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Based on the existence of a cosmic field suggested by [1, 2] theory of a weak interaction
without divergencies has been set up. The current-current theory of Gell-Mann and Feynman
is applied in combination with the theory of nonpolynomial interaction.

It is proved that all terms of perturbation theory series are convergent. Some interesting
terms of second order are considered in detail.

1

It is commonly known that the current-current weak interaction theory
of Gell-Mann and Feynman encountered serious difficulties connected with
the ultraviolet infinities. Although this theory is unrenormalizable, the first
order amplitudes of perturbation theory series are in good agreement with the
experimental data. Therefore it is possible that this theory really reflects
reality. In a series of papers [3—5] attempts are made to consider the weak
interaction theory based on the existence of hypothetical intermediate bosons.

The recent developments of the interaction theory with the nonpoly-
nominal structure of interaction Lagrangians raised for the first time by
EriMov [6] and FrADKIN [7] revealed a new direction in constructing the
quantized field theory without ultraviolet infinities [8 --10] and, in particular,
led to the construction of the nonpolynomial weak interaction theory [11, 12].
Lang and Cropos [11] proposed the current-current theory, in which some
second order processes are convergent. Their theory is based on the nonpoly-
nomial interaction of currents with the hypotketical charged scalar partic-
les. In our opinion, this theory contains the following defects: the charged
scalar bosons as well as their interaction with current are introduced arti-
ficially, and the theory is not totally free of divergencies; only some second
order amplitudes of perturbation theory series converge, for example, the
ve scattering of second order has the finite matrix element while the self-
energy of electron diverges logarithmically.

The weak interaction theory proposed by FIvEr and MiTTER [12] en-
countered also some serious difficulties as it was analysed by LANE and Cropos.
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In the present paper we make an attempt to outline the weak interaction
theory, in which the above mentioned difficulties are overcome.

In paragraph 2 it is shown that the first order matrix elements of per-
turbation series in our theory coincide with those of the ordinary weak inter-
action theory. However, in the present theory the second order as well as nth
order amplitudes are convergent. The small distance behaviour of amplitudes
is given.

Paragraph 3 concerns the ve scattering of second order approximation
with respect to the weak coupling constant G. The expression for the ampli-
tude of the first order in the very small coupling constant 1 is also obtained.

Finally, in paragraph 4 the self-energy of electron is considered. The
cutoff has the form

G

Acutojf= 3 .
In paragraph 5 we present conclusion and discussions.

2

Let us remember the main points of previous papers [1-3]. It has been
proved that the existence of cosmic field is characterized uniquely by the follow-
ing space-time:

ds? = e~ (d2 — dr?) , (2.1)

where 1 is the new constant having the dimension of length and y(x)-cosmic
field.

Under the conformal transformations the metric (2.1) is invariant and
the y-field transforms according to the law:

Ox’

det

2(%) = 2'(*') = x(x) + 17 In (2.2)

Ox

Due to Taus [13] the metric (2.1) is the only one possessing the conformal

group as its motion group. In this paper let us confine ourselves to considering

only the weak interaction of leptons proposed by Gell-Mann and Feynman.
It is well known that the interaction Lagrangian reads

G

swzﬁ s e () I (%) s, J, = jP +jO

in which
jg) = iéya (1 + 75) ve + iﬁ?o‘ (1 + yS) Yy

is the lepton current and j£h> the usual weak current of hadrons in the form of

Cabibbo.
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In the presence of a cosmic field, Lagrangian takes the form

€, —~L= —l% s JH (@) JF () 22 @702
Using (2.2) we can satisfactorily construct the weak interaction theory.
We first notice that the matrix elements for any first order process cor-
responding to (2.2) and not involving the emission or absorption of cosmons
% are the same as in the case when 1 = 0. Indeed, suppose that | f > contains
n cosmons

> =1f>®|np

and |i > does not contain cosmons. Then we have the following expression
for the first order amplitude

F1Lw|B) = ('] &u] D) (ny | : 78| 0}
= (_ 6l) <f,l£wl i) e'Px ’

where P = total momentum of cosmons. In the case when n = 0, our assump-
tion is proved.

As it is mentioned in [1,2], for usual weak interaction processes we have
to consider only the processes without external cosmons. In other words, the
final and initial states contain no cosmons.

