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The field equations for Einstein—Maxwell fields admitting a normal null Killing
vector are reduced to a 2-covariant system of equations, which can be derived from a varia-
tional principle. Using the invariance of the associated Lagrangian one can generate a class
of Einstein—Maxwell fields from the corresponding vacuum solutions.

1. Introduction

For stationary Einstein—Maxwell fields it is possible to construct from
the field tensor F,, and the time-like Killing vector {° scalar potentials, and
the field equations follow from a 3-dimensional variational principle [1, 2].
The Lagrangian contains these potentials and their first partial derivatives.
The SU (2,1) symmetry [3] of the Lagrangian leads to the possibility to
generate new solutions [1]. Similar results hold for a space-like Killing vector.
The trajectories of a non-null Killing vector determine a 3-dimensional space
V; [4], and the Einstein—Maxwell equations can be written as 3-covariant
equations over V;. This relevant property breaks down in the case of a null
Killing vector. Therefore, this case has been excluded from considerations on
generating new solutions. However, a twistfree null Killing vector k¢

k(a;b) = 0, kaka = 0, ka = Wu,a (1)

admits finite 2-dimensional surfaces ¥V, orthogonal to k° [5]. The reduction
of the field equations on equations over V, is possible. Moreover, we can
introduce scalar potentials and find a simple Lagrangian for Einstein—
Maxwell fields under the conditions (1) (with W = 1).

DeBNEY [6] investigated expansionfree Einstein—Maxwell fields which
are of Kerr—Schild type and for which the preferred null direction is simul-
taneously an eigendirection of the electromagnetic field tensor F,,. In place
of these restrictions we impose the conditions (1) on the null vector field.
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2. Coordinate system

In particular, the conditions (1) imply that k% is a geodesic, shearfree,
expansionfree, and twistfree congruence. We introduce coordinates x' =
= (%, ¥, v, u) adapted to this null congruence [5],

K = o, ki = Wit = g - 2)

The space-like coordinates = (%, y) are chosen orthogonal to Kk“ It is
always possible to take a conformally flat metric in the 2-spaces V, (u,v =
= const).

Wg 8ijs = 0, Vdet (—gi) = Wp. (3)

In general, a coordinate transformation making W = 1 would destroy the
v-independence of g;;. The following transformations preserve the form of the
metric (3):

(a) 2" = F(z,u), 2z=x-+1iy,
(b)  u’ = h(u), 4)
() v =v+glxyu)

By means of the last transformation we can achieve m, = 0.

3. Electromagnetic null field. Scalar potential
For a geodesic null congruence k” one obtains from the identity
2ka;[b;c] = degbc (5)

an equation for the derivative of the complex expansion Z with respect to
the affine parameter v [8],

%+ 2% 4 65 = — -3- kK . (6)

Thus, the conditions (1) have the immediate consequence

Ry k%> =0 . (7
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From the conditions (1) we get the relation
kop = W) Waue=0. (8)
Calculating the contraction of the Ricci identity (5) we obtain
k%4, = RO, = Ak®. 9)

i.e., k% is an eigenvector of the energy-momentum tensor T, In Section 5
we shall show that the electromagnetic field is necessarily a null field,

Fab = 2Plakb]’ Paka =0 . (10)
Tab = nkakbo n = PaPa .

_The eigenvalue 1 in (9) must vanish,

A.'——-_O: W,A,A A=1,2, (11)

so that the function W satisfies a potential equation in V,. In the case of a
time-like Killing vector {* the complex electromagnetic potential @ has been
defined by

(oF%, =@, Fy=Fo + % EapcaF¥4 (12)

[1]. It does not make sense to substitute {? by k? in this equation. The in-
vestigation of the relation

241,01 = Fap = 2piokn) (13)
in the metric (3) with (2) shows that with the aid of a gauge transformation
Ai= 4o+ 2a (14)

the vector potential A, can always be transformed to the form
Ag=ypugs p=y’u) (15)

The gauge function y is linear in v. Eq. (15) defines a real scalar potential y.
The vector potential (15) satisfies the Lorentz gauge condition

A%y =0y k=10 . (16)
Thus, the Lie derivative of the field tensor

Fab = 21P.[au,b] (17)
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with respect to k® vanishes. Fy, determines the vector p® in (13) up to a term
proportional to k. This freedom can be used such that a gradient y,, appears
in the representation (17). The Maxwell equations

Fab;b = _V),b:bu,a =0= Y.AA (18)

demand that the potential y is the real part of a function f(z, u) analytic in z.
For the complex self-dual field tensor Fg, we get

o = 2f:[au,b]’ f= f(z’ "’) =y + ip. (19)

The real and imaginary parts of f are related by the Cauchy—Riemann
equations
F.4a= —Eap¥,A » (20)

so that the full system of the Maxwell equations

F3b =0 (21)
is fulfilled because of (18).

4. Einstein equations
We have to solve the Einstein equations for the null field (17),
Rop = wpycuquy - (22)

The solutions are contained in the general class investigated by Kunot [5, 9].
We use the coordinate system (3) and apply the transformations (4) to
simplify the metric.

