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“HOW CAN WE DETERMINE THE TWO-BODY
t-MATRIX ?”

By

J. S. LEVINGER
RENSSELAER POLYTECHNIC INSTITUTE, TROY, NEW YORK, 12181 USA*

We start with an assumed shape for the wavefunction of the ground state of the two-
nucleon system. This wavefunction gives us the residue of the -matrix at the bound-state pole-
and using the unitary pole approximation (UPA) provides a good extrapolation procedure for
other off-shell values of the t-matrix. (E. HARMS has verified the accuracy of the UPA using
the anti-bound state for the REID soft-core singlet potential.)

We now face the problem: what bound-state wavefunction should we assume? In the
next several years it should be possible to determine the deuteron wavefunction experimentally,
by measuring elastic electron-deuteron scattering from polarized deuterons, or equivalently by
measuring the polarization of the recoil deuteron. (The wavefunction at large neutron-proton
separation should also be checked by using it in the Schrédinger equation to give a local
potential which should agree well with that for one pion exchange.) Angular distribution
measurements provide a separation of the deuteron form factor into a charge form factor and a
magnetic moment form factor. Polarization measurements separate the charge form factor
into a monopole form factor G, and a quadrupole form factor G,. T. BRADY has found that
values of G,(q) at momentum transfers q of order 3 F~! are quite sensitive to the percentage
of D-state (pp) in the deuteron. At present the lack of knowledge of pp is the main source of
uncertainty in calculation of the energy of the trinucleon.

1. Introduction

We are trying to calculate the properties of the trinucleon (the three-
nucleon system, in its bound state 3H or He). The Faddeev equations show
us that if we limit ourselves to a non-relativistic three-nucleon problem with
only two-nucleon forces, that ““all” we need to know are the off-shell values-
t(p, k; s) of the non-relativistic two-nucleon t-matrix. The momentum of the
two-body system is initially p, and changes to k. The energy of the two-body
system (in the center of mass co-ordinate system) is s, which in general is
neither p? nor k2. (I use units with #%/M = 1. Also, I am simplifying notation
by considering only a central force in a state of specified angular momentum:
e.g., the t-matrix for the 1S state. I will maintain this over-simplificd notation
even when discussing tensor forces, for which we need 3 different functions
which for the coupled 3S8; — 3D, deuteron are ty(p,k;s), ty(p, k;s) and
tyy(ps ks $).)

The momenta p and k have the ranges 0 < p < oo, and 0 < k < oo,
but we do not need accurate knowledge of ¢ at very high momenta. If we cal-
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136 J. S. LEVINGER

culate the properties of the trinucleon at energy E, we need values of s in the
range s <_ E. In this paper [ shall neglect the very interesting problems of nu-
cleon-deuteron scattering states above the threshold for deuteron break-up.
1 thus limit myself to non-positive values of s.

Instead of attempting a review, I will mainly report on work of my stu-
dents (past and present): S. BEATT, T. BRADY, C. BUuRNAP, M. FUDA, E. HARMS,
L. Laroz1,, A. Lu, J. O’'DoNocHUE, B. SIEBERT and R. StacarT.

Two of the invited speakers here (MiTrRA and KHARCHENKO) pioneered
the use of a separable approximation to the t-matrix. The approximation
t(p, k, s) = g(p) g(k)/D(s) reduces by one the dimensionality of the Faddeev
equations, thus greatly simplifying their solution. Even with tensor forces,
we need to solve only three coupled one-dimensional equations. I wish to empha-
size that in using a separable approximation to the t-matrix, we are not assert-
ing that the potential is really separable (LEVINGER, [1]). Of course, if the
t-matrix were exactly separable, then so is the potential and vice-versa. (Y ama-
cucHt, [2].) But as illustrated below for the REID singlet soft core potential
(Harwms, [3]) a local potential can have a t-matrix that is separable to a good
approximation.