Now we consider the second order amplitudes given by

Ty= [d'x(f|T [Ly (%)L, (0)]] D =
= (4 (f| T [£, (%) £, (0)]] i) o] T: €781 | :: 81| 0 = (2.3)
= [ dix(f | T[4 (%) £, (0)]] i) exp [36 2Dy(x)].

It is known that in the spirit of the nonpolynominal interaction theory all
momenta in the states | i > and | f > are assumed first to lie in the Euclidean
region, then the integrations over Minkowski space-time are reduced to the
integration over Euclidean space of four dimensions. After all the necessary
integrations have been performed we continue analytically these amplitudes
to the physical region of momenta. The content of the above procedure is
called Euclidicity postulate. As a consequence of this postulate the space-time
interval 22 =72 — x% is converted to the Euclidean length r? = %+ x% + x§ +
+ 4> 0.

It is known that in the Euclidean metric the propagator has the form

1 1
BO="m
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and, then, the superpropagator for cosmic field takes the form

b

G(x) = exp [36 PD§ (x)] = exp ‘ - i_:J
where

A=

T

It is convenient to present G(x) in the following form
L 2z
G(x) =~ [dal'(—3) (iJ
2 r

[ $imz

Rez

Fig. 1

in which the path C is shown in Fig. 1. Let us now perform the integration (2.3
over an angle. We obtain

T, = % fasr (=) [ arFy () (%J N (2.4)
where
Fiy= {@*Q () (f| T[S, (%) £, (0)] ]3> -

It is clear that the integral (2.4) converges at a small distance for F(r) be-
haves like

A
Fifr) ~ — as r—0,
rfl
where n is a certain integer.

In the case when 2 — 0, the integral (2.4) would be divergent for n > 4.
It is easily seen that the small distance behaviour of T has the form

% T4 —n)(Ap~"  for n<4,

T~ (23)
l c Ini for n =4.
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Thus 4 plays the role of inverse of cutoff. The convergence of second order
amplitudes has been entirely proved. Now, let us consider an arbitrary nth-
order amplitude

ﬂ}l):%jdxl...dxn ST L) - - Ly ()3 = (2.6)

=L fan a7 [ 5 x)] ,>><<0|T[[1 exp (—Tylx ))]0>,

where I = 61. In order to calculate the n-point superpropagator, we make use
of the Horr’s formula [14]:

F® = le[:! s exp ( —lx(x)) =] =

[% 3 05(x - ,)] : exp {—-t 5 x(xk)} .

i#j
Therefore

n —
G(xps...0 %) = (0] T[I[ :exp { - lx(x)}:”O) = exp ZDC X% ]
Jj=1 1#1
2.7
Finally the amplitude T ) takes the form
TP = 'fdxl cooda, Fi (20,000, %) X exp{ 2Df(x — x; } . (2.8)
! i#j
It is easily seen that if F 5}1) behaves like
A

F(")w—n as x;, — 0,
Xik

where 1% = (x; — x¢)? and n is an arbitrary natural number, then the integral
(2.8) would be convergent.

Hence the convergence of the proposed weak interaction theory has been
proved. In the next paragraph we shall consider some interesting second order
processes.

3

In this paragraph the second order amplitude for scattering
Yyt e -, + e~

Acta Physica Academiae Scientiarum Hungaricae 37, 1974



212 TRAN HUU PHAT

is considered. The Feynman graph describing this process is given in Fig. 2.

Fig. 2

Its matrix element reads
AT ALA] S@| v (P)e™(q)) =
=i [ dx (v, (pe(g)| T [£1 (%) £ (0)]] v (pr)e~(g:)) &P

Applying the Euclidicity postulate we have

G 2
¥ (Po)e(22)| SP |9, (P (q,)> = ( vz ] M* F (),
where

Mee = u, (q)7"y*y* (1 — p35) ue (q1) %, (P2) 7277 (1 — 75) w, (P

and
F,, = i3 | d*xeiP™ ie_:i Ay (rsm,) 4, (3 0) exp {I72D5 (%)},
r
here r is the Euclidean length and
4, (r; m) = — mKy(mr)/4n?r

—- — —— for m—0.

