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The effects of non-equilibrium dissociation and tha t  of wave front  curvature on the 
propagation of sonic waves and their consequent  formation into shock waves ate examined. 
Special a t tent ion is paid to waves of plane, cylindrical and spherieal geometry propagating 
into regions of weak equilibrium or strong equilibrium. I t  is found tha t  a s ta te  of strong equilib- 
rium has a stabilizing influence in tha t  not  all compression waves will grow into shock waves. 
Further ,  ir is interest ing to note tha t  in a weak equilibrium state, all compression waves, no 
mat te r  how weak initially, always end up into a shoek whereas all expansion waves decay 
but  not  completely unlike the situation tha t  occurs in a strong equilibrium state. 

1. Introduction 

The growth  and decay behaviour  of sonic waves,  following the analysis 
of THOMAS [2], has been inves t iga ted  by  several  workers  [1- -7]  in a va r ie ty  
of  mater ia l  media.  Calling a s ta te  wi th  a zero react ion ra te  and a non-zero 
aff in i ty  a weak  equil ibr ium state,  ana  one wi th  bo th  of  these quant i t ies  zero 
a s trong equi l ibr ium state,  BowE~ [8] has inves t iga tea  the inf luence of  these 
the rmodynamica l  s tates  on the p ropaga t ion  of plane accelerat ion waves in 
a mix ture  of ehemical ly react ing elastic materials.  In  this paper ,  using the 
singular surfaee t heo ry  due to  THOMAS [9, 10], we have inves t iga ted  the  growth 
ana  deeay behav iour  of  sonie waves propagat ing  into regions of  s t rong and 
weak equi l ibr ium of  an ideal dissociating gas. I t i s  found  t h a t  in a s trong 
equil ibrium s ta te  there  exists a cri t ical  value of the initial  d i seont inui ty  such 
t ha t  all eompression waves whose init ial  d iseont inui ty  is less t h a n  this crit ical 
value damp to zero and waves wi th  initial  d iscont inui ty  greater  t h a n  this 
critical value grow wi thout  bound in a f ini te  t ime. For  the  case of weak equi- 
l ibr ium state,  it  is fouDd tha t  all compression waves grow into  a shoek af ter  
a f ini te t ime whereas  all expansion waves decay ana  u l t i ina te ly  take  a stable 
wave forro. I t  is found  t ha t  the geomet ry  of the wave f ron t  affects the growth 
propert ies indi rec t ly  in t ha t  the cri t ical  value of the  init ial  d iscont inui ty  
depends on the  init ial  curvatures  of the  wave front .  The cri t ical  values of  the 
initial d i scont inui ty  for cylindrical  and spherical waves for which the respect ive 
waves never  comple te ly  decay are found to be larger in magni tude  t han  the 
corresponding value for plane waves.  The specific source of non-equi l ibr ium 
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effects considered here is the dissoeiation recombination reaction in a symmet- 
rieal diatomic gas; the present method can, however, be employed to vibration- 
al excitation, ionization etc. Here we have considered the useful approxima- 
t ion of the ideal dissociating gas due to LIGrITmLL [13]. The species tha t  
make up the gas mixture are assumed to behave individually as thermally 
perfect gases. The temperature range is taken from 2500 ~ to 4500 ~ In 
this temperature range, the contribution of energy from eleetronic excitation 
and ionization are both assumed negligible. The radiation heat loss from the 
mixture and the molecular transport effeets leading to viseosity, diffusion 
and heat conduction are also neglected. 