I also wish to emphasize the present phenomenological nature of the
theory of the two-nucleon interaction. If we had a good theory, comparable
to that for Coulomb forces, we would be able to calculate the off-shell t-matrix
from first principles, thus answering the question I ask in my title. (Of course
we must turn to experiment to determine numerical values of a small number
of parameters in the theory, such as the electron charge and the photon rest
mass for the case of Coulomb forces.) I believe that nuclear theory is still
strongly phenomenological. The one generally accepted statement on the nuec-
leon-nucleon potential is the validity of the one-pion-exchange-potential
(OPEP) at reasonably large distances. Even here there is not complete agree-
ment as to what is the range of distance for a given accuracy for a given term
in OPEP. (Lomon [4]; FesaBAcH [5]). Of course, the two parametersin OPEP
are determined experimentally, by performing independent experiments.

In the next Section, I outline the ‘“‘conventional extrapolation procedure”
which uses a local potential to extrapolate from on-shell (s = p* = k?) to off-
shell values of the t-matrix. I do not discuss other extrapolation procedures,
due to AMADO [6]; BARANGER [7]); vAN Dk [8]; Fupa [9], [10]; KowaLsk
{11]; HarTeL [12] and others. These are based on on-shell values of the ¢-
matrix. In Section 3, T present an answer to the preliminary question of my
title by using elastic electron-deuteron scattering to determine the deuteron
wavefunction, which in turn is used to determine the off-shell values of the
t-matrix. The crucial experiments of measuring the polarization of the recoil
deuteron seem feasible. I hope that the program of Section 3 will in the next
several years materialize into a practical procedure for finding the triplet ¢-
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HOW CAN WE DETERMINE THE TWO-BODY -MATRIX? 137

matrix. In the last Section I discuss the Gordian knot of interacting problems:
extrapolation procedures to find the t-matrix, mesonic effects, relativistic
effects in the trinucleon, and three-body forces. I suggest a scheme for starting
to untangle the knot — or does anyone have a sword to cut it?

2. Conventional extrapolation procedure

The conventional procedure starts by fitting a more or less local poten-
tial to the phase parameters for nucleon-nucleon scattering: i.e. to the on-shell
values of the t-matrix. (I say “more or less local” since the potential contains
Majorana exchange, and linear and quadratic spin-orbit coupling.) The po-
tentials now in use agree with OPEP at large nucleon-nucleon separation and
may include other theoretical constructs such as two-pion-exchange or one
boson exchange either explicitly or implicitly. I shall pick Reip’s [13] soft
core potential as an example of the conventional procedure.

Once we have chosen a potential to fit the on-shell values of the i-matrix,
this potential specifies a prescription to find the off-shell values: namely, solve
the Lippmann —Schwinger equation. We may be able to approximate these
off-shell values with a separable t-matrix (or a t-matrix written as a sum of a
small number of separable terms). Or we may be clever enough to solve the
Faddeev equations for a local potential (MALFLIET [14], DELVES or SANDHAS
at this Symposium). I will emphasize the use of a separable approximation.

It is important to distinguish between work with the spin-singlet and
the spin-triplet nucleon-nucleon t-matrices. The singlet is both much simpler,
since it is purely a central force; and is also much easier to measure experi-
mentally, using proton-proton scattering. (I am neglecting the possibility of
charge dependent forces, discussed by J. DaBrowsKI at this Symposium.)
On the other hand, the triplet involves tensor forces and involves more difficult
experiments on the neutron-proton system.

We can almost neglect errors in determination of the on-shell singlet
1-matrix for the 1S state. The phase shifts are fitted by a local petential, such
as REID’s soft core. The off-shell i-matrices, at least for negative energy s, can
be approximated with good accuracy by a separable form, using the unitary-
pole-approximation, or UPA.

