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The effects of non-equilibrium dissociation and that of wave front curvature on the
propagation of sonic waves and their consequent formation into shock waves are examined.
Special attention is paid to waves of plane, cylindrical and spherical geometry propagating
into regions of weak equilibrium or strong equilibrium. It is found that a state of sirong equilib-
rium has a stabilizing influence in that not all compression waves will grow into shock waves.
Further, it is interesting to note that in a weak equilibrium state, all compression waves, no
matter how weak initially, always end up into a shock whereas all expansion waves decay
but not completely unlike the situation that occurs in a strong equilibrium state.

1. Introduction

The growth and decay behaviour of sonic waves, following the analysis
of THoMAS [2], has been investigated by several workers [1—7] in a variety
of material media. Calling a state with a zero reaction rate and a non-zero
affinity a weak equilibrium state, and one with both of these quantities zero
a strong equilibrium state, BoweN [8] has investigated the influence of these
thermodynamical states on the propagation of plane acceleration waves in
a mixture of chemically reacting elastic materials. In this paper, using the
singular surface theory due to THoMAS [9, 10], we have investigated the growth
and decay behaviour of sonic waves propagating into regions of strong and
weak equilibrium of an ideal dissociating gas. It is found that in a strong
equilibrium state there exists a critical value of the initial discontinuity such
that all compression waves whose initial discontinuity is less than this critical
value damp to zero and waves with initial discontinuity greater than this
critical value grow without bound in a finite time. For the case of weak equi-
librium state, it is found that all compression waves grow into a shock after
a finite time whereas all expansion waves decay and ultimately take a stable
wave form. It is found that the geometry of the wave front affects the growth
properties indirectly in that the critical value of the initial discontinuity
depends on the initial curvatures of the wave front. The critical values of the
initial discontinuity for cylindrical and spherical waves for which the respective
waves never completely decay are found to be larger in magnitude than the
corresponding value for plane waves. The specific source of non-equilibrium
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effects considered here is the dissociation recombination reaction in a symmet-
rical diatomic gas; the present method can, however, be employed to vibration-
al excitation, ionization etc. Here we have considered the useful approxima-
tion of the ideal dissociating gas due to LicrTHILL [13]. The species that
make up the gas mixture are assumed to behave individually as thermally
perfect gases. The temperature range is taken from 2500 °K to 4500 °K. In
this temperature range, the contribution of energy from electronic excitation
and ionization are both assumed negligible. The radiation heat loss from the
mixture and the molecular transport effects leading to viscosity, diffusion
and heat conduction are also neglected.

2. Basic equations

The equations governing the three-dimensional unsteady motion of an
ideal dissociating gas are [14]

*3"@"!- U0, + ouy; =0, 1)
ot
3“[
[ —é)';-l- uju;; 4+ pyy =0, (2)
oh ap
O twh| =2 up,, 3
eat+u, J a¢+u"P (3)
oo
_+ uian':W’ (4')
ot

where the summation convention on repeated indices is employed, and a comma
followed by an index denotes the partial derivative with respect to a space
variable. The range of Latin indices is taken to be 1,2,3.The symbols appearing
in (1)—(4) are as follows: p is the density; p is the pressure; u; are the gas
velocity components; h is the specific enthalpy; « is the mass fraction of the
reactant species, which takes part in the simple reversible reaction

dy=X=4+4+X. (5)

(The species X can be either the diatomic molecular species 4, or the atomic
species A) and W is the rate of progress of reaction (5), namely

W=1t2{KQ1— «) —«?}. (6)
The quantities 7 and K are the forward-reaction time,
1 = 42k (1 + a)fme )

Acta Physica Academiae Scientiarum Hungaricae 46, 1979



ON THE PROPAGATION OF SONIC WAVES 301

and the equilibrium constant,

n:%ww—mn, ®)

respectively. The quantities k,, m, g, and T, appearing in (7) and (8) are
respectively the recombination rate coefficient, the molecular weight of A4,,
the characteristic density for dissociation and the characteristic temperature
for dissociation. In the temperature range 2500 °K ~ 4500 °K, the variation
in these quantities is very small and hence they will be treated as constants.

