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An analysis of the mass transfer effects on the hydromagnetic free — convective flow
of an electrically conducting, incompressible viscous fluid, past an infinite, non-conducting,
porous, vertical wall with constant suction, has been carried out, in presence of a transverse
magnetic field. The induced magnetic field is taken into consideration and the terms repre-
senting the viscous dissipative heat and the Joule heating are included in the energy equation.
Approximate solutions to coupled non-linear equations governing the flow are obtained, when
the magnetic Prandtl number is unity and the magnetic parameter M < 1. Expressions are
given for the velocity, the induced magnetic field, the temperature, the skin friction, the elec-
tric current density and the rate of heat transfer in terms of the Nusselt number. The variations
of the above quantities are presented graphically, and the paper is concluded with a quanti-
tative discussion.

1. Introduction

It is known that flows arising from differences in concentration or mate-
rial constitution alone and in conjunction with temperature differences have
great significance not only for their own interest but also for the applications
to geophysics, aeronautics and engineering. There are many interesting
aspect of such flows, so in recent years analytical solutions to such problems
of flow have been presented by many authors. SPARROW et al [4] have present-
ed an analytical study of the effects of buoyancy in a binary boundary layer
into which a foreign gas is injected through a porous surface. SOUNDALGEKAR
[3] has studied the effects of mass transfer on steady free convective flow
of a dissipative, incompressible fluid past an infinite vertical porous wall,
with constant suction. Recently, HALDAVNEKAR and SOUNDALGEKAR [1] have
carried out an analysis of the mass transfer effects on the steady free convective
flow of an incompressible electrically conducting, viscous fluid past an infinite
porous plate with constant suction and transverse magnetic field. In this
study the magnetic Reynolds number of the flow is taken to be small enough
so that the induced magnetic field can be neglected. Also the viscous dissi-
pative heat in the equation of energy is assumed to be negligible as compared
to Joule dissipative heat.
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320 G. A. GEORGANTOPOULOS

Hence, in the present analysis we study the effects of the mass-transfer
on the steady free convective flow, of an electrically conducting, incompres-
sible, viscous fluid, past an infinite vertical non-conducting porous wall with
constant suction, in the presence of a uniform transverse magnetic field. The
induced magnetic field is not assumed negligible and the terms, which re-
present the viscous dissipative heat and the Joule dissipative heat remain in
the equation of energy. Approximate solutions to a coupled non-linear system
of equations governing the flow are derived when the magnetic Prandtl
number is unity, and expressions are obtained for the velocity field, the
induced magnetic field, the temperature field, the skin friction, the rate of
heat transfer, in terms of the Nusselt number and for the electrical current
density. Finally, all the above quantities are shown graphically, followed
by a discussion.

2. Mathematical analysis

We assume as the coordinate origin 0, an arbitrary point on an infinite
vertical porous wall, which is taken to be an electrical insulator. The x’-axis
is chosen along the vertical wall in the upward direction and the y’-axis is
chosen normal to it. The electrostatic system of units has been used throughout,
and we assume that, in the present analysis, all the physical variables are
function of the space coordinate y only. Also the applied magnetic field is
uniform and perpendicular to the wall, so that in the region comsidered,
H = H(H,, H,, 0). Under these assumptions, the steady free convective flow
on an electrically conducting, viscous incompressible fluid is governed by the
following set of equations

’ 2 4,7 H
o O T L) g — €y + e, e
ay ay e 33’
oM _ g 0w, 1 PR, (2)
oy’ dy’  ou, Iy
’ 27 ’
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dy’ dy’?
o’
Y 5
= (5)

where all the above physical quantities have their usual meaning, except C’
which is known as the species concentration, D is the molecular diffusivity and
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p* is the volume coefficient of expansion with concentration. The second and
the third terms on the right hand side of Eq. (3) signify, respectively,the heat
generated by friction (or viscous dissipative heat) and the Joule heating.

The boundary conditions for the velocity field, for the temperature field
and for the species concentration are:

y=0 w=0 T =T, C=C,

’ ’ ’ ’ ! (6)
y—o>oo: w0 T"->T, C - C.,.