The UPA is designed (LoveErace [15]; Fupa [16]) for a potential with
a bound state: so let us pretend that REID’s potential is some 8%, stronger,
giving us a bound state at an infinitesimal negative energy, —B,. This bound
state has a wave function | B,>>, and energy — B, = —h%/ M. It is easy to find
the separable potential, with form factor S(p), which would give a bound state
with the same wave function and same energy: we merely take Yamacucur’s
original paper and read it backwards. The result is that the momentum-space
wavefunction <_p | B, > is proportional to the form factor:
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138 J. 8. LEVINGER

<p | B,> = NS(p)/(p* + o). (L)

Harms and Laroze [17] determined the wavefunction <p | B;>> and
hence the form factor, by solving the ground state for the (strengthened) REip
soft core potential. HARMS’ form factor is shown in Fig. 1, note how different
it is from the YamMAGcUcHI shape usually used: see VAN WAGENINGEN, this

Symposium.
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Fig. 1. Form factor S(p) for UPA to REID’s soft core singlet.
Taken from Harms and Laroze [17]

C. BurnaP (unpublished) has checked HARMS’ analytical form for the
singlet form factor, in a direct manner. BURNAP uses Eq. (1) to determine the
momentum space wavefunction (for zero binding); he then Fourier transforms
to find the co-ordinate space wavefunction, which he inserts into the Schro-
dinger equation to find local potential. (This is the same procedure used by
BuURrNAP et al. [18] for the triplet case.) Fig. 2 gives the ratio of HArms’ V()
to REID’s V(r) vs nucleon-nuclear distance r. We see that this ratio stays
near 1.08 for 1 << r < 3F.

Harwms weakens the separable potential by a factor 1.08 to find the sep-
arable t-matrix, of form (1): the denominator D(s) is found in the usual way
by performing an integral involving S(p), and depends on the strength A of
the separable potential. Fig. 3 shows one of many comparisons between the
solid line HARMS’ t,(p, k, sj and the (circles) “exact” i(p, k, s) found by nume-
rical solution of the Lippmann —Schwinger equation for the local REID po-
tential. (Harms [3].) They agree well for reasonably large values of p, (0 < p <
< 2F~1) and —s = 1/2k%/ M = 22 MeV for the examples shown, of diagonal
(p = k) and off-diagonal (p = k) elements.
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Fig. 2. Ratio Vg (r)/Vp (r) vs nucleon-nucleon separation r, by BUrNaP (unpublished).
Here Vj is the REID soft core singlet, ard Vy is the potential corresponding to Harms’ form
factcr (Fig. 1) for the (strengthened) REID potential
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Fig. 3a. Diagonal elements of the ¢-matrix,

for energy s = — 1/2 /M. The solid curve

shows the UPA (Fig. 1), the dashed curve the

UPE with 3 terms, and the circles the t-mat-

rix for the local REID soft core potential.
Taken from Harms [3]
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Fig. 3b. Off-diagonal elements of the t-mat-

rix; same notation as 3a. Taken from HaArMs

[3]

Acta Physica Academiae Scientiarum Hungaricae 33, 1973



140 J. S. LEVINGER

Why does the UPA work so well? Does it work well enough for calculat-
ions of the energy and scattering length for the trinucleon? Loverace [15]
and Fupa [16] gave a preliminary answer to the first question by using the
Low equation to show that the UPA was exact in the neighborhood of the two-
body pole. (The t-matrix is unitary since it is found from a hermitian potential:
hence Fupa’s notation, UPA.) This answer is illustrated in Fig. 4 where we

'}
/
/
/
/
/
/
l/ plane
| 50 g
l N |
! 5 |
| |
! |
1 !
[ N ™
| NG |
I ~ !
! l
|
|
|

«

Fig. 4. Sketch of p, k, s space, where p and k are momenta and s the energy used in the s-matrix.
The curve shows on-shell, p* = k? = s. The pk plane at an energy corresponding to the pole,
shows where the UPA gives the exact residue

show p, k, s space. The on-shell t-matrix is given on the curve p?/M = K*/M =
= s > 0; the off-shell z-matrix at the pole is given exactly by the UPA on the
planes = —B. If we want i(p, k, s) to the left of that plane, but not “terribly
far” to the left, an analytic form that is exact on that plane is likely to be a
good approximation. (On the other hand approximation schemes which are
exact on the energy shell (Fupa [9]) would be expected to be more useful for
t(p, k, s) at positive energies not “terribly far” off-shell: e.g. in nucleon-nucleon
bremsstrahlung.)