First we suppose that the momentum p = ¢, + ¢, belongs to the Euclidean
space. Then F,,(p) can be written in the following form

For = 8oo FUP) + PoPo FaldD):
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where 2 = — p? > 0 and

Fy¢®) = __;_% F(@), Fyg) = [% —;—’Esz(qzx
+eo
a2
Fi@®) = % Jangtan) 4y6rsm) 4300677, (3.1)
4 n2+u _*
Fy(g?) = q—zjdrrlz () 4y (rim) 4, (r3 0)6™ ™, (3.2)
4 2+“ A
R = Jarga @) 4 rsm) 413 0067 (3.3)
0

The above expression is different from that obtained in the LANE— CHODOS’
theory. The integral for Eq. (3.1) in our case is clearly convergent as r — 0.
Our main task is to calculate explicitely the form factor F) ,(¢?) given by
(3.2) and (3.3) in the Euclidean momentum space and then to continue them
analytically into the physical region.
To do this, it is convenient to represent F,,(¢*)in the following form

+m
Fyq) = % f dzI"(—z) A”Jdrr‘”‘{]z (qr) K, (mr) ,

Fy(g®) =

. +°°
4'7':2‘93 f el (~-z) 1 J drr=2-2 J(qr) Ky(mr) .

Applying the standard formulae [15] we have
i
¢ [(m)*
f drr—2-23], (gr) K, (mr) = —2?( ?] Il —z)(—1—12)x
. J

q2
X2F1((1 —z,—1—z3 -2,
m2

+w
f drr—2-2] (qr) K, (mr) = W (%] re—zI(—zx

¢
X o F) (2 — 2, — 2345 ——?] .
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Therefore

F 1(92) =

szr(--z)r( 1-5r(Q —z)( ) JF, ((1%,‘1_,,3 _f_}

25 (2 )2 mz

(3.4)
Fyg’) =

W)zj del’'(—2zp I'(2 — 2) ( o Fy (2—z, —z5 45 — —3:;2-’ .(3.5)

The expressions (3.4) and (3.5) for the form factors F) ,(¢?) allow us to perform
the analytical continuation into the physical region of momentum.

Fy(p?) =
22 m?
fdz]’(gz)l"( 1—z)I’(l~z)[ ] .F, (1~z, 13 ™Y
2"‘(2 ) P
(3.6)
im—1 Am 122 p?
F,(p? :——l—m—-~sz I’'(—))2 I'(2—sz) |—| ,F. (2~z,—z;4;————l. 3.7
o(P%) 3125(2 2 ( ( )) ( ) g | 2t 2 3.7
c
The singularities of Fi(p?) occur at the points 2 = — 1,0,1,2, .. .. At the point
z = — 1 we have a simple pole, at z = 0 a dipole, at z = 1,2,3,... we have
tripoles. The pole at z = — 1 is the leading singularity of F;(p?); because it

22
contains the factor [ﬂJ . Similarly, singularities at z = 0,1 are dipoles of

F,(p?) and the leading singularity occurs at z = 0; the remaining singularities
at z = 2,3,4,... are all tripoles.

Now we evaluate the form factors F,,(p?) in the lowest order of 4. It is
easily found that

mi

Fy(p?) ~ m - 2mi (Res|,.._; + Res|,_,)
Am )2
Res]z=_1 = [T)

P
— < 1, then we have the
|

In order to find Res|,_, we first assume
: m
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following expression for ,F, (1 — z, — 1 -~ z; 3; p*/m?):

(1 —2z, -1 —23;x)=

1 -5(1+3), (-9l -z2+)A+5)A—-2-1) , (3.8)
3.1! 3(3+1)2!
for |x| < 1.

The residue at z =— 0 reads

Resl,_o —
%[”r( )T (—1-5) I'(1—3) (13]23""1 (1 ol 227”:

or

).m

Res|,_o =C (1 - %) + In 3

1—*~)+1—-~—‘

u~? 1

3 (u* —3u*+3u—1)In

— —— (11u® — 15u + 6) .