The appropriate boundary conditions on H, are (for detailed discussion
see PANDE [2]):

y=0: H,=0, H —H,,

(7)
y—: H—0, H,— H,

From Maxwell’s equations the components of electrical current density
are given by

jx=07 jy:‘O

and (8)
=)
J: = — =37}
oy
and the divergence equation for the magnetic field gives
H, = constant = H,, )

where H is the externally applied transverse magnetic field.
Integration of (5) gives

v = —uv,, (10)
where v, is the constant suction velocity. The negative sign in (10) indicated

that the suction velocity is directed towards the wall.
We now define the following non-dimensional parameters:

u:u’ yzy’vo’ 6 — T -T.,
v, v T,—T.
r 12
C— C_C% , H-— (_@_J fix_,
G, —CL 4 Uy
G, = vg ATy 3_ T.) (the Grashof number),
Vo
* v ’
G, = vgh (C“’3 c.) (the modified Grashof number) ,
Vo
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P, = ovu, (the magnetic Prandtl number),
P= 9‘:1’ (the Prandtl number),
2
E= —,QL——,— (the Eckert number),
eTy — T2)
S, = % (the Schmidt number),
uo \ V2 H
M= (__o_) —L (the magnetic field parameter). (11)
e Yy

With the help of Eqgs. (9) and (10) and of the non-dimensional quan-
tities (11) the Egs. (1), (2), (3) and (4) reduce to:

2

‘;y':+§y1:_c,o—GCC~M-%fI-, (12)
y

1 9*H  9H du

— + = mE o, 13
Pm Oy* Oy oy "
0 p® _pp (ﬂr _PE {i’gr (14)
dy* dy dy P, lay)’
92C aC

+ 8= =0, (15)

day* al

and the boundary conditions (6) and (7) in the non-dimensional form become:

y=0 u=0, 6=1, C=1, H=0,

(16)
y—~0 u—>0, 650, C—~0, H-0.

Eqgs. (12)—(15) are coupled non-linear differential equations and to
solve we follow the power series solution method. As the fluid is incompressible
and the suction velocity is small the Eckert number E is also small (<1).
Hence, we expand u, H, 0 and C in powers of E and neglect terms of order
EZ and higher.

Thus, we have

u = u, + Eu,,
6=0,-+ Eb, 1
H=H,+ EH,, (17)
C=C,+ EC,.
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On substituting (17) into Eqs. (12)—(15), equating the coefficient of E and
neglecting terms in E? and higher order, we get

ug+ uy = —G,0, — G.C, — MH;, (18)
u{ + u; = — G, 0, — G,C, — MH], (19)
1

5 Hi + H + Mu; =0, (20)
l L4 r !

P 1+ Hi+ Mu; =0, (21
6 + P6=0, (22)
O + PO — Puit — = Hit, (23)

where the dashes indicate derivatives with respect to y.
The corresponding boundary conditions are:

y=0:uy=0,u,=00,=1,0=0C,=1,C, =0, H =0, H =0, 6)
y > 0tug— 0, uy— 0,0, — 0,6, »0,Cy—0,C, — 0, H— 0, H, — 0.

Solving Eqs. (18)—(25) under the boundary conditions (26), when the
magnetic Prandtl number P,, = 1 and substituting the solutions obtained
in (17) we have

u(y) = Aye™ — ) - Ay (™ — eV + Ay(e™ — e~PY) +
+ Ay (e —e759) + ~2E— (I'ye™ + Age™® — (By + Ty e +

+ (By + I's) e + (Bg -+ L) e 2 — (By 4 4,) e=C+Ply 4
(T Bg)et5 — (I + &) =5 £ (I + 4) e —
— (I'y+ d5) e P — (I + Ag) e 5 (I + A;) e~ PSP, (27)

H(y) = Ae= — e7P¥) + Ay (e~ — e=5V) — Ay(e PV — e—F¥) —
— A (et — e~S) g (Tye= — Age=Fy + (Iy — Be) e—Py L

+(B; — ['ge™®y + (By — Iy)e™*PY + (4, — By)e~C+P) 1
T (Ty — A ey (dy — I vy 4 (Iy — A4 e 4
+ (45 — I'y) e=CHPWY 4 (4g — I'5) e=E+S L (I — 4;) e=P+5), (28)
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6(y) = e Py + E(Bse Py — A;e7? — 4,7y | 4,e~C—FlV — 4 e 35y L
-+ AQ el +Sy B, e~y 1. B, e—{6+Py 1 B3 e—(B+Sy B4 e*(P+Sc)y) (29)

and
C=eSv, (30)

where

a=14+M, f=1—M, 4, = Cr Ce

Y . -
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4y = B, f’ , ds = B%.G" , dg= __picz , (31)
28 BB+ P) S8, + B)
B,G,