This general argument in favour of the UPA for negative energy does not
explain why the UPA works much better for REiD’s potential with a soft core
than for a potential which is everywhere attractive, such as the Hulthen
potential treated by Harms [3], by Kok |19] and by SANDHAS (this Symposium).
The improvement due to treating a soft core potential is shown by the unitary
pole expansion (UPE) introduced by Harms [3] as a special case of the Wein-
berg or Hilbert —Schmidt expansion or expansion in Sturmian functions. In
the UPE a potential with a soft core gives a rapidly converging series for the
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HOW CAN WE DETERMINE THE TWO-BODY ¢-MATRIX? 141

t-matrix, with small terms of opposite sign due to the attractive and repulsive
parts of the potential. The second and third terms nearly cancel, the higher
terms are very small, and hence the first term (which is the UPA) is surprisingly
accurate. No such cancellation occurs for the Hulthen potential. (The purely
attractive square well treated at great length by LEVINGER [1] was unfor-
tunately a special case since the potential is nearly separable as shown by
Bravsuaw [20].)
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Fig. 5. Convergence of UPE for REID singlet; combined with single term central triplet
(modified Hulthen) and tensor YAMAGUCHI, with parameters adjusted to 7%, deuteron D-state
(upper right) or 49, D-state (lower left). “1” refers to UPA

Is the UPA good enough? Harwms [3] and Harms and Laroze [17]
have shown that it is very good for calculations of the trinucleon energy E; and
the neutron-deuteron doublet scattering length %a. Fig. 5 shows their results
for the UPE series for the REID singlet: the energy E; moves by small steps
up and down as additional terms are included. The upper-right zig-zag combi-
nes the REID singlet with a central triplet of modified Hulthen form (BrapY,
[21]) and YamMAcuUCHI tensor, with parameters adjusted to 7%, D state for the
deuteron. The lower zig-zag has parameters adjusted to p, = 4% note the
change in E; of over 1/2 MeV and corresponding change in 2a, for the adjust-
ment in p,. The UPA value (for 49, D state) of —8.18 MeV is within 0.04 MeV
of the estimated value for an infinite number of terms in the UPE; and the
UPA result is within 1/3 MeV of experiment.

We earlier suggested (LEVINGER, [1]) that the extrapolation using a
local potential and the extrapolation using the UPA were exiremes (since the
UPA gives a highly nonlocal potential) so that any other extrapolation pro-
cedure (e.g., AMaDO [6]) should give off-shell t-matrices between those for a
local and separable potential. Now we find close agreement between the
local and UPA extrapolations, for a REID soft core. Will other extrapolation
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142 J. S. LEVINGER

procedures fall in the small region between these two ? Probably not. We must
fall back on Occam’s razor as an argument for rejecting other extrapolation
procedures.

What about the triplet form factors? Let us again base our work on
Reid’s soft-core fit to on-shell values of the ¢-matrix. E. HarMs has recently
(unpublished) found an analytical form for the UPA to match RE1D’s deuteron
wave function. BHATT [22] uses this UPA together with the R singlet UPA
and calculates E, = —7.5 MeV and 2¢ = 1.6 F. In Fig. 6 I compare these
values as a circle with those for the UPA by HarmMs and Laroze [17] here
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Fig. 6. Phillips plot of 4 calculations on trinucleon: the x is HARMs—LARozZE (1970), from Fig

