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The present status of the theory of matter accretion on stars is reviewed. The paper
deals mainly with thermodynamics and hydrodynamics of accreting gas in the absence of a
magnetic field. Particular emphasis is put on the main problems which are still unresolved.

Introduction

The physical problems in the theory of matter accretion on the stellar
objects are reviewed. As it is well known, such theory has been recently used
to explain X-ray emission by galactic binary systems.

In this paper we limit ourselves to the general physical features of accre-
tion and therefore we do not take into account the particular problems con-
nected with neutron stars and black-holes. We hope to give an account of
this aspect of the theory in a forthcoming paper.

Section 1 deals with the early theories proposed by Eppineron, HoYLE
and LYTTLETON in connection with star energy source and terrestrial climatic
variations.

In Sections 2 and 3 we deal with the thermodynamics of falling matter,
while the role of radiation pressure will be taken into account in Section 4.
In Sections 5 and 6 we shall treat in detail the accretion on to objects moving
through the ambient gas at a supersonic speed. Section 7 is concerned with
Bonbpr’s theory of subsonic aceretion and Section 8 gives finally a review on
the general hydrodynamical problem.

§ 1. Early accretion theories

The idea that matter withdrawn from interstellar gas by the gravitational
force of a star can supply energy to the star itself by deposition of its kinetic
energy onto the surface, can be traced back to EppiNeTon [7]. The hope was
to explain the origin of stellar energy, as thermonuclear reactions were not
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known at that time. Neglecting the interaction of atoms among themselves
and taking into account the constancy of energy and angular momentum with
respect to the star centre, one finds that particles having a distance from the

centre less than

(1)

1/2
ROZ[ZGMRJ/

2

must necessarily fall on the surface.

In the above formula G is the Newtonian gravitational constant, M and
R are the mass and radius of the star, respectively, and v is the velocity of
the star relative to the gas cloud. In fact if we call v’ the velocity of a particle
grazing the stellar surface, we have clearly:

R, v= Rv’,
0ty 26M ’
R

and therefore
2
( R, ) 1 26M

—F Rv?

As in cases of interest, 2GM/Rv? > 1, one has at once formula (1). The rate
of accreted mass is:

anr _ 2nGMRy.

= nRlqv = s 2
de v

where ¢ is the mass density of the cloud.

One easily sees that for a normal (i.e. not collapsed) star and a number
density of the gas ~1 atom/ecm?, this process canunot supply the required
energy by many orders of magnitude.

About after ten years, HoYLE and LyTrLETON {9] proposed a theory of
accretion in which the cffects of collisions among particles in the cloud were
taken into account.

The purpose of their paper was to explain the earth climatic changes
during Geological Eras due to a variation in the solar luminosity when the
sun enters a cosmic cloud in its metion around the galactic centre.

With reference to Fig. 1, the gas flows from left to right with collisions
taking place in 4, to the right of the sun S’ as its gravitational attraction
causes two opposite fluxes of particles to collide. The effect of such collisions
is to destroy the particle angular momentum about the sun. If, after collision,
the radial component of the velocity is less than the escape velocity at A4,
the particles fall on to the sun surface; therefore the accretion radius R,
can be calculated by requiring that in 4. radial velocity is equal to parabolic
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velocity. This interpretation of facts, though quite rough, gives the right answer
anyway: a more rigorous treatment has been given by Bonpi and HoyLE [2]
(see further on § 5). A gas element is subject to hyperbolic motion around the
sun, i.e.:

£—=1—{—ecos@,

T

84

/
/

-

Fig. 1

where p and e are respectively the orbit parameter and eccentricity. The
direction parallel to the initial assymptote is given by r — oo, that is:
ecosf;, 4+ 1=0
and, as 8, — 6, = =, also:
ecos b, + 1 =0,
esin f, = (e2 — 1)'%,
from which follows:

S4-—L
2

Taking time derivative of the trajectory equation, one gets the radial compo-
nent of the velocity:

. e . eh .
F=-—r2f0sinf= —sinb,

p p
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since

2 =h=|{GMp = dl.

