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The field equat ions  for E ins teŸ fields admi t t ing  a normal  null  Killing 
r e c t o r  ate reduced to a 2-covariant  sys tem of equat ions,  which can be derived from a varia-  
t ional  principle. Using the  invar iance  o f  t h e  associated Lagrangian o n e  c a n  generate  a class 
of E ins te in- -Maxwel l  fields from the  corresponding vacuum solutions. 

1. Introduetion 

For s ta t ionary  Eins te in--Maxwel l  fields it  is possible to construct  from 
the  field tensor Fab and the timc-like Kill ing rec tor  F a scalar po ten t ia l s ,  and 
the  field equations follow from a 3-dimensional variat ional  p¡ [1, 2]. 
The Lagrangian contains these potentia]s and their  first  part ial  derivatives. 
The SU (2, 1) s y m m e t r y  [3] of the Lagrangian leads to the possibility to 
generate new solutions [1]. Similar results hold f o r a  space-like Killing vector. 
The trajectories of a non-nuU Killing rec tor  determine a 3-dimensional space 
V 3 [4], and the Eins te in--Maxwel l  equations can be wri t ten as 3-covariant 
equations over V 3. This relevant proper ty  breaks down inethe case of a null 
Kill ing rector .  Therefore, this case has been excluded from considerations on 
generating new solutions. However,  a twistfree null Killing rec tor  k a 

k(a;b) = 0, kak a = 0, ka = WU,a (1) 

admits  finito 2-dimensional surfaces V2 orthogonal to k a [5]. The reduction 
of the field equations on equations over I�91 is possible. Moreover, we can 
introduce scalar potentials  and f ind a simple Lagrangian for Eins te in- -  
Maxwell fields under  the conditions (1) (with tV = 1). 

DEBr~EY [6] invest igated expansionfree Einste in--Maxwel l  fields which 
ate of Kerr - -Schi ld  type  and for which the preferred null direction is simul- 
taneous ly  ah eigendirection of the electromagnetie field tensor Fab. In place 
of  these restrietions we impose the conditions (1) on the  null vector field. 
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2. Coordinate sys tem 

In particular, the conditions (1) imply that  k a is a geodesic, shearfree, 
expansionfree, and twistfree eongruence. We introduce coordinates x i =  

= (x, y, v, u) adapted to this null congruence [5], 

k t ~i k; W~~ (2) = 3 ,  = = g 3 i "  

The space-like coordinates x A :  ( x , y )  are chosen orthogonal to k a. I t  is 
always possible to take a conformally flat metric in the 2-spaces V 2 (u, v = 
= const). 

g i j  : ( pZ 0 0 mi ) 
0 pZ 0 m z 
0 0 0 Ir/ 
rn 1 m 2 W - - 2 H  

gq,3 = O, V det ( - - g q ) =  lVp 2 . (3) 

In general, a coordinate transformation making W : 1 would destroy the 
v-independence of gq .  The following transformations preserve the forro of the 
metric (3): 

(a) z'  = F(z, u), z = x + iy, 
(b) . ' =  h(.), (4) 
(c) v' = v �91 g(x, y, u) 

By means of the last transformation we can achieve m2 ~ 0. 

3. E lec tromagnet ie  null field. Scalar potent ia l  

For a geodesic null eongTuence k a one obtains from the identity 

2ka:tb;c] = kdl~~~c (5) 

ah equation for the de¡  of the complex expansion Z with resper to 
the affine parameter v [8], 

d Z  1 
- -  § Z ~ + ~-J = _ _ _  R ~ b k . k  ~ . 
d v  2 

Thus, the conditions (1) have the immediate consequence 

Rab k a k  £ = 0 . 
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From the eonditions (1) we get the relation 

ka;~ = lr'tbu,~j, lr'~ ~ , a =  0 . (8) 

Calculating the eontraet ion of the Rieei iden t i ty  (5) we obtain 

k~ n : Ra~243  ~--- ) .k  a . (9) 

i.e., k a is an eigenveetor of the energy-momentum tensor Ta~. In  Section 5 
we shall show tha t  the eleetromagnetic field is neeessarily a null field, 

Fat, = 2plakb], 

T~b = nkakb ,  

�9 The eigenvalue 2 in (9) must  vanish,  

= 0 = W A , A  

v a k  o = o ,  ( lO)  

n = p ~ p a  . 