5, for 7% D-state; the circle is the UPA for REwD singlet and triplet (BHATT et al. [22]); the

square is MALFLIET—TJoN for RE1p [13]; the dashed line is JACKSON et al. (unpublished); the
solid line at lower left shows experimental values

shown as an x(p, = 79%,) and also with MALFLIET’s [14] calculation (a square)
and JAckson et al. (unpublished) a dashed line since 2e is not given. DELVES’
preliminary results (this Symposium) are not shown. We sce good agreement
between the two Rensselaer calculations: we have chosen similar values
of pp, and it seems that the change of shape of the central triplet and tensor
form factors is of little significance. On the other hand, we have an MeV
disagreement between the UPA calculation and the MALFLIET and JACKsON
calculations using the same REID potential. (In all cases 2-body interactions
in higher partial waves are neglected; they contribute about —0.2 MeV to
E.)

I do not want to pursue this disagreement in detail here, since work is
in progress to understand it better. I note that one could argue that the
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agreement within an MeV provides an excellent check on extremely difficult
ealeculations for very complicated potentials. (In what other nuclear physics
calculation for finite nuclei have 3 different groups agreed to within 1/3 MeV
on the binding energy per nucleon ?) Still, we all aim at an order of magnitude
better accuracy. Some of the 1 MeV disagreement is due to calculational
errors by each group. There are also two systematic errors in the right direct-
ions to explain the discrepancy. First, the UPA sets the 3D; phase shift as
identically zero.(Fupa,[16]). Second, MALFLIET neglects the D-state part of
the wavefunction for the spectator nucleon (with respect to the center of mass
of the two interacting nucleons.)

I conclude that the UPA is quite accurate for the singlet potential
(assumed to be local); its accuracy is now being studied for specified triplet
potentials.

3. The deuteron wavefunction

Current measurements of triplet phase parameters are inaccurate:
particularly for the mixing parameter &,. (MACGREGOR, [23]). This inaccuracy
leads to large differences among potentials which fit the phase parameters:
e.g., REID’s soft core (pp = 6.49%,), or MONGAN’s [24] two-term separable.
{pp = 1%)-

The trinucleon energy E. is sensitive to the value chosen for p; see
Fig. 5. (Actually, E; depends on the strength of the central triplet, which in
turn is a monotonic decreasing function of p,.) Is there another method of
determining the value of pp?

Also, how do we know if a given potential agrees with OPEP at large r?
This question is trivial for a local potential. But for YAMAcUCHI’s or MONGAN’s
wavefunctions the answer is not obvious. BURNAP [18] found the answer for
the YAMacUcHI triplet wavefunctions | B >> in the same way outlined above
for BurnAP’s work with HArms® UPA to the REID singlet. BurNaP found fair
(but not excellent) agreement between the potential derived from | B > and
OPEP for YamacucH: shapes with pp, or 49, or 7%, but very poor agreement
for 0.78 < pp < 29%,. Roughly speaking, the failure for low values of p, comes
from the requirement that | B >> give a satisfactory value of the quadrupole
moment Q. We can fit Q at low p,, by using a D-state part of the wavefunction
with a very long tail, which in turn corresponds to using a very long-range
potential, in disagreement with OPEP.

We propose in this Section to answer both questions (the value of p,, and
the validity of OPEP at large r) at the same time, by use of experiments that
directly measure the deuteron wave function | B >>. The wave function is just
about as good an observable as the on-shell values of the t-matrix, and may be
at least as useful for extrapolation purposes to find the t-matrix at negative
energies. {(Fig. 4) It has been neglected too long!
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I must first remind you that measurements on the deuteron and low
energy n—p scattering give three numbers: the enegy — B, the root-mean-
square radius < r? >, and the quadrupole moment (). (Usually one writes the
scattering length a;, or the triplet effective range, instead of <72>>; but one can
juggle freely among these 3 quantities using effective range theory, so I have
chosen the one most useful for my discussion here.) On the other hand the
central ¥, (r) and tensor V', (r) each has a range and a depth, so we have 4
adjustable parameters to fit only 3 data. Thus one adjustable parameter,
which I choose as pp, remains.