The thermal and caloric equations of state for the gas mixture are [13]

p=o(l + «) RT, 9)
h={(4+a)T+oT)R, (10)

where R is the gas constant for A4,.
Eq. (3) with the help of (1), (2), (4) and (6—10) is conveniently trans-
formed into

9
7’:+ u;ps; + oatu;, + patoW =0, (11)

I
where a, is the frozen sound speed given by af = —QP; I’ being the ratio of
frozen specific heats given by I' = (4 4 «)/3, and ¢ is a function of local ther-
modynamic properties given by

1 -1
7 = =TT — (T = 1)~

3. Kinematics of moving singular surfaces

In this Section, appropriate kinematics to describe the motion of a weak
discontinuity surface is outlined. We shall assume that the reader has some
familiarity with the kinematics of moving singular surfaces [9, 10]. We consider
a moving singular surface 2’ given by f(x;,t) = 0, and that we denote by n,

the unit normal vector f,,/|grad f| and by G =—g—{/]gradf| the normal speed

of advance of 2. For definiteness, we require that the description of the sur-
face X is such that G is always positive. This means that the normal n; always
points in the direction of propagation of 2. The jump in any quantity across
2 is denoted by [Z] = Z, — Z,, where Z; denotes the value of Z immediately
ahead of the wave front, and Z, is the value of Z immediately behind it. If,
across 2, the function Z is continuous, while its first and second order partial
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derivatives with respect to x; and ¢ suffer jump discontinuities then it can be
shown that [9, 10]

[Z,.] = Bn;; {%5] — —GB, (12, 13)
t
[Z,;]] = Bn;n; + g B, . (n;x;5 + n;x; ) — Bg* g® boyXigxjs, (14)
92 Z _ 63}
= [—GB + ——| n, — g**(GB),, %;5 » 15
[axiat] ( + == M — gHCB) (15)

where = [Z,] n;, B = [Z, pglnin; and—g;zrepresent the rate of change of

( ) as seen by an observer fixed on 2. A comma followed by a Greek index
say (x) denotes partial derivatives with respect to the surface coordinate y*.
The range of Greek indices is 1, 2. Quantities g** and b 4 are the contravariant
and covariant components of the first and second fundamental tensors of 5
respectively, We also recall the following relations which we shall be using
in our further analysis

Nj. = —gﬂvbﬁa Xiys 2Q = gzﬁbaﬁ and % = _gaﬂ G,. Xi,p (16, 17, 18)

where 2 is the mean curvature of X.

4. Derivation of the growth equation

A moving singularity surface X, across which the flow parameters are
continuous but which is such that at least some of the first partial derivatives
of these flow parameters suffer jump discontinuities at the surface, is called
a weak discontinuity or a sonic wave. It follows from Section 2, that the
quantities p, g, «, u;, @, T, W and o are continuous across X' and they will
have their subscript 0 values at the wave front. Assuming the state ahead
of X' to be uniform, it is shown in [1] that either G — u,, = +a;or G — v,y =
= 0, where u,, = u,, n; is the component of fluid velocity normal to the wave
front 2. The case G — u,, = 0 which corresponds to a material surface is
discarded as uninteresting, and we assume without loss of generality that

G = Uy, + Qy, . (19)

When the medium ahead of the wave is uniform and at rest, it follows from
(19) that the wave front X propagates through the medium with the frozen
sound speed. As a result of which the successive positions of the wave front
2" at different instants form a family of parallel surfaces with straight lines
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as their orthogonal trajectories [11]. Thus given the wave surface at t = 0,
say X, the position of the surface at any time ¢ >0 can be determined by
measuring the distance traversed by the wave front along the normals to 2.
In the rest of the paper, we shall be concerned with the situation when the

medium ahead of X is uniform and at rest. Then, on evaluating equations
(1), (2) and (4) across X' and using (12),(13) and (19), we get

(=2t gz 5=, n=o, (20, 21, 22)

e,
where

A= [ui,]] n, &= [P’i] n;, {= [Qei] n;

and 7 = [«,;]n; are the quantities defined over 2.
If we differentiate (2) and (11) with respect to x,, take jumps across 2,
and multiply the resulting equations by n,, we find, on using the relations

(12)—(22), that

1) = =
0o—— = —(é — goa7,4), (23)
ot
- r
O (E— e d) — Ay — a, D — LoD g2 (g
ot Qo @5,
where ~ )
A= ["f,;k] n;n,n;, {= [p’ij] nn;
and
2
A, =2 3ryr, — ne? (W, + ﬂ) + %o 30,6, — )l .
2 Ty k3po
Egs. (23) and (24) can be combined to yield
_‘§£+(A0_afog)c+wgz=0, (25)
ot 20,

where use has been made of (20).