2. Basic oquations 

The ecluations governing the three-dimensional unsteady motion of ah 
ideal dissociating gas are [14] 

O0 + ui O,t + ~ut,i = 0 ,  (1) 
0t 

0ui e ~ -  + ~uj ui, l + p,t = 0, (2) 

{Ohot }Op+_ff�91 e = - +  ,,i h, i  = u , e ,~  (3) 

- - +  uio~, i=W',  (4) 
0t 

where the summation convention on repeated indices is employed, and a comma 
followed by ah index denotes the partiaI derivative with respect to a space 
variable.The range of LatŸ indices is taken to be 1, 2, 3.The symbols appearing 
in (1)--(4) a r e a s  follows: ~ is the density; p i s  the pressure; u i are the gas 
vclocity components; h is the speeifie enthalpy; x is the mass fraction of the 
reaetant  species, wkich takes part in the simple reversible reaetion 

A,~= X ~ A + A + X .  (5) 

(The speeies X can be either the diatomic molecular speeies A 2 or the atomie 
species 24) and 117 is the rate of progress of reaetion (5), namely 

w = , - ~ { K ( 1  - ~) - ~ 2 } .  (6)  

The quantities ~ and K are the forward-reaetion time, 

, -1  = 402 kr(1 + ~)/m 2 (7) 
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and the equilibrium constant, 

i,: = oa e x p  ( -  Ta~T), (8) 
0 

respectively. The quantities kr, m, Od and T a appearing in (7) and (8) are 
respectively the recombination rate coefficient, the molecular weight of A 2, 
the characteristic density for dissociation and the charaeteristic temperature 
for dissociation. In the temperature range 2500 ~ ~-~ 4500 ~ the variation 
in these quantities is very small and hence they will be treated as constants. 

The thermal and caloric equations of state for the gas mixture are [13] 

p = 0(1 q- ~) R T ,  

h = {(4 -4- ~) T q- aTa} R ,  

(9) 

(10) 

where R is the gas eonstant for A 2. 
Eq. (3) with the help of (1), (2), (4) and (6--10) is conveniently trans- 

formed into 
0p 

+ u ip ,  i +  ea~eui., + ea~a l r r  0, (11) 
0t 

where al is the frozen sound speed given by a} -= F p  ; F being the ratio of 
0 

frozen specific heats given by F -- (4 q- ~)/3, a n d a  is a function of local ther- 
modynamic properties given by 

1 
a = - - { ( T a / T  ) - -  ( F -  1)-~}. 

3P 

3. Kinematics of moving singular surfaces 

In this Section, appropriate kinematics to describe the motion of a weak 
discontinuity surface is outlined. We shall assume tha t  the reader has some 
familiarity with the kinematics of moving singular surfaces [9, 10]. We consider 
a moving singular surface 2; given by f ( x  i, t) ----- 0, and tha t  we denote by n i 

/ 

rector  f,i/lgrad fl and by G = - - ~ t / ] g r a d f l  the normal speed the unit normal 
/ 

of advance of Z. For definiteness, we require that  the description of the sur- 
faee 27 is sueh that  G is always positive. This means tha t  the normal n i always 
points in the direetion of propagation of 27. The jump in any quanti ty aeross 
27 is denoted by [Z] = Z 1 -- Z 0, where Z 0 denotes the value of Z immediately 
ahead of the wave front, and Z 1 is the value of Z immediately behind it. Ir, 
aeross 27, the funetion Z is eontinuous, while its first and seeond order partial 
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de ¡  with respect  to  x i and t suffer j u m p  discontinuities t hen  ir can be 

shown tha t  [9, 10] 

r~z 1 
[Z,i] = B n ,  ; [--~t  ] = - - G B ,  (12, 13) 

[ Z , j  = B n i n j  A- g ' ~ B , ~ ( n i x j . t  + njxi ,~)  - -  Bg~~gCb,~x i ,~x j ,~ ,  (14) 

Oxi Ot J ~ nt - -  g~P(GB),~ x i ~ ,  (15) 

where  fl = [Z,i] n i, B = [Z, ij ] n t ni and ~ r e p r e s e n t  the  ra te  of  change of  

( ) as seen by  ah observer  f ixed on Z. A eo m m a  followed b y  a Greek index 
say  (~) denotes par t ia l  der ivat ives  with respeet  to  the  surfaee coordinate  ya. 
The  range of  Greek indiees is 1, 2. Quanti t ies  g~P and b~~ ate the  eon t rava r i an t  
and  eovar iant  eomponen ts  of the  first  and  seeond fundamenta l  tensors  of 
respect ively .  We also recall  the  following re la ¡  whieh we shall be using 
in our  fu r ther  analysis 

ni, ~ = - - g ~  bp~ xi, ~ ; 2zQ -= g~~ b~~ and  ~ni = ~t --g~P G, ~ xi, ~, (16, 17, 18) 

where  f~ is the  mean  cu rva tu re  of ~.  