Ag=Ty—Ty— Ty+ Ay— Agt-Ay— Ayt A+ dy— A,

7

T (P+S)PES.-p)
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EFFECTS OF MASS TRANSFER 325

Using the expressions (27), (28) and (29) the skin friction 7, the electric
current density, Z, and the rate of heat transfer, expressed in terms of the
Nusselt number Nu, in the nondimensional terms, are given respectively, by

Tszzzéq
v {9y Jy—o
= AP — &) + 4y(S; — o) + Ag(P — ) + A(S, — B) +

E
A —{(wml‘7 — Bds + P(By + I'y) — 2a(B, + I'g) —

‘“ZP(BB“FF9)+(“+P)(BQ+A1)““2Sc(P1+Az)+
+ o+ Sy + Ay) — 28(F5 + 4) + (B + PYIy + 45) +

+ (B 4 SHIs + dg) — (P 4 SHIs + 4)) . (32)
Z:2F$L“Pg=
v§le oy
= — A (Pe~PY — ae~) — Ay(S,e~5¥ — ae~¥) +
+ Ay(Pe=PY — fe=FY) + A,(S,e~S¥ — fe—F¥) —
_ % (BAse—ty — al'ye=¥ — P(I'y — B;) e~PY —
— 24(B, — I')e— — 2P(By — I})) e—?P¥ —
— (& + P — B e+ — 28T, — ) e —
(@ Sy — Ty) e +Siy — 2(Ty — 4) e —
— (B4 P)(d — L) e 0P — (8 4 S)(dy — I e 0550y —
— (P + S)(Lg — 4;) e PF5h) (33)
and
v i
- k(T;,q_- T)v, (_37]#0: —P A BP(=B By -
— By + 245 — A4;) + (245 — 4, — 4) + f(2B, — B, — By) +
+ S{243 — 4, — By + By)). (34)

3. Discussion

This paper is concerned with the study of the effects of mass transfer
on the hydromagnetic free-convection flow past an infinite vertical porous
wall with constant suction. The results are displayed in Figs. (1)—(8), respec-
tively, for the dimensionless forms of the velocity, the induced magnetic
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326 G. A. GEORGANTOPOULOS

fields, the skin friction, the electric current density and the Nusselt number.
The variations of the temperature field are given in Table I for different values
of the magnetic parameter M. In order to be realistic, the values of the Schmidt
number S, are chosen to be 0.22, 0.60 and 0.75 which correspond to hydrogen,
water-vapour and oxygen, respectively, at approximately 25 °C and 1 atmos-
phere, when for the Prandtl number P we get the value P = 0.71, correspond-
ing in the air. The values of all the other parameters are chosen arbitrarily.

ub
10

8

74

07 T T T T
0 1 2 3 4

y
Fig. 1. The velocity profiles u for P = 0.71

The variation of the velocity field for different values of S; and M are
shown in Fig. 1. From this Figure we see that the velocity is greater in the
case of the hydrogen (S; = 0.22) than in the case of the oxygen (S.= 0.75).
Also we remark that as magnetic parameter Mincreases the velocity decreases
for all the values of the Schmidt number S, which quantitatively agrees with
the expectations since the magnetic field exerts a retarding force on the
flow. In Fig. 2 the velocity profiles are shown for constant G, and M and for
different values of S,, G,, and E. It is known that the Eckert number E
may be interpreted as the addition of heat due to viscous dissipation while
the Grashof number G, as the addition of heat due to free-convection currents.
Thus the case when (T, — T_) >0 or G >>0 with E >0 corresponds to
the external cooling of the wall, while the case when (T, — T_) << 0 or G < 0
with E <0 corresponds to the external heating of the wall. From Fig. 2 we
observe that, in the case G < 0 with E < 0, for large values of Schmidt
number S, the velocity is negative and decreases as E increases. Thus the
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Fig. 2. The velocity profiles u for P = 0.71
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Fig. 3. The induced magnetic field H for P = 0.71
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velocity profile is of reversed type in the case of the water vapour (S. = 0.60)
and oxygen (S = 0.75). Finally from this Figure we see that, in the case
G > 0 with E > 0, the velocity is positive and increases as E increases for all
values of S..
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Fig. 4. The induced magnetic field H for P = 0.71
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Fig. 5. The variations of the skin friction 7 for P = 0.71
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The variations of the induced magnetic field H are shown in Fig. 3 for
different values of S, and M. From this Figure we see that the induced magne-
tic field gets positive values near to the wall, while far from the wall it gets
negative values, and this means that there is a reverse of the induced magnetic