A = 1, 2, (11) 

so t ha t  the funct ion IV satisfies a potential  equat ion in V 2. In the case of a 
time-like Killing vector r the complex electromagnetic potent ial  ~ has been 
defined by 

i 
, ~ F e a  ~ a F * b  = q~ b, F*b  ~ Fab + --~ ~abcd (12) 

[1]. I t  does not  make sense to subst i tute  ~a by k a in this equation.  The in- 
vest igation of the relat ion 

2A[£ } = Fab = 2p[ak£ (13) 

in the metric (3) wi th  (2) shows tha t  with the aid of a gauge t ransformat ion  

Aa = Aa A- Z.a (14) 

the rec tor  potential  ~/a can always be t ransformed to the form 

~4 a = ~o u,a, ,p = ~,(x A,  u ) .  (15) 

The gauge funct ion Z is linear in v. Eq. (15) defines a real scalar potential  ~. 
The rec tor  potent ial  (15) satisfies the Lorentz gauge condition 

Aa;a -= 0 ~" V',ak a = 0 . (16) 

Thus,  the Lie de¡  of the field tensor 

Fa~ = 2~p.[aU,b 1 (17) 
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with respect to k a vanishes. Fab determines the veetor pa in (13) up to a t e r m  
proportional to k a. This freedom can be used such that  a gradient ~),a appears 
in the representation (17). The Maxwell equations 

Fab ;b = - -~ )  b;b�91191 = 0 = ~ , A , A  (18) 

demand that  the potential ~ is the real part of a function ~(z, u) analytic in z. 
For the complex self-dual field tensor Fa*b we get 

F* b = 2f,[~u,o 1, f = f ( z ,  u) -~  ~p + i9. (19) 

The real and imaginary parts of f are related by  the Cauchy--Riemann 
equations 

~,A = --~AS~,A , (20) 

so that  the full system of the Maxwell equations 

is fulfilled because of (18). 
F*~b= 0 (21) 

4. Einstein equations 

We have to solve the Einstein equations for the null field (17), 

Rab = mp,�91 b �9 (22) 

The solutions are contained in the general class investigated by  Kur~DT [5, 9]. 
We use the coordinate system (3) and apply the transformations (4) to 
simplify the metric. 

Starting with the potential equation (11) we have to distinguish two 
cases: 

I. W =  1, (23) 
II.  W-= x. 

The first case is characterized by  the existence of a covariantly constant 
null vector, 

W:-- l : k a ;  b = 0 .  (24) 

In the second case the coordinate transformation (4a) has been used. Without  
the special choice l~ = x in case I I  we get from the equations RAs ~ 0: 

p 2  = ~f ' - - I I2W,  A ~ / , A  . 
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T he  Eqs.  (22) lead to  the  s t a t emen t s  l isted in Table  I where the  t ransforma-  
t ions  (4a--e)  uscd are indieated.  

T ab | e  I 

I. II. 

RaA ~-~ 0: 117 = 1 

R A B =  0: p Z ~ _ l  (4a) 

R4A = 0: m a = 0  (4a, c) 

117 = x (4a) 

f =  x-l~ = (4b) 

ma -= N(,)yx- ' / '  (4~) 

N (u )  is an a rb i t r a ry  funet ion of  u. The last  field equat ion of  (22) is a dif- 
ferent ial  equat ion for the  remaining funet ion H.  In  the  case I I  we in t roduce 
a new funet ion M, 

M == x -1 H -4- 2 x-S/2 1 d N  Y 1 I 3 t--~-u - -  3 -  N21 (26) 

The  second t e rm  in (26) takes into aeeount  the nonvanishing funct ion m t. 
In  the  case I the funct ions H and M coincide. Then,  the  to ta l  sys tem of  the 
Eins te in- -Maxwel l  equat ions reduces to  v e ry  simple equat ions  over  the  
2-spaccs V 2 (u, v = eonst) or, equivalent ly ,  over the  Eucl idean plane:  

~,A,A ~ 0 

( I~M,A) ,  A = ~~O,A~O,A , W = 1; W = x .  

(27) 

Derivat ives  with respect  to  u do not  oceur. 
We consider the  two cases separately.  