Therefore

h
Irp| = e sin 6, ] L2 = esinf,— = [f4]. (3)

This means that the radial velocity at A4 is equal to the cloud velocity at
infinity. The square of the parabolic velocity at A is given by

26M _ 46M

SA P
and therefore the particles fall on the sun if the following inequality is satisfied

2 2
pr < JOM _ 4G2M2
P v2l2

thus the accretion radius is given by

R, — 26M ’

v2

In physically interesting cases, R, is always greater by several orders of

magnitude than R, i.e. the accretion radius for non interacting particles

(see formula (1)). The rate of matter accretion is now
aM 47G* M?p

— = aR%w =
dt A8 v3

(4)
(HoyLE and LyrrLeTON [10], HOoYLE and LyrTLETON [11]).

Since the velocity of escape at the surface of the sun is very large, i.e.
6.2 - 107 cm/sec, one can assume that all the particles reaching the surface
of the sun arrive with the escape velocity which, as one can easily see, corres-
ponds to a kinetic energy ~9 - 10-? ergs per hydrogen atom. Now the ioni-
zation energy of the hydrogen atom is about 4 - 1011 ergs, hence it can
be concluded that the particle cannot get rid of any appreciable portion of
its energy by ionization processes before reaching the sun: therefore the kinetic
energy of the falling particles has the net effect to inerease the sun’s radiation,
as the extra energy gained in this way must be reemitted.

The energy brought to the sun per second is easily obtained by (4) and
turns out to be

4 - 10"8—g—erg]sec .
»3
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PHYSICAL ASPECTS OF MATTER ACCRETION 281

We see that the increase in sun’s radiation depends on the density of the
cloud and on the velocity of the sun relative to it, being directly proportional
to the first factor and inversely proportional to the cube of the latter factor.
Thus slight changes in these factors bring about considerable ranges of variation
in the solar radiation, and, for plausible values of g and v, it may be caused
to change from 0.1 to 10009, according to the density and velocity of the cloud.

According to the authors, if the increase in the solar luminosity is mode-
rate (<(109,), we shall have on the earth an increase in the precipitation of
snow (because of the enhanced evaporation) in those regions normally within
the snow line and therefore the onset of an Ice Epoch.

If on the other hand the solar Juminosity is increased by a factor greater
than 2, a hot and humid climate will ensue even in polar regions: in this way
the peculiarities of the carboniferous Epoch can be explained.

One easily sees that, assuming a constant density ~10-1% gr/cm3 of the
cosmic clouds, the above figures can be obtained for a relative velocity of
~20 km/sec and 2 km/sec, respectively.

§ 2. Critical temperature of the accreting gas

The physical problems invelved in aceretion onto normal stars have
been investigated for the first time by HovLE and LyrTrLETON [12]. Let us
consider a radial flux of matter with a temperature T’ toward a star of Mass
M. Because of the continuity equation for a stationary flux (M = constant
through a spherical surface of radius r) one gets:

For free falling gas, v = [/2GM/r and therefore

M —3/2
= Y2, 5
47 )/26M )

Our assumption of a radial stationary flux requires that the gravitational
force (which acts inwards) on a volume element dV,i.e. GMpdV/r?,is greater
than the pressure gradient (which acts outwards) due to the density gradient.
The latter is given by RoT’dV/r, where R is the perfect gas constant and T
the gas temperature. As the gravitational force goes as r~"/* and the pressure
gradient as r—*?, the latter is equal to the former for r sufficiently great and
this for any temperature T’. The accretion can take place only if this value of
r (which will be called r; or thermal radius) is greater than the accretion
radius (formula (3)).
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From the above consideration, one sees that a critical temperature must
exist above which r; << R,. For the sun, with v = 20 km/sec, such a tempe-
rature turns out to be ~16 000 °K.

As is well known, the gas temperature of a cloud in which ne high surface
temperature star is present, cannot be greater than 104 °K, because of recom-
bination effects. Therefore the problem of critical temperature for stars of
1 Mg has no particular difficulty.