4. Derivat ion of the growth equation 

A moving s ingular i ty  surface Z,  across whieh the  flow pa rame te r s  are 
eont inuous  bu t  which is sueh t ha t  at  least some of  the f irs t  par t ia l  der ivat ives  
of  these flow paramete rs  suffer j ump  discontinuit ies a t  the surface,  is ealled 
a weak  d iseont inui ty  or  a sonic wave.  I t  follows f rom Seetion 2, t h a t  the  
quant i t ies  p ,  ~, ~, ui, al, z, IV a n d a  ate cont inuous  across ~U and  t h e y  will 
have  thei r  subscript  0 values  a t  the  wave f ront .  Assuming the  s ta te  ahead 
of~Uto be uniform, i t  is shown in [1] t ha t  e i ther  G - -  uno = ~ayo or G --  uno =- 
---- 0, where Uno = uto n i i s  the  component  of  f lu id  veloci ty  normal  to  the  wave 
f ron t  Z.  The case G - -  Uno = 0 which corresponds  to a mater ia l  surfaee is 
d iscarded as uninteres t ing,  and we assume wi thou t  loss of genera l i ty  t h a t  

G = ur~0 A- af0. (19) 

W h e n  the medium ahead of  the  wave is un i form and at  test ,  i t  follows f rom 
(19) t h a t  the  wave f ron t  • propagates  t h rough  the  medium wi th  the  frozen 
sound speed. As a resul t  of  which the successive positions of  the  wave f ron t  
Z at  different  ins tants  forro a family  of  paral lel  surfaees with s t ra ight  fines 

Acta Physica Aeademiae Scienliarum Hungaricae 46, 1979 



ON THE PROPAGATION OF SONIC WAVES 303 

as their  or thogonal  trajectories [11]. Thus given the wave surface at  t = 0, 
say Z'o, the posit ion of the surface at  any  t ime t > 0 can be determined by  
measuring the distance traversed by  the wave front  along the  normals to 2; o. 
In the test  of the  paper, we shall be coneerned with the s i tuat ion when the 
medium ahead of  2? is uniform a n d a t  test.  Then, on evaluat ing equations 
(1), (2) and (4) across Z' and using (12),(13) and (19), we get 

= ~o~__ ~/a]o, ~ i = 2 n ~ ,  ~ 7 = 0 ,  (20, 21, 22) 
a:o 

where 

~i = [Ui,J] /t j ,  ~ = l p ,  ii / t i ,  ~ : [Q, i] n i 

and ~7 = [~,i]ni are the quantit ies defined over 2;. 
I f  we differentiate (2) and (11) wi th  respeet to x k, t ake  jumps aeross L', 

and mul t ip ly  the result ing equations by  n k, we find, on using the relations 
(12)-- (22), t h a t  

where 

and 

0 0 - -  - -  ( � 9 1  eoalo2) ,  (23) 
~t 

~~ -- a:o(~ -- ~oafo]t) -- 2(A 0 -- a:ot2)~ (-Po + l )  ~2, (24) 
t~t Qo a:, 

= [Ui,3k ] n i n j n R ,  ~ = [ p ,  ij] n z n i  

A~ = l  [3F~176 l)cr~ [ W~191 ~o~2~ ) + ,~o  IV~ ( 3 F ~ 1 7 6  1)} " 

