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The paper deals with the influence of the orientation factor on the photoluminescence
quantum yield for solutions in which restricted rotations of active molecules occur. It has
been shown that critical concentrations depend on the mean value of the orientation factor

of E]ie_ form <V<_7¢2_>> for one-dimensional systems, <V<7—z2>> for two-dimensional systems, and
<}/<x2>> for three-dimensional ones.

1. Introduction

Luminescent molecules excited to the first electronic state can lose the
excitation energy through a nonradiative transfer to molecules in the ground
state. The theory of long-range electronic excitation energy transfer via dipole-
dipole interactions developed by FORrsTER [1, 2] gave the explanation of the
phenomenon. Various problems concerning luminescent systems as well as
molecular biology systems have been solved using this theory [2—8]. The
nonradiative excitation energy transfer rate constant can be expressed as [1]

kap = (kp -+ k) (Ry/R)®, @

where kp and k, are rate constants of the photoluminescence and internal
conversion, respectively; k? is an orientation factor' dependent on the relative
orientation of the transition moments of the excited A4* and unexcited B;
R, is the so-called “isotropic” critical distance, i.e. it is the value of R for
which k,p = kp 4 k, when, simultaneously, k* — 1. The rate constant k,p
depends markedly on k?, which can vary from 0 to 6 [9]. It is therefore impor-
tant to determine the mean value of the orientation factor in case of the energy
transfer within a system of molecules oriented at random or a system in which
certain molecule orientation prevails. The problem was partly solved for
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1 k2 differs from the orientation factor x? as defined in [1] by a constant factor 3/2
(see also Eq. (2)); i.e. relation k? = 3/2 »? is satisfied.
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solutions by MaksiMmov and Rozman [10]. DALE and EisiNnGer [8] presented
an extensive study of this problem for interacting molecule pairs.

In this work we would like to present theoretical considerations of the
orientation factor influence on the photoluminescence of viscous solutions in
which restricted rotations of the transition moments of active molecules may
also occur. The problem will be treated uniformly for solutions of different
dimensions (I = 1,2 and 3).

2. Theoretical considerations

Recently [11—13], the problem of the excitation energy transfer effi-
ciency for solutions of different dimensions was studied for the energy transfer
process regarded as a multistep one. It was assumed, among others, that the
solutions are rigid to the extent to which the material diffusion can be neglected,
and simultaneously liquid enough to allow for the complete rotation of molecules
during the excitation energy transfer lifetime. Under this assumption a so-called
isotropic value (%2> =2/3 [9,10] i.e. (k) ==1 could be taken in these works as
the mean value of the orientation factor. The assumption of complete molecule
rotation is, however, not valid for solutions of sufficiently high viscosity,
where during a time interval, 7, (time of excitation energy localization on
a single molecule) between the instant of excitation of the molecule 4 and the
instant of transferring this energy from 4* to one of the neighbouring molecules
B, more or less restricted rotations of the molecules involved are possible.

The temporary value of the orientation factor for a pair of molecules
A* and B is given by [1, 9]

3. . N PN
kap = ? éaép — 3(EaRAB)(ép RAB)T» (2)

where 24, é5 and R, are unit vectors for the transition moments of the mole-
cules A* and B and the distance between them, respectively.

The rotational motions of molecules due to their statistical nature cause,
that the excitation energy transfer rates depend on values (k% ;> averaged
over the time 7,. These in turn depend on the initial orientation of the transi-
tion moments of the interacting molecules 4* and B.

In our considerations of the influence of orientation factor on the effi-
ciency of the excitation energy transfer in solutions of different dimensions
we have adopted the same assumptions, in principle, as in [11—13]. However,
unlike those earlier works, individual values of (k%> for each pair of mole-
cules are taken into consideration. Thus we assume that the solution contains
donor D and acceptor 4 molecules, the probability of energy transfer from an
excited molecule D* to molecules D and A4 around it, forming together a so-
called luminescence centre, depending on their configuration. This configura-

Acta Physica Academiae Scientiarum Hungaricae 50, 1981



ORIENTATION FACTOR IN THE THEORY OF CONCENTRATIONAL QUENCHING 203

tion is defined by orientations of the transition moments of molecules D and
A, and their vector positions relative to the orientation of the molecule D*.

Assuming that the molecule orientations and distances between them
are statistically independent, the probability P(D* = D) of D* belonging
to the centre of type o (i.e. characterized by a specific configuration of mole-
cules D and A with respect to D* can be written as

Np—1
P(D* = D) — II (——x ldx{l [ (@ di

Na Ny

11 [ o) 1 @) s, 3)
=1 j=1
where the first and third terms are probabilities of D lying within x; — x;, + dx,,
and 4 lying within y; - y; + dy;, respectively, from the molecule D*; the
second and fourth terms can be regarded as probabilities of specific orienta-
tions of the transition moments and position vectors of type D and 4 mole-
cules, respectively, relative to the transition moment of the molecule D*;
®; and o, represent sets of angles defining the unit vectors of moments
and distances, while n(®,) and n(g;) are their distribution functions for D and
A, respectively. N, and N, denote numbers of donor (including D*) and
acceptor molecules, respectively, in an I-dimensional volume of radius R.

