, i.e.
u, = ¢ ,/[o,a?] V2. (2.3)

The units chosen are such that for the velocity of light ¢ =1 and
Newton’s constant of gravitation G = 1/8x. Partial derivative with respect
to the index is shown as a comma.

The pressure P and the energy-momentum tensor T, are related to o by

P=p=9¢,0° (2.4)
and
Tab = 26.a Op — BabO,c ac. (2‘5)

IIL. Spherically symmetric self-gravitating perfect fluid

The metric, taken in isotropic form is given by:
dS? = e’ di? — e*(dr® + 12d6? + r2sin? 6 dy?) , (3.1)

where v and u are function of both ¢ and r.

Since, we assume the coordinate system to be comoving, from Eq. (2.3),
only o4 will exist and so, the field equations (2.1) and (2.2) under the metric
(3.1) can easily be written as:

2 ’
moa’ozie-"ﬁz._e—# u”_|_”_+_2_”_ , (3.2)
4 4 r
2 "
Wy D ) — 2w ) =0, (33)
r
'R = 1 T(z) (3.4)
and
0y = B(r)e 1), (3.5)

where T(t) and B(r) are, respectively, arbitrary functions of ¢ and r only.
Here dashes and dots denote partial derivatives with respect to r and ¢, re-
spectively.

Using (3.4) in (3.3) we get the equation for y as

¥ 7o 2 ’ 5 4 .’ "o Y
PWRR—Ap B —p A — ) — 2u" h— 4" =0, (3.6)
r r

We have not been able to solve Eq. (3.6) in a general way but when we
consider u in the form

p=X0)+ Y() (3.7)
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we easily get

22
ot — (H— —~) . YO, (3.8)
4G

H and G are just arbitrary constants.
A simple check for consistency of Eq. (3.2) for the above expression
for u leads us to
H=0
and

e3Y() — A[T@®, (3.9)
where A is a constant except zero.

Thus, the metric (3.1) becomes

ds? — [ 4 ) . de— %(A [T()])2 (dr® + r2d8 + 12 sin? 6dg?) .

942

The above metric may also be written after transformation of time coordi-
nate as

ds? = dee — i/"; [T@)] (dr + r2de? + 12 sin? 6 dg?) , (3.10)
r

where M is an arbitrary constant.
From Eq. (2.4), we easily get

P—g— —i— [T()]2. (3.11)

IV. Cylindrically symmetric self-gravitating perfect fluid

If we take the isotropic cylindrically symmetric metric

dS? = e d2 — e¥ (dr? + &2 4 2 dy?) , (4.1)

where 4 and p are the functions of r and ¢, we get from Eq. (2.1)
20,0t =¥ (2 — 9" —p’ —p2+ 9, (4.2)
= —u, (4.3)

.. . .. v , , . 1,
—20,0°%= e~ 3y + 39* — 3pi) — e Py + p24u'y’ + —p’|. (4.4)
r

It is easy to conclude from (4.3) that

where B(t) is an arbitrary function of time only.
Thus from (4.2)
0,=0 (4.6)
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and
Y= —p =0 (4.7)
so that
= f(1), (4-8)
. y = [B()) — C()] (4.9)
p=C(t). (4.10)

Obviously, Eq. (4.6) gives us the comoving nature of the case. From
Eqgs. (2.2) and (4.8)

= E). J exp [4C(t) — 3B(1)] dt + F . (4.11)
r
E(r) L
We must have —~ = constant = G (say) in view of (4.8), where E(r)
r

and F are integration constants, E(r) being a function of r also.
So, the metric (4.1) takes the form

dS? = exp [2C(t)[ — exp 2[B(t) — C(1)] [dr® + d2* + r2d¢?]. (4.12)

and from (2.4)
P =p G*exp 6 [C(t) — B(1)] . (4.13)

V. Discussion

In both solutions, the temporal behaviour of the matter density as well
as the pressure depends solely upon the temporal development of spatial
part as is expected in homogeneous solutions.

If the space is expanding, contracting or oscillating, the matter density
or pressure will accordingly reduce, increase or oscillate.

It seems that the method of TaBENsKY and TauB [1] is much simpler
if one is interested in studying perfect fluids only.
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