—u 18u

Thus we obtain

+

m 1 1
F(p? ~ 252%{3u2 (¥ —3u*+3u--1)In -

+

im Am
Muz—152+6)—[1 — 2 (In 22 fc+1| + |25,
1g, (1w 1Pet0) [ 3,[n2++)+{2)}

where u = p%/m? and C is an Euler constant. We can now continue analytically
‘the expression obtained for F,(p?) into the p? > m? region. Notice that in the
p? plane there is a cut from p? = m? to infinity.
Now let us evaluate F,(p?) confining ourselves to the leading singularity
at z = 0.
im—1
Fy(p?) ~ ?57(—2 2 2 i Res,_, »

where

-3u+2 +417—u77£ ‘

us u? 3

—2In %’" faln(l - u) L
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We obtain
Fy(p®) ~
1 im n®—3u+2 1—u 11
~—————— 2ln— 4+ 41n(1 —u 4 —_——
31232 7mam ( 2 + ( ) u? + u? 3

The above expression for F,(p?) allows us to continue analytically to the
p? > m? region.

————

Finally, the expression for F,,(p? of the lowest order is as follows

m 1 1 ud —3u24+3u—1
Fga(Pz) ~ lz‘gga [ln

252w 1—u 3 u?
11u2 —15u + 6 u Am Am 2
SRR Y ML, | U el B
+ 184 ( 3J’n2++)+(2)]
1

3 __ —
pepa[ZInl—zm— +4ln(l—u) 32"+2 Ll __ll]} .
u

6 m2 u? 3

At high energies, i.e. for |p?| > m?, the asymptotic behaviour of F,(p? reads

m 2 2 (1
Flp) ~ — —— L i P

16 # m? ﬁﬁ 3 m?

2
8o + T Pepa}

which does not depend on the parameter 1.

4

In this paragraph we consider the lepton self-energy taking into account
the contribution of weak interaction; the corresponding graph is shown in
Fig. 3.

We have

u.(p) Z(p) u.(p) = —;—fdx (e7(P)| T [Lee (%) Lee(0)]] e~ (p)) exp [PDG (#)] -

Acta Physica Academiae Scientiarum H icae 37, 1974

(-3
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The expression for 2(p) can be represented in the following form

Z(p) = po(p®) (L —vs)
where o(p?) is given by

~+ oo
2 (2 Az
o(p) = Mfd L(pr) [4, (s o)t 4 (rs mp)e” 7 .
p
0

This integral is clearly convergent at a small distance. It is quadratically diver-
gent when A — 0. Now we calculate this integral by means of the above used
method. The expression for o(p?) is rewritten as follows

4iG*m
4

o(p) = — == f dzT' (—z) 4% J drr=23 L(pr)K, (mr) .

Owing to the standard formula [14] we have
+ oo
f drr==-5 I, (pr) K, (mr) —

_I'6)

2
2B smBR2 [(—2) I'(—2 —2),F, {ﬁz, —2—z; 3;2—) .
p? 2

m

After substituting it in the expression for o(p?) we obtain

o(p?) = jdz(]’ — )R r(-2- ('1'"] (-—z,—»—2—z;3;P—22].

(2 @)t m

The singularities of the integrand occurat z = —2, —1,0,1,2. ... The simple
pole occurs at z = —2, —1 and the remaining singularities are tripoles. The
leading singularity is, of course, z = — 2.

The approximate expression for o(p?) reads

Pl ] )]

In order to find the mass correction for electron we expand X(p) in

power series of p — m:

2(p) = Zoy(m*) + 2, (m*) (p —m) + .
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from where we have

dom = ma (m?)
or in the first approximation
om 2, G
e )

m

The parameter G/4? plays here the role of a cutoff.

5

It is known that in quantum electrodynamics all divergencies could be
suppressed by some redefinition of mass and coupling constant, i.e. by intro-
ducing a finite number of counter-terms. However, in the current-current
weak interaction theory this is not the case. In fact, each order of perturba-
tion series introduces a new kind of divergence. For example, the nth order
is A%(""") divergent, where A is a cutoff. Therefore, one would need an infi-
nite number of renormalization constants to make the theory convergent.

In our case, we introduce only one new parameter 1 to make the theory
finite. This parameter characterizes a new interaction, namely the interaction
of the matter with the cosmic field.

Thanks are due to Prof. G. BiaLkowsk1 and Dr. M. SWECKI for their helpful comments.
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