If we were naive, we would use the deuteron magnetic moment to give
Pp = 4%: perhaps it is not an accident that this naive choice together with
reasonable shapes gives the fair agreement with trinucleon experiments shown
in Fig. 5. Being more sophisticated, we argue that the magnetic moment is
sensitive to relativistic effects, effects of meson exchange, admixture of
nucleon isobars in the deuteron wavefunction, and/or non-locality in the
nucleon-nucleon potential. (It is unclear to me how much double or triple
counting we do if we treat each of these 4 effects separately.)

Corresponding to each of the static deuteron properties (charge, quadru-
pole moment and magnetic moment) we have a form factor for elastic electron-
deuteron scattering. Since I am ignoring the static magnetic moment, I shall
be consistent and also ignore where possible the magnetic form factor, G, (¢).
The differential cross section do/d(2 for elastic e —d scattering in the laboratory
system gives (GLENDENING, [25]) a form factor G (g)

62 (q) = (dofdo)/(dofdD)poiny = 3 + G} + (2 tan? 1120 + 1)Gh.  (2)

Here (dg/d Q)i is the calculated differential cross section for a deuteron
of negligible dimensions composed of point nucleons. The form factors G, (q)
and G, (q) depend on the momentum transfer ¢, the deuteron wavefunction,
and the isoscalar nucleon electric form factor Ggg (¢). (See MEHROTRA [26]).

Gk (q) =2 GES (q) Fy (q) k=02, (3)
Fo(q) = {, (u+ w?) j, (1/2gr)dr, (4}
Fy(g) = o 2w (u — 871 %) j, (1/2gr) dr. (5)

By measuring G2 (q) at fixed q as a function of tan? 1/20 the experimental-
ist can use Eq. (2) to separate out (G; + G3) (WiLson, [27]) and thus ignore the
effect of the magnetic scattering. However, the sum (G; + G3) turns out to
be insensitive to the choice of deuteron wavefunction: we need to measure the
ratio G,/G. (Note that the isoscalar nucleon form factor cancels in this ratio.)

Bertozzi of M. I. T. suggested to me several years ago that the right way
to measure G,(q) was to measure the tensor polarization of the receil deuteron

Acta Physica Academiae Scientiarum Hungaricae 33, 1973



HOW CAN WE DETERMINE THE TWO-BODY -MATRIX? 145

from elastic e, d scattering. (See PrREPosT [28] for the vector polarization.)
I believe that no such experiments have yet been made; though they appear
to be of not much more than moderate difficulty with a suitable electron acceler-
ator. The energy should be several hundred MeV, and the machine should
have a good duty cycle so that e, d coincidences will eliminate background.
The deuteron polarization would be measured by nuclear scattering of the

deuterons.
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Fig. 7. Form factors for electron-deuteron scattering. The upper two curves show the squared

monopole form factor, G} vs squared momentum transfer ¢%, for YAMAGUCHI shapes, with

deuteron D-state at 1%, and 7%, respectively. The lower three curves show the squared quad-

rupole form factor G} for 7%, 49, and 19, D-state, respectively. From Brapy [21]. See Eqs. (3)
to (5) of text

I find it easier to understand the calculation of the electric part of the
differential scattering cross section (Gi + G;) due to polarized (aligned)
deuterons. From time reversal invariance, this cross section is proportional
to the polarization of the recoil deuteron; and BERTOzzI assures me that the
recoil polarization experiment is easier. I just learned that the polarization
effect has been calculated and published: GourpIN [29], Brady and TomUsIAK
at Saskatchewan and I independently arrived at the same answer, which I
state without proof. Let M be the quantized component of deuteron angular
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146 J. S. LEVINGER

momentum along the direction of the momentum transfer vector g. We find
that the value of M is unchanged due to electric scattering. We can then
consider (do/d®),, (do/dQ), = (do/df))_, and (do/df2), = (2/3) (do/dLQ), +
+ (1/3) (do/d$2),. Here the subscripts 0 and 4 1 give the value of M, and u
stands for “‘unpolarized”. Define an element of the deuteron polarization
tensor P

P = 3 (2)71*[(do/dQ), —(do]d2),]/(do/d22), = (2G,G,+27" *6})/(Go+63).  (6)
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Fig. 8. Deuteron polarization P vs momentum transfer ¢ (in F~?') for YamacucHr shape,
with differert percentage D-state. See Fig. 7 and Eq. (6). From BraDY (unpublished)

A measurement of P (q) provides the ratio G,/G, = F,/F, as a function of
momentum transfer q.