On the contrary one encounters some difficulties for massive stars, like
V—Puppis stars, with masses ~20 M@, surface temperatures T ~20 000 °K
and relative velocity with respect to the cloud of about 5 km/sec. For such
stars the critical temperature is of several thousands degrees: it is thereforevital
to see if the cosmic cloud can emit radiation by processes other than inverse
photoelectric effect. One easily sees that free-free transitions are ineffective. In
fact the cross-section for the emission of 1 e.v photon at a temperature
~104 °K is ~10-2 c¢m?, while the cross section for the capture of an electron
by a proton is ~5 - 10-2! cm?: it turns out therefore that an electron is cap-
tured before it can emit by free-free transitions an appreciable fraction of its
energy.

A more effective process is however infrared emission by hydrogen
molecules, which will be considered in the next section.

§ 3. Cooling mechanism for the falling gas

Let us consider a hydrogen plasma (protoms, electrons and H,, Hf
molecules) lighted by a source at a temperature T. Every ionization contri-
butes kT to the thermal energy of the gas. Calling p the cloud density, X the
fraction by weight of ionized matter, m, the proton mass, u the mean velocity
of electrons, and o the cross section for recombination of Hf or H+ with
the electron at the cloud temperature T”, the number of electrons per c.c. is
Xe/my; and the number of recombinations per c.c. per second is:

xe (2
[
At equilibrium the ionizations per second must be equal to the recombinations
per second and therefore the thermal energy given by electrons to molecules
per c.c. and per second is:

2

2
m uc’ kT’ ,

XY

where Y is the fraction by weight of molecules and ¢’~2 + 108 ¢m? is the
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cross section for equipartition of energy between electrons and molecules.
On equating these two formulae and remembering that

4-10-%
TI

o~

(STuCKELBERG —MORSE [16]), we get:
, X
T = V40T7 .

X
From this one sees that, unless—f;is very large, T’ is small compared with T.

Let us now investigate whether the energy acquired by a molecule in one
excitation act can be radiated away before the molecule undergoes a second
excitation. As the electric dipole moment of a hydrogen molecule in the
ground state vanishes, one has to do with forbidden transitions whose proba-
bility is less than the probability of allowed transitions by a factor of 108
Assuming a mean life of 10-° sec for an allowed transition, the mean life of
a forbidden one is therefore 102 sec.

The time elapsed between two successive excitations is given by ljon,v
where ¢ ~10-18 ¢m? is the excitation. For a gas with an electron number
density n, = 102 em~3 and v ~5 - 107 cm sec—!, one gets a time ~ 107 sec:
this means that the molecule can give away its excitation energy before a
second process can take place.

Another process which can give energy to the gas is the angular momen-
tum destruction induced by molecular collisions of the falling matter. The
number of collisions to which a molecule is subject over a distance equal to
the accretion radius is given by

26M

2

ony ,

where o ~ 10-7% em? is the geometrical collision cross section and ny = 108
hydrogen atoms per c.c. For a star mass M = 5 M@ and v = 5 km/sec, this
number is ~10% and therefore sufficient to ensure equipartition among mole-
cular states. The characteristic time of aceretionis ~GM|/v3, which is >102sec:
therefore the energy gained in this way is radiated away. Let us now investi-
gate whether an appreciable number of molecular hydrogen can exist at a
distance comparable with accretion radius, particularly near massive stars
which emit a substantial amount of ionizing radiation. First of all the material
sufficiently near the star is completely ionized and in this domain its tempera-
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ture is the star surface temperature. Assuming radial accretion, the number
of recombinations per o.c. per sec at a distance x from the star is

2
oT)o(1) £,
my
where v(T) is the velocity of electrons and ¢(T) is the recombination cross

section. Remembering that g(x) = o(r) (r/x)**the total number of recombina-
tion within a sphere of radius r is:

~r
ﬂ% JR drx? o¥(x) dx — %v(T) o(T)o? ()r® log %,
where R is the radius of the star.