Starting with the potential equation (11) we have to distinguish two
cases:

I. W=1, (23)
II. W=«

The first case is characterized by the existence of a covariantly constant
null vector,

W=1:ky =0. (24)

In the second case the coordinate transformation (4a) has been used. Without
the special choice W = x in case IT we get from the equations R 5 = 0:

pPP=Wrw W, (25)
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The Eqgs. (22) lead to the statements listed in Table I where the transforma-
tions (4a-—c) used are indicated.

Table I
I IL
Ry, = 0: wW=1 W= x (4a)
Ryp=0: =1 (4a) pi= x71 (4b)
Ry = 0: m=0 (4a,¢) my = N(u)yx-9 (4c)

N(u) is an arbitrary function of u. The last field equation of (22) is a dif-
ferential equation for the remaining function H. In the case II we introduce
a new function M,

dN_ 1 ) 26)

2
M=x1H 4 —x 3| —y— — N2
+ 3 [ du Y 3

The second term in (26) takes into account the nonvanishing function m,.
In the case I the functions H and M coincide. Then, the total system of the
Einstein —~Maxwell equations reduces to very simple equations over the
2-spaces V, (u, v = const) or, equivalently, over the Euclidean plane:

w,A,A =0 D (27)
(WM,A),A = ®YP A¥,A > W=1 W=x«.

Derivatives with respect to u do not occur.
We consider the two cases separately.

Case I. (W =1):
In terms of the complex coordinate z we have the equations

eH _ of of

1 _
v=y U 020% 0% 0%

leading to the final form of the metric
ds? = dz dz + 2du dv — 2H du?, (28)
H=uxff+g+38 f=fzu), g=zgku),

where f and g are arbitrary analytic functions of z depending arbitrarily on
the retarded time coordinate u.
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If the gravitational field is entirely caused by the electromagnetic null
field, the solution of the homogeneous equation for H can be put equal to
zero, and H is just the squared modulus of an analytic function. The solutions
(28) are in general of Petrov type IN. For the special function f = «(u) z they
are even conformally flat [6]. In the case under consideration we can derive
the field equations (27) from a variational principle with the Lagrangian

LZF,AP’A

FEH~%¢2+W2. (29)

The complex scalar potential I" contains the gravitational potential H as well
as the electromagnetic potential y. The invariance transformation

I'"=éer (30)
generates solutions of the Einstein—Maxwell equations from vacuum pp-
waves (p = 0). The parameter a in (30) can depend on u.

Case II. (W = x):

In this case the field equations (22) lead to one single inhomogeneous
differential equation for the real function M,

M M M f
os 435 M L oM oM of of 31)
029 0% 02 97 0%

The solutions are of Petrov type II or D (5). The metric

ds® = —1: dx® - dy?) + 2xd udv — 2xC2x2 du?, (32
[ERa
p = Cx, C = const

provides the simplest example of an Einstein—Maxwell field of this kind.
It can be interpreted as a stationary cylindrically symmetric field with rotat-
ing charges and curvature singularities on the axis of symmetry. If the electro-
magnetic field is switched off, the solution is not flat: For C = 0, the solu-
tion (32) is the static Levi—Civita metric whlch is of Petrov type D and
admits two null Killing vectors.
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5. Electromagnetic non-null field

Finally, we have to investigate the case of an electromagnetic non-null
field with the eigendirection k°,

Fop = 2F(nigky) + Tiary)),  Top = Fﬁ(n(akb) + Taw) - (33)

The complex null tetrad (r,, 7y, ng, k) is adapted to the eigendirections of
the electromagnetic field tensor. The eigenvalue A in Eq. (9) must not vanish
in this case

— A= QCPW) I W, .= % FF =0 . (34)

We consider the Einstein equations
(@) Ry —Ry=0=Ry,,

35
(b) Ry + Ry = —24p% )

Rap = #Tpp = —)‘PzaAB{

From Eq. (35, a) we obtain

— AW, u)

VWA=
oW

g =AW, u), E¢=VWpP(W W) (36)

where 4(W, u) is an arbitrary function of its arguments. From the relations
(34), (36) it follows that there exists a function Y = Y(W) satisfying the poten-
tial equation Y , 4 = 0, so that we can put Y = x. The remaining Eq. (36,b)
requires A = 0, which is contradictory to the premise (34). Therefore, under
the conditions (1) solutions of the Einstein—Maxwell equations with electro-
magnetic non-null field do not exist.

6. Summary

If the existence of a twistfree null Killing vector k* is presumed, the
Einstein —Maxwell equations can be reduced to the system (27). These equa-
tions are derivable from a variational principle with the Lagrangian (29),
provided that k, = u, (covariantly constant null vector). Only electro-
magnetic null fields are compatible with the conditions (1).

In this paper we have shown that there exists an internal invariance
group which can be exploited to generate pp-wave solutions in the Einstein—
Maxwell theory from the corresponding vacuum solutions. Of course, the
resulting metrics are well-known. The main result is the new generation
theorem for solutions admitting a null Killing vector.
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To find Einstein—Maxwell fields with twisting null Killing vectors, it
might be useful to apply similar methods: introduction of scalar potentials,
reduction to equations containing only derivatives with respect to two spatial

coordinates.
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