Fig. 7 shows on a semi-log scale several of BRADY’s results [21] for
G (gq) and G;(q) vs ¢* in F~2. The curves labeled 19, 4%, or 7Y%, are for
YamacucHl .shapes with the designated percentage D-state. Note the large
changes in G}, compared to rather small ones in G;. The values of P shown
in Fig. 8 are very low for 1%, D-state. 4%, and 7%, D-state give large but simi-
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lar values of the polarization. Clearly a rough measurement could throw out
the low values of pj, (already discredited by the disagreement with OPEP); a
precise measurcment would be needed for the region of p, from 4 to 7%,

It is amusing to plot the form factors Fj and F, in a different manner.
If we plot F (¢?) vs ¢*> on a linear scale, it is well known that we get a straight
line with intercept unity, and slope proportional to the mean square radius
of the deuteron. So the linear approximation gives negligible additional know-

a’6,(q)

q%(F?)

Fig. 9. Plot of G,/q? vs g2 The intercept is proportional to the quadrupole moment (same for
7% and 19, D-states); the slope is proportional to the parameter f: see Egs. (7) and (8)

ledge of the deuteron. For F,(q) we expand the spherical Bessel function
j2(1/2gr) in a power series, and keep the first two terms. Define

f= 5: 2w(u — 871 2w) rtdr. (N
Then

Fy(g)'g® = Q[3x2'% (g23x3X5xT)f. (8)
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Fig. 9 illustrates the different values of the deuteron parameter f for 19, and
7% D-state: note the same intercept, proportional to quadrupole moment Q.
We see that the linear approximation fails even at 1F~2, Nevertheless this
new parameter f may turn out to be useful.

4. The Gordian kneot

It would take too long to try to explain all the strands that are tangled
together in one giant knot involving the nucleon-nucleon potential and the
trinucleon problem. Let me merely enumerate some of the loose ends seen by a
casual observer: i) the on-shell and near-off-shell two-body ¢-matrix; ii) extra-
polation procedures to get farther off-shell; iii) relativistic effects in the trinuc-
leon; iv) 3-body forces in the trinucleon; v) meson exchange and/or nucleon
isobar effects in the trinucleon.

i) Some needed measurements of the on-shell t-matrix suffer from the
lack of a suitable free neutron target. Experimentalists sometimes try to get
around this lack by scattering nucleons using loosely bound neutrons, as in
the deuteron: but this involves knowledge of the trinucleon problem. I pro-
posed above studying the near-off-shell triplet s-matrix by studying elastic
clectron-deuteron scattering. (One might also study inelastic e —d scattering,
or the deuteron photo-effect, or neutron-proton bremsstrahlung.) This is also
a three-body problem, but one of the three bodies interacts only by electro-
magnetic or weak forces, so the Born approximation is useful. But, as dis-
cussed above in connection with the deuteron magnetic moment, various
effects not described by the two-nucleon Schrédinger equation with a local
potential seem likely to enter, particularly for the magnetic interaction. Are
they important for the electric interactions, G, (gq) and G, (q)?

ii) We need to get further off-shell for application of the trinucleon.
I quoted Harms’ work above on a local singlet potential with a soft core,
which showed that the UPA agreed surprisingly well with a local potential.
While the UPA is likely to be quite good for any reasonable central potential,
its validity must be studied further for a temsor potential.