Eq. (25) is the required growth equation for the discontinuity { which
we have been seeking. In view of the relations (20), Eq. (25) yields a differen-
tial equation for A and one for £. Thus, Eq. (25) is sufficient to predict the
growth or decay of a discontinuity associated with the wave surface 2. For
a family of parallel surfaces, propagating with constant velocity, the mean
curvature {2 has the representation [12]

_ .QO—KOafut
1—2Qya,t+ K aj 12 ’

(26)
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where Q, and K, are respectively the mean and Gaussian curvatures of 2.
Substituting for 2 in (25) and integrating, we get
C CO(]‘ - 290 afot + KO a’;«»tz)_i exp (_A()t) (27)
=== e p— t .
1 o a0 [0 - 20,0, 4 Ky b exp (- 4D}
0

Qo

where {, is the value of { at the wave front at ¢t = 0.

It is clear from (27) that the temporal behaviour of the density gradient
at the wave head will depend critically on the sign of 4,. Following BowEn
[8], it follows that for a state of strong equilibrium A, is non-negative whereas
for a weak equilibrium state 4, may be positive or negative. To make the
exact result (27) more accessible, we discuss the following three cases of
plane, cylindrical and spherical waves.

5. Discussion

Case (i): Plane waves

For a plane wave front 2, = K, = 0, the Eq. (27) reduces to the form

£ = CCO exp (—A,1) , (28)
1+ _C—O {1 — exp (—4,1)}

[

where

Lo =20, 4p/('y + 1) as,

Eq. (28) shows that if [ >0 (i.e. an expansion wave front) and A, >0
then the denominator of (28) remains positive and { — 0 as t — oo, the wave
damps out. Also if {; < 0 (i.e. a compression wave front) and if it has the
magnitude less than [, then the denominator of (28) remains positive and
£ — 0 as t — co, i.e. a compression wave decays and damps out ultimately.
Further, if {; is negative and has a magnitude equal to {,, then { = {, and the
wave propagates without any growth or decay. But if {; is negative and has
a magnitude greater than {_ then |[{| — oo for a finite t* given by

1 {2
* . __ |1 1— 2<% . 29
' Ao{og( co) } 29)

Thus at a finite time ¢t* the density gradient at the wave front becomes infinite
and this signifies the appearance of a shock wave. Thus we find that {, is a
critical value of the initial discontinuity in the sense that all compression waves
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with initial discontinuity less than this value attenuate while all compression
waves with initial discontinuity greater than this value grow into a shock
wave after a finite time. It is evident from the expressions of {, and t* that
they are increasing functions of A, i.e. the dissociation effects are to increase
the shock formation time.

For 4, < 0 (which can only occur in weak equilibrium state) it follows
from (28) that if {; > 0 then { — |{ | as t — ~o, i.e. all expansion waves decay
and ultimately take a stable wave form. This interesting feature of expansion
waves does not appear in the former case in which all expansion waves decay
and damp out ultimately. But if {;, < 0 and 1, << 0 then we have the criterion

= aies 1 55 (30)

for the shock formation at a finite time. Thus, in this case we find that a dis-
continuity, no matter how small, associated with a compression wave always
grows into a shock. It is also evident from (30) that the weak equilibrium state
causes the compression wave to steepen more swiftly than it does in an inert
atmosphere (in which 4, = 0).

Case (ii): Spherical waves
If the wave front X at time ¢t = 0 is a sphere of radius R,, then at any

1
time ¢ >0, X'is a sphere of radius R = R, - a;, t. For such a wave Q, =— —

) R,
and K, = ig—and thus the Eq. (27) reduces to
0

Lo(Ro/R) exp {—Ay(R — Ry)/ay,}
R, exp (4, Ry/a;,) E; (4, Rja;,) {1 —

PCVERINY

2o

E,-<A0R/af.)} - D)
Ei(AoRo/aofa)

where E(x) = f ~t-1e~'dtis a tabulated function known as exponential integral
X

function. For A, > 0, the term in the curly bracket in the denominator of
(31) increases monotonically from 0 to 1 as R increases from R, to co. Hence
in this case also there exists a critical value of initial discontinuity £, the
magnitude of which is given by

&l =

such that if {, <C 0 and has a magnitude less than |f,| then the denominator
of (31) remains positive and finite and thus { — 0 as R — oo, the compression

20y exp (—4, R, /ay)
(I's + )Ry E(4, R/ay,)