025

~{25+

-05+

-075-
Fig. 6. The variations of the Nusselt number Nu for P = 0,71
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Fig. 7. The electric current density Z for P= 0.71
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field. Also we remark that as M increases the induced magnetic field also
increases for all values of the Schmidt number. In Fig. 4 the variations of
induced magnetic field H are shown with y for different values of S, and E.
We observe that, in the case G < 0 with E < 0, the induced magnetic field

-0.1-
Fig. 8. The electric current density Z for P = 0.71

decreases as the Eckert number E increases, while in the case G >0 with E >0
as E increases the induced magnetic field also increases for all values of Schmidt
number S..

The numerical values of temperature 0, calculated from expression (29)
are given in Table I. We remark that as magnetic parameter M increases, the
temperature decreases for all values of S.. Also, from this Table we see that
the temperature increases as F increases.

The skin friction 7 is plotted against G in Fig. 5 for different values of
M and S.. We see that, for all values of Schmidt number S, as M increases
the skin friction decreases. Thus the presence of the magnetic field helps in
reducing the frictional drag on the wall.

The Fig. 6 displays the variation of the Nusselt number which represent
the local dimensionless coefficient of heat transfer. We see that an increase
in the strength of the magnetic field causes the Nusselt number to decrease.

The variation of the electric current density Z is shown in Figs. 7
and 8. From the Fig. 7 we see that as magnetic parameter M increases the
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Table 1
The variation of the temperature 6 profiles for P = 0.71
Gp=5 6. =2 E = 0.001
S, = 0.22 S, = 0.60 S, = 0.75
y M = 0.04 M =015 M = 0.04 M=10.15 M = 0.04 M =015
0.0 1.000000 1.000000 1.000000 1.600000 1.000000 1.000000
0.2 0.769644 0.767742 0.768657 0.763513 0.769126 0.763703
0.4 0.587249 0.584201 0.587289 0.580236 0.587218 0.580162
0.6 0.447354 0.443656 0.447592 0.440307 0.446990 0.439841
0.8 0.341264 0.337269 0.340715 0.334003 0.339324 0.333193
1.0 0.260985 0.256952 0.259137 0.253331 0.257399 0.252294
Gy = —35 G, =2 M == 0.04
S, =022 S, = 0.60 8, =015
y =—0001 | E=—0003 | E=—0001 E = —0.003 E = —0.001 E——0.003
0.0 1.000000 1.0600000 1.000000 1.000600 1.000000 1.000000
0.2 0.747046 0.735604 0.740685 0.716521 0.739263 0.712257
0.4 0.557748 0.539929 0.550220 0.517345 0.549234 0.514386
0.6 0.416179 0.395414 0.409617 0.375730 0.409417 0.375128
0.8 0.310326 0.288775 0.305472 0.274214 0.305904 0.275510
1.0 0.231076 0.210099 0.228137 0.200984 0.228948 0.203416
G, =5 G, = M =014
S, = 0.22 S, = 0.60 Sp =075
¥ E = 0.001 E = 0.003 E = 0.001 E = 0.003 E = 0.001 E = 0.003
0.0 1.000000 1.000000 1.000000 1.600000 1.000000 1.000000
0.2 0.769644 0.803400 0.768657 0.800437 0.769126 0.801846
0.4 0.587249 0.628433 0.587289 0.628553 0.587218 0.628338
0.6 0.447354 0.488940 0.447593 0.489658 0.446790 0.487247
0.8 0.341264 0.381591 0.340715 0.379942 0.339324 0.375771
1.0 0.260985 0.299528 0.259137 0.293984 0.257399 0.288769

electric current also increases for all values of S, Finally from Fig. 8
we see that the electric current density increases as the Eckert number E

increases.
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