iti) Trinucleon relativistic effects, as evaluated by Jackson [30], are
only of order 1/4 MeV, and in the right direction to improve agreement between
calculations of E (with 4 to 79, deuteron D-state) and experiment. Still we
don’t have a complete relativistic theory so this loose strand is not completely
disentangled.

iv) Three-body forces still seem hard to calculate. (After all, if we could
calculate three-body forces accurately, we would have no trouble with calculat-
ion of two-body forces, and the messy phenomenological arguments above on
the two-nucleon problem could be avoided!)
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v) If we are only comparing two (linearly related) quantities F. and 2a
with experiment, it is hard to assess the significance of agreement or disagree-
ment. Thus a further study of trinucleon properties, by calculation of the
Coulomb energy and of electron-trinucleon scattering is very useful. (Tjon,[31]
MALFLIET and also DELVES, this Symposium). Here though we must be wary
of new mesonic contributions (or nucleon isobar contributions): e.g., a one-pion
isovector term enters, and is almost certainly responsible for the anomalous
magnetic moments of the trinucleon (i.e., outside the Schmidt lines).

My program for unravelling the knot follows. We combine nucleon-
nucleon and electron-deuteron elastic scattering to find the on-shell and near-
off-shell two-nucleon t-matrix. We assume that mesonic exchange or nucleon
isobar effects are negligible for the electric form factors in e —d scattering. We
can later improve this assumption by using a theory which agrees with experi-
ments on the corrections to the magnetic scattering, and using the same theory
for the much smaller corrections to G, (q) and G, (¢). (BLANCENBECLER, [32]).
We extrapolate off-shell using the UPA, with possible corrections using the
UPE for the tensor force. If we are able thus to solve the first two problems,
we can use the comparison between experiment and calculation for E,. and
2 as a check on theoretical estimates of relativistic effects and of three-body
forces. Hopefully we can treat the new mesonic effects in the trinucleon as we
did for the deuteron: i.e., verify a theory (KrLokTr and TjoN, preprint) for
their contribution to the magnetic scattering, and use the same theory for
smaller contributions to electric scattering.

Looking still further ahead, we could use the alpha particle as an addi-
tional test of relativistic effects, three-body (and four-body) forces, and
(only isoscalar) mesonic and isobar effects. Of course the calculations are
much harder than for the trinucleon. (KHARCHENKO, this Symposium).
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“KAK OINPEHEJIAETCSH +-MATPHMLUA IOBYX TEJI?”
IDK. C. JIEBUHT'EP

Pesiome

CHauvana npeasaraem onpejeseHHy0 GopMy BOJHOBOH (yHKIIHH OCHOBHOTO COCTOSIHMSI
CHCTEMB! IBYX sifiep. JTa BONHOBast (QYHKLHs [T OCTATOK {-MaTpPHLIbl B I0JIIOCE CBSI3AaHHOIO
COCTOSIHHSI, H HCNIOJIb30BAHHE NPUOJIMIKEHHST eJHHUYHOIO T0JII0CA JaeT XOPOLIYI0 SKCTPAnoJisi-
LMIO [1Jis1 3HAYEHHH {-MaTpulbi B He DHePreTHUecKoi nopepxHocty. Ceiluac Bo3HHKaeT MpobJiema,
KaKyl0 BOJHOBY ()YHKIHIO CBSI3AHHOI'0 COCTOSIHHA Mbl NOJDKHBEI Nofo6pare? B TeueHue ciienyto-
X JleT CTAHOBHTCS BO3MOXKHBIM 9KCIIEPHMEHTaIbHBIM ITyTEM OIpeJesIHTh BOJIHOBYIO QYHKIMIO
JeliTepuss IyTeM H3MePeHHs1 YNPYroro paccesiHusl SJIEKTPOHA M JelCTBUS B MOJISIPH30BAHHOM
JefiTepHH HJIM aHAJIOPMYHBIM ITYTeM H3MEDHTD MOJISIPH3ALUIO OTPaXKEHHOI0 JeiiTepust.
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