As ionizations and recombinations per second must be equal and as
about one half of the ionizing photons can be given by recombinations them-
selves and the energy required for a single ionization process is ~2.5 - 10— erg,
the star must supply an amount of energy

0*(r) r
2a0(T)o(T) =——=13 log— - 2.5 - 1011 erglsec
m R
in order to produce a number of ionizations about equal to one half recombina-

tions. Assuming that the star radiates as a black-body and calling & the amount
of radiation with an energy greater than 2.5 - 10-!! erg, one must have:

e = 2a0(T) o(T) 20 plog T - 2.5 - 10-11,
my; R

This equation allows one to calculate the radius r of the sphere within which
matter is completely ionized (Stromgren’s radius). In the case of V-Puppis
E ~ 10% ergfsec, R ~ 5 - 1011 cm, and therefore r = 5 - 1016 cm, which is
greater than R, ~ 10'® cm (and this always in the envisaged case of ~103
atoms ¢m—3). Outside the Stromgren’s sphere, only a small fraction of the
material can be ionized. In fact the number of ionizing quanta at a distance
x > goes down with an exponential law of the kind e’ where 7 is the
ionization mean free path.

So, in order that an accretion process can take place onto stars like
V-Puppis, the gas density must be greater than 10% atoms cm~3.
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§ 4. Effects of radiation pressure

In order to evaluate the effect of radiation pressure it is first of all neces-
sary to calculate the mean life of atomic levels for the absorption of a quantum
of radiation. This will be achieved through the estimate of the number of atoms,
within a distance r from the star, which are excited by a quantum of energy
hwy, where w, is the frequency of the line. The probability that a quantum of
energy between ho and % (w + dw) is absorbed before it reaches a distance r,
is approximately given by

7 w Nre2
— '}) —— e ———
2" oo — wy)?

(He1TLER [8] p. 186, eq. (16)), where N is the number density of hydrogen atoms
and therefore Nr is the number of atoms contained in a cylinder of unitary
cross section and height r, w,, is the transition probability for spontaneous
emission between the states a and b, y = 2/3 r, wy/c is the natural width of the
line and r, = 2.8—10-% cm the classical radius of the electron (HEITLER
[8]. p. 35, formula (6)).

As y ~ w,, (HEITLER [8], p. 184, formula (12)), one has:

%ywab ~ 6 - 1018

for w, ~ 2 - 108 rad/sec corresponding to the energy required for a transition
from the ground state to the first excited level in a hydrogen atom (~10 eV).
The quantum can be considered completely absorbed for a value of w given by

2
6 - 1018 _ Nre* -1
wg(w — @,)?
ie.:

lo — wo| ~ V107 Nr .

The radiation emitted in this frequency interval is completely absorbed before
it can reach a distance 7.

If u(w) is the black body radiation energy density, for a temperature
20 000 °K, u(w,) ~ 510~ erg/cm® Hz. Thus the required emission of
absorbed radiation is approximately given by

47R? cu(w,) 2 [0 — wy| ~ 102 R% (Nr)12,

where R is the radius of the sphere.
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As one erg corresponds to about 5 - 101° quanta, the number of atoms
excited per second is 5 - 10'2 R¥Nr)"2. As the total number of atoms within
a sphere of radius r is 4/3 nNr3, the fraction of atoms excited per second within
such a sphere is of the order of 102 R2N~"?r=5”%, and therefore the mean life
of the first excited level of hydrogen atom at a distance r = 5 - 1018 ¢m and
with a density N = 10% cm~2? and a stellar radius R =5 - 101! ¢m, turns

out to be:
10-22 R-2 N¥2 52 _ 109 sec .

The exciting quantum has approximatively 5 - 1022 momentum units and
therefore every atom gets in the mean about 5 - 10-3! momentum units per
second.

The gravitational force exerted by a star of mass M ~ 20 Mg on a hydro-
gen atom at a distance ~35 - 10'® ¢cm is ~10-3 dyne, so that the absorption
of this line contributes 1/6 the total pressure necessary to sustain the atom
against gravity.

It follows that none of the transitions 1ls — np can sustain hydrogen
atoms because of the probability decrease with increasing n (CoNnpon and
SHORTLEY, [3]).

If matter density is sufficiently high, line excitations cannot sustain
atoms against gravity at the capture radins and matter moves therefore towards
the star surface, as required by accretion theory.