Case I.  (W : 1): 

In  te rms of the  complex eoordinate  z we have the  equat ions  

1 , oro of of 
OzO~ Oz O~ 

leading to the  f inal  form of the  metrie 

ds  2 : d z  d z  + 2 d u  dv - -  2 H  du z, 

H =  x f f  -4- g A- g, f -~ f ( z ,  u), g = g(z, u), 

(28) 

where f and g a r e  a rb i t r a ry  analyt ie  funct ions  of z depending arbi t rar i ly  on 
the  re ta rded  t ime eoordinate  u. 
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Ir the gravitational field is entirely caused by the electromagnetic null 
field, the solution of the homogeneous equation for H can be put  equal to 
zero, and H is just  the squared modulus of ah analytic function. The solutions 
(28) are in general of Petrov type N. For the special function f = ~(u) z they 
ate even conformally flat [6]. In the case under consideration we can derive 
the field equations (27) from a v a r i a t i o n a l  p r i n c i p l e  with the Lagrangian 

L =- F ,  AF ,  A 

(29) 

The complex scalar potential F eontains the gravitational potential H a s  well 
as the electromagnetic potential ~. The invariance transformation 

U '  = e ta P (30) 

generates solutions of the Einstein--Maxwell equations from vacuum p p -  

waves (~ = 0). The parameter a in (30) can depend on u. 

Case I I .  ( l l  7 = x) :  

In this case the field equations (22) lead to one single inhomogeneous 
differential equation for the real funetion M, 

2(z + }) 02M_ A- 0M + 0M -- u - - - - 0 f  o f  (31) 
OzOz Oz O-z Oz 0-~ 

The solutions are of Petrov type  I I  or D (5). The metric 

1 (dx 2 ~_ @2) -4- 2 x d  udv  - -  2xC2x 2 du 2, ds 2 ~__~ - ~  

= Cx ,  C = eonst 

(32) 

provides the simplest example of an Einstein--Maxwell field of this kind. 
I t  can be interpreted a s a  stationary eylindrically symmetric field with rotat- 
ing charges and curvature singularities on the axis of symmetry.  I f  the electro- 
magnetic field is switched off, the solution is not flat:  For C = 0, the solu- 
tion (32) is the static Levi--Civita  metric which is of Petrov type D and 
admits two null Killing vectors. 
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5. Electromagnetic non-null  field 

Finally,  we have to investigate the case of an electromagnetic non-null 
field with the eigendirection k a, 

Fab ---- 2F(n[akbl  -4- ~[arb]), Tab = FF(n(akb)  -4- F(arb)) �9 (33) 

The complex null t e t r ad  (ra, Fa, na, ka) is adapted  to the eigendirections of  
the electromagnetic field tensor. The eigenvalue ~ in Eq.  (9) must  not  vanish 
in this case 

--~. = (2p2W) -1 W A, A = ~ F F  :y& 0 . (34) 
2 

We consider the Einstein equations 

R A  B = UTAB = __~p2jA s / (a) ! (b) 
R l l - -  R22= 0 ~--- R12, 

Rll + R22 = --2~p 2. 
(35) 

From Eq. (35, a) we obtain 

VW2 = - o A ( w ,  u) , q_,  = A(W, u), 
OW 

q2 ~~_ V-~p~(W, AW, A)-~, (36) 

where A(W, u) is ah arbi t rary  funct ion of its arguments.  From the relations 
(34), (36) it  follows t h a t  there exists a funct ion Y = Y ( W )  satisfying the poten- 
t ial  equat ion Y,A,A = O, so t h a t  we can pu t  Y = x. The remaining Eq. (36,b) 
requires 2 = 0, which is eontradictory to the  premise (34). Therefore, under  
the eonditions (1) solutions of the  Eins te in--Maxwel l  equations with electro- 
magnetic non-null field do not  exist. 

6. Summary 

I f  the existence of a twistfree null Killing rec tor  k a is presumed, the 
Einste in--Maxwel l  equations can be reduced to the system (27). These equa- 
t ions ate derivable f rom a variat ional  principle with the Lagrangian (29), 
provided tha t  k a = u a (covariantly constant  null vector). Only electro- 
magnetic  nul l  fields ate compatible wi th  the conditions (1). 

In this paper we have shown tha t  there exists ah internal  invariance 
group which can be exploited to generate pp-wave solutions in the Eins te in- -  
Maxwell theory  f rom the corresponding vacuum solutions. Of course, the 
resulting metrics ate well-known. The main result is the new generat ion 
theorem for solutions admit t ing  a nul l  Killing rector .  
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To find Einstein--Maxwell fields with twisting null Killing vectors, it 
might be useful to apply similar methods: introduetion of scalar potentials, 
reduction to equations containing only derivatives with respect to two spatial 
coordinates. 
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