Eqs. (23) and (24) can be combined to yield 

~---~( -}- (A o -- a:o 12) ~ -~ (-r~ q- 1) a:~ (~ = 0,  (25) 
6t 20o 

where use has been made of (20). 
Eq. (25) is the  required growth equat ion for the d iscont inui ty  ~ which 

we have been seeking. In view of the relations (20), Eq. (25) yields a differen- 
t ial  equation for 2 and one for �91 Thus,  Eq. (25) is sufficient to predict the 
growth or decay of a discont inui ty  associated with the wave surface Z'. For  
a family of parallel surfaces, propagat ing with constant  veloc~ty, the mean 
curvature ~2 has the representat ion [12] 

I2 = ~2~ -- K~ a/o t (26) 
1 --  2~2 o %~ t -4- Ko O~o t 2 ' 
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where Qo and K o ate respect ive ly  the mean  and  Gaussian eurva tures  of  ~0. 
Subs t i tu t ing  for Q in (25) and integrat ing,  we get 

r - -  2Qoafot + K o a~ot2) -�89 exp (--Aot) 
= ( F  ~ + 1) , (27) 

1++  2~ ~ af~176 { (1 -2~oa]o t+Koa~ ,~~ ' ) -~exp( -Ao~)}d t  

where  ~o is the value of  ~ at  the wave f ront  a t  t = 0. 
I t  is elear f rom (27) t h a t  the  t empora l  behav iour  of the dens i ty  gradient  

a t  the  wave head will depend  cri t ically on the  sign of A o. Following Bow~.I~ 
[8], i t  follows tha t  f o r a  s ta te  of strong equi l ibr ium A 0 is non-negat ive  whereas 
for  a weak er237 s ta te  A 0 may  be posi t ive  of negat ive.  To make  the 
exae t  result  (27) more aecessible, we discuss the  following three  cases of 
plane,  cylindrieal  and spherical  waves. 

Case (i): Plane waves 

5. Diseussion 

F or  a plane wave f ron t  ~o = Ko = 0, the  Er I. (27) reduces to  the  forro 

where 

= ~o exp ( - -A~ , (28) 

~o {1 - -  exp ( - - A o t ) }  1+~( 

~, = 2eoAo/(F o + l)  aro 

Eq.  (28) shows t ha t  i f  ~o > 0 (i.e, ah expans ion  wave front)  and  A 0 > 0  
t h e n  the  denomina tor  of  (28) remains posi t ive and  ~ -+ 0 as t -+ 0% the  wave 
damps  out.  Also i f  ~o < 0 (i.e. a compression wave front)  and  i f  i t  has the 
magn i tude  less t han  ~c t hen  the  denomina tor  of  (28) remains posi t ive and 

-+ 0 as t -+ c~, i.e. a eompression wave deeays  and damps out  u l t imate ly .  
Fu r the r ,  i f  ~o is negat ive  and  has a magni tude  equal  to ~c, then  ~ ~ ~o and the 
wave  propagates  w i thou t  any  growth of deeay.  Bu t  i f  ~o is negat ive  and has 
a magni tude  greater  t h a n  ~r then  ]~1 -+ oo f o r a  f ini te  t* given b y  

t '= l { '~  ~t ~} - A0 ~~9, 
Thus  at  a f ini te t ime t* the  densi ty  gradient  a t  the  wave f ront  becomes infini te  
and  this signifies the appearance  of a shoek wave.  Thus  we f ind t h a t  -~c is a 
erit ieal value of  the ini t ial  d iscont inui ty  in the  sense t h a t  all compression waves 
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with initial d i scont inu i ty  less t han  this  value a t t enua te  while all compression 
waves with ini t ial  d iscont inui ty  grea ter  t han  this value  grow into a shoek 
wave after  a f ini te  t ime.  I t  is ev ident  f rom the  expressions of  ~c and t* t h a t  
t h e y  are increasing funct ions of A 0, i.e. the  dissociation effects ate to increase 
the shock format ion  t ime. 