It has been shown that for a multistep process of excitation energy trans-
fer from molecules D to A the photoluminescence quantum yield % of a solu-
tion is given by [11]

= FB/(1 — Fpp), 4)

where P and Pp,, are mean probabilities of fluorescence of an excited mole-
cule D*, and nonradiative excitation energy transfer from D* to D, respect-
ively.

For the modified definition of the luminescence centre as presented above
(see also remarks in [11]) the probabilities Pr and Ppp, can be described by
the following formulae

P, = llm Py(R) = lim ¥ ky
R+ (o) K@)

P(D* = D), (5)

Pop = hm Ppp(R) = lim 3 —=== LN P(D* = D) » (6)
R—~= Y(a) k(a)
where
koy = kg + kg + kppey + kpaey (7
kppey = (kr + k) RS DZ CHER (8)
kpaey = (kr + k) RS AZ <KDy . 9
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Here R,,, and R,, denote “‘isotropic™ critical distances for the nonradiative
energy transfer from D* to D, and from D* to A, respectively.

Since the molecule distance and moment distribution functions are
continuous it follows from (5) that

P,=—— lim J:[
kp + k R—>>

(ND—l) +Na

= (i) di] 2 oy ) d@,-)

m»k_ﬁt_x

T |=

=1

Np—1 l
{ (10)

1+ [RgD 2 k[ + RS AZ <k2>/y,}

=

Following the calculation procedure of [11—13], which permits separation
of integrals over x,y, and @ and g, we arrive at the formula

Pp=mny[1 — F(z)], (11)

where 7, = kg/(kp 4 k;) is the absolute yield of donor molecules for their
concentration in the solution ¢, — 0 with simultaneous ¢, = 0, ¢4 being the
acceptor concentration; F(z) is desribed by

©

F(z) =z f exp [— (2% + #x)] dx (12)
where 0
st 5 (B« () e o0
Here
(’V”<k >> ﬁ?k > n(dp) dvp (14)
and

6/1 ~6/1
(R >-— V<S> n(6a) déa (15)

R, and R, are radii, in the I-dimensional space, of the volume occupied, in
the average, by a single molecule of the donor and acceptor, respectively.
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The probability P, can be calculated in a similar manner, starting
from relation (6). As a result the following formula is obtained

Pop = (2p/5) * F(z). (16)
Substitution of (16) and (11) into formula (4) yields

1 — F(z)

) 17
1 — (sp/2) F(z) (7

n/ny =

which gives the relative quantum yield of the system as a function of z. As
relations (11), (12), (16) and (17) are identical with corresponding relations
in [11—13] it follows that z should be regarded as a reduced concentration
in the /-dimensional space.

This quantity, defined by (13), can also be described with a simpler

formula
) o

identical with that in [12, 13] provided that Ryp and Ry4 satisfy the relations

6/1 6/!

Rip — ﬁsD<V<k—z,> : 19)

_ 6/l 6/l
RS, =R}, V<ki>> : (20)

Ry, and Ry, may be regarded as averaged critical distances reflecting the
dependence of the orientation factor value on the energy transfer rate. It
follows therefore that changes of this factor can be reduced to changes of the
critical distance R, or critical l-dimensional concentration c, corresponding
to that distance.

3. Conclusions and final remarks

The following relation between the l-dimensional critical concentration
¢, and averaged critical distance R, is satisfied

¢y = /Ry (21)

Here o is a constant, depending on the dimension of the system, equal to
1/2, 1/4n, and 3/4m for I =1,2 and 3, respectively. Hence from relations
(19) and (20) it follows that critical concentrations ¢, for solutions of different
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dimensions depend on different mean values of the orientation factor, namely
6 —————

a) =1 o = EO/<V 2y > (22)
3 e

b) l =2 €y = EO/<V<k2> > (23)

c) =3 €y = EO/<V<—k_2$ >= (24)

where ¢, denote the appropriate “isotropic’ critical concentrations.

The equations under consideration describe the behaviour of luminescent
systems with respect to the rate of nonradiative excitation energy transfer
between active molecules. They render possible the determination of the energy
transfer efficiency with respect not only to the dimension of the solution, but
also to the extent to ordering of molecule transition moments due to 'their
rotation and distribution of directions of the rotational axes.

It can be expected that the analysis presented in this paper, as the consi-
derations of the excitation energy transfer dependence on time [14] will
help to distinguish between different arrangements of luminescent systems.
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