(32)
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wave decays and damps out ultimately. Further, if {; < 0 and has a magnitude
equal to ||, then |{| — {, as R — cc. i.e. the wave does not completely decay
and ultimately takes a stable wave form. But if {, < 0 and has a magnitude
greater than |é'¢|, then we have the criterion

E(4, Bia) = 11~ -—%} E/(4,Ry/ay) (33)

for the shock formation at a finite R = R = R, + afof. From the inequality
E,(x) < e~¥/x, it follows that || (critical value of the discontinuity for the
spherical wave) is greater than the corresponding value for a plane wave.

ol
A,

¢

> 0 which means that
19]¢,

the ecritical value of the initial discontinuity inereases with /1,. Also <0
L] 0

which implies that the initial curvature has a stabilizing effect on the tendency
of the wave surface 2 to grow into a shock in the sense that an increase in the
value of the initial curvature causes an increase in the critical amplitude.

Further, it is also evident from (33) that ;j

From the expression (32), it follows that —2°

>0 which means that an increase

0
in A, will cause the shock formation time  to increase, i.e. the non-equilibrium

dissociation effects are to increase the shock formation time f. On the other
hand, if the wave is expansion ({, >>0). then { — 0 as R — oo, the wave
decays and damps out ultimately.

For A, < 0, the denominator of (31) reduces to

_A / .
14 822D Ry (4, Ryjag) [ " x-reras, (34)

Qo A.R./a,n

When {; > 0, the denominator (34) remains positive and tends to infinity as
R —> oo. This happens because of the diverging nature of the integral invelved
therein. Also, numerator of (31), for A, < 0, tends to infinity as R — oo,
Hence, by making use of L’Hospital’s rule, we obtain that { — || (critical
value for a plane wave) as R — oo. Also, (34) shows that if {, < 0 then we
have the criterion

x-le*dx

J‘FA"/E% x 7. _ 200 exp (—4, Ro/ay,)
—dAs Rylay, i‘fu:(ro + DR,

for the shock formation at a finite R — R.
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Case (iii): Cylindrical waves

In this case also the growth and decay phenomenon is very much similar
to those of plane and spherical waves. If the diverging wave front 2 at ¢t = 0

is a cylinder of radius R, then at any time ¢t >0, 2'is a cylinder of radius

1
R = R, + agt. For such a wave Q, =— —éi-and K, = 0 and thus Eq. (27)
0

assumes the form

ColRy/R) exp {—A,y (R — R,)/ay,}

e X (35)
1 L0 exp (d Rofay) (2] erfe (4R )7
20, Aoay,
o I _exfe (4o Rjag 1" }
{ erfe (A,R,/ “fo)ll2

2 —_ .
where erfe (x) = V—:f e~"dt is the complementary error function. For 4, >0,
TJx

if {; > 0 then { remains positive for all R > R and monotonically approaches
zero as R — oo. Also if {, << 0 and has a magnitude less than {fc], where

]é l — { AD afo ’”2 290 exp ('—AD Ro/afo) (36)
¢ 7R, (Ty+1) erfe (4, Ryfay )12

then { — 0 as R — oo, the wave damps out. Further, if {; <C 0 and has a mag-
nitude equal to |f| then the wave decays and { — || (critical value for a
plane wave) as R — oo, i.e. the wave ultimately takes a stable wave form.
From the inequality erfe(x) <C e™*'/x |/ 7, it follows immediately that || (for
cylindrical wave) is greater than the corresponding critical value for a plane
wave. But if {; <C 0 and has a magnitude greater than || then we have the

criterion
511 1 = / 1/2
erfe [M] : = [1—’ -Q] erfe —{1—"1—{—0—) / . (37)
%, Icol ar,

for the shock formation at a finite R = R. However, if {o >0 and 4, >0
then (35) shows that { — 0 as R — oo, the wave damps out. It is evident
from (36) and (37) that the dissociation effects are to increase the shock
formation time.

For A, <0, the growth and decay phenomenon is again similar to those
of plane and spherical waves, i.e. if {, >0 the { — [CO[ (critical value for a
plane wave) as R — oo. But if {; < 0, then we have the criterion

f(—A.R*/a/.)lﬁ exp (xz) dx = Ro af.J— 1/2 0, €Xp (_‘Ao Ro/af.,)
(—A4R/ay)1/2 |Ao| (Fo + l)lco!

for the shock formation at a finite distance R — R*.
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