For  A o < 0 (which can only occur  in weak equi l ibr ium state)  it  follows 
f rom (28) t h a t  ir  P0 > 0 then  ~ ~ l~cl as t -~ ~ ,  i.e. all expans ion  waves decay 
and u l t ima te ly  take  a stable wave form.  This in teres t ing fea ture  of expansion 
waves does no t  appear  in the  former  case in which all expans ion  waves decay 
and damp out  u l t imate ly .  Bu t  if  P0 < 0 and Ao < 0 then  we have  the cr i ter ion 

i =  1 log /1]+ [~e]} (30) 
IA0j ~ J '  

for the shock fo rmat ion  at  a f ini te t ime.  Thus,  in this case we f ind  t h a t  a dis- 
cont inui ty ,  no m a t t e r  how small, assoeiated wi th  a compression wave always 
grows into a shock. I t i s  also ev ident  f rom (30) t h a t  the weak  equi l ibr ium state  
causes the compression wave to s teepen more swift ly t h a n  ir does in an iner t  
a tmosphere  (in which A 0 --= 0). 

Case (ii): Spherical  waves 

I f  the wave f ron t  • a t  t ime t = 0 is a sphere of radius Ro, then  at  any  
1 

t ime t > 0, ~ is a sphere of radius R ---- R O + a$, t. For  such a wave  Q0 Ro 

1 
and K 0 --  2 and thus  the Eq.  (27) reduces to  

Ro 

_ Po(Ro/R) exp {- -Ao(R --  Ro)/ay, } (31) 

1 + ( F ~  ~'oRo exp (A o Ro~aro ) E l (A o Ro/aro ) {1 Ei (A~  [ ' 
2 ~o Ei(AoRo/aolo)J 

o~ t 
where Ei(x ) -~ fox t - t  e -  dt is a t abu la t ed  funct ion  known exponent ia l  in tegral  a 8  

funct ion.  For  A 0 > 0, the t e rm in the  cur ly  bracket  in the  denomina tor  of 
(31) inereases monoton ica l ly  f rom 0 to  1 as R increases f rom R O to oo. Hence 
in this case also there  exists a cri t ical  value  of initial  d i seont inui ty  ~c, the 
magni tude  of  which is given by  

2~0 exp ( - - A  o R O/alo ) (32) 
t~c [ = (F  ~ _~_ l)R0 Ei(AoRo/afo) 

such t ha t  i f  ~o < 0 and has a magni tude  less t h a n  ]~c[ t h en  the  denomina tor  
of (31) remains  posi t ive and finito and  thus  P --~ 0 as R -+ oo, the  compression 
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wave decays and damps out ultimately. Further,  if ~o < 0 and has a magnitude 
equal to I~ct, then I~1 -+ ~c as R -+ ~ .  i.e. the wave does not completely decay 
and ultimately takes a stable wave form. But  if  ~o < 0 and has a magnitude 
greater than I~c], then we have the criterion 

E,(AoR/afo): (1L i~cll ' [ r  E,(Ao~o/~D (33) 

for the shock formation a t a  finite R -~ ~ = R O + a l~ .  From the inequality 
E i ( x  ) < e -X /x ,  it follows that  I~cl (critical value of the discontinuity for the 
spherieal wave) is greater than the corresponding value f o r a  plane wave. 

From the expression (32), it follows tha t  0]~c----! > 0 whieh means that  
OAo 

I~l�91 the critical value of the initial discontinuity increases with A 0. Also., ~ < 0 

which implies that  the initial eurvature has a stabilizing effeet on the tendency 
of the wave surface ~U to grow into a shock in the sense tha t  ah inerease in the 
value of the initial curvature causes ah inerease in the critical amplitude. 

Further,  ir is also evident from (33) that  ~ > 0  which means tha t  ah increase 

in A 0 will cause the shock formation time [ to inerease, i.e. the non-equilibrium 
dissociation effeets are to increase the shock formation time ~. On the other 
hand, if  the wave is expansion (r > 0), then ~ --~ 0 as R -+ ~ ,  the wave 
decays and damps out ultimately. 

For A 0 < 0, the denominator of (31) reduces to 

1 + (F0 + 1) [-A.R/~,. 2 ~n t0 Ro exp (A 0 Ro/aA) x - 1  e x d x .  (34) 
J --A+R,]ajo 

When ~o > 0, the denominator (34) remains positive and tends to infini ty as 
R -+ o~. This happens beeause of the diverging nature of the integral involved 
therein. Also, numerator of (31), for A 0 < 0, tends to infinity as R - +  ~ .  
Hence, by making use of L'Hospital 's rule, we obtain tha t  ~-+ [~c[ (critical 
value for a plane wave) as R -+ ~ .  Also, (34) shows tha t  if ~o < 0 then we 
have the criterion 

-z./~afo 2~o exp (--A o Ro~ay.) x - l  eX dx  : , ~- 
J--AoRo/a,o l~o~(Fo --}- 1)Ro 

for the shock formation at a finite R = R. 
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Case (iii): Cylindrical waves 

In  this case also the growth and decay  phenomenon is ve ry  much similar 
to those of plane and spherical waves.  I f  the  diverging wave  f ront  Z a t  t = 0 
is a cylinder of  radius Ro, then a t  an y  t ime t > 0, Z is a cylinder of  radius 

1 
R = R o + al, t. For  sueh a wave  Q0 = -  2/1--- 0 and K 0 = 0 and  thus Eq.  (27) 

assumes the form 

r _ ( F 0 +  1)r176176 1/~ exp { - - A  0 (R --, x/2R~ • (35) 

1 +  Co exp (AoRo/af.) I "n-----~176 I erfc (AoRo/af.)l/2 
2 Oo I Aoal. J 

• 11-- erfc(A~ } 
erre ( AoRo/ay,) x/z 

where erfc (x) ~ ~  -t, = e di is the  complementa ry  error funet ion.  For  A 0 > 0, 

i f  C0 > 0 then r remains positive for all R > R o and monotonieal ly  approaehes 
zero as R - ~  oo. Also ir C0 < 0 and has a magnitude less than  Ÿ where 

J~c[ = [ A~ .)~12 2eoexp(_AoRo/a j ,  ) (36) 
z~R o ( F o +  1) erfc (A o Ro/al.)x/~ 

t hen  ~ --~ 0 as R --~ 0% the wave  damps  out.  Fur ther ,  if~0 < 0 and has a mag- 
ni tude equal  to  I~c] then the wave  decays  and ~-+  I~c[ (critical value f o r a  
plane wave) as R - +  ~ ,  i.e. the wave  u l t imate ly  takes a s table  wave form. 
From the inequal i ty  erfe(x) < e-X'/x V ~, it  follows immedia te ly  tha t  I~cl (for 
cylindrical wave)  is greater than the corresponding critical value f o r a  plane 
wave. Bu t  if  ~o < 0 and has a magni tude  greater  than  ]~cl then  we have the 
eriterion 

erfc I A~ = (1-- [~*l I erfc ( A~176 l"~ (37) 
t aro ! l;oJJ t, af,--"~) " 

for the shoek format ion at a finite R = R. However ,  i f  C0 > 0 and A 0 > 0 
then (35) shows tha t  ~--~ 0 as R--~ ~ ,  the  wave  damps out.  Ir  is evident  
from (36) and (37) tha t  the dissoeiation effeets ate to inerease the shoek 
format ion t ime.  

For  A 0 < 0, the  growth and decay  phenomenon is again similar to those 
of  plane and spherieal  waves,  i.e. if  r > 0 the  r --~ [Col (eritieal value for a 
plane wave) as R ~ ~ .  B u t  if Co < 0, then  we have the cri terion 

f<-""~'~~ exp (**) d.  = [Ro a~. l -  1/' Qo ~xp (--Ao Ro/~f.) 
�9 '~--A.R./a,.~~/= t IAol)  Wo + 1)1�91 

for the shoek format ion  at a finite distance R = R*. 
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