On the other hand, the effect of radiation pressure on ionized matter is
quite negligible. In fact, in this case, it is entirely due to the interaction of
photons with free electrons (Thomson scattering) with a cross section oy =
= 6.65 - 10-% cm?2.

The pair electron-proton is subjected to two forces:

1) the radiation pressure force acting on the electron and pointing
outwards, which is given by

L

4aric

ar »

where L is the star luminosity, r the distance of the pair from the star.
2) The gravitational force acting on the proton and pointing inwards, i.e.

GMm,,
r2 ’

At equilibrium one gets:

Lg

_ AnGMmyc o g J‘Af ergfsec . (6)

or ©
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This value of the luminosity is called the Eddington limit: for L > Lg matter
is “blown away”’ by radiation pressure.

For a 20 Mg star, Ly = 2.4 - 10%® erg-sec™. As the effective luminosity
is ~~10% erg/sec, radiation pressure is entirely negligible.

§ 5. Supersonic accretion in the case of interacting particles

We have seen above that accretion can be treated in two extreme approxi-
mations: one is to consider non interacting gas particles, in which case the
accretion radius is given by (1), the other is to consider interacting particles:
the latter case leads to the accretion radius given by (3) and this applies when
the mean free path of a particle is much less than R,. A more rigorous treat-
ment than the one given in Section 1 has been given by Bonp1 and HovLE [2]
for the case of non interacting as well as of interacting particles.

2)
1
c) a)
A A
c)
2)
1

Fig. 2

Let us consider first the case of non interacting particles. With
reference to Fig. 2, trajectories 1 and 2 represent the paths of particles
grazing the star surface which is represented by the circle. These trajec-
tories divide the space into three regions: a), b) and c¢). All particles moving
in region a) hit the stellar surface. In region b) there is but one trajectory
through a given point. In ¢) however there are two trajectories through a
given point, apart from the points of the accretion axis, where there is an
infinite number because of cylindrical symmetry. If we now consider the case
of interacting particles with a low gas temperature (cf. § 3), there is no change
in the properties of regions a) and b): in fact particles cannot collide as only
one trajectory goes through each point. This is not true for region c), where
particles collide even if their temperature is low: these collisions tend to pre-
vent two fluxes of particles from passing through each point not on the axis.
In fact it is clear that the two stream region cannot have dimensions much
greater than the mean free path of the particles and therefore this region
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shall have dimensions much less than R, (formula (3)). As a consequence the
mechanism of accretion is determined by the four regions a), b), cl) and c¢2)
shown in Fig. 3.

Region cl) is a two stream region with a thickness of the order of the
mean free path and regions a), b) and ¢2) are all single stream. For a very
high density of the cloud, region cl) becomes a surface of discontinuity. In
¢2) the pressure is very high as the density is great. This pressure causes a force
on region cl) directed outwards which balance the momentum transverse
component of matter coming in from b).

c1)

C2) a)

C1)

Fig. 3

Using a hydrodynamical terminology region cl) may be called a shock
wave. The problem of accretion in its most general form is a hydrodynamical
one and will be treated from this point of view 1n Section 8.

The behaviour of a particle crossing the shock can be qualitatively
described in this way: the gas loses the component of the velocity perpendi-
cular to the shock wave front, while the parallel component, i.e. the one directed
radially, is left unchanged. With reference to Fig. 1, if the particle impact
parameter is greater than R, (cf. formula (3)), the radial velocity is greater
than the parabolic velocity and the gas goes to infinity, while if the impact
parameter is less than R ,, the gas falls on to the star after crossing the shock
wave front.

This result, strictly rigorous in case of Fig. 1, where it was assumed that
collisions took place only on the axis, is still true also in the more general
case of a shock, provided the Mach cone is narrow enough, i.e. for relative
velocities ¥ much greater than the sound velocity e; the opening 6 of such a
cone is given by

. a
sin § = — .

From these considerations one already sees the importance of sound speed in
accretion problems.
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§ 6. Braking force

A very important dynamical effect is the braking force produced by the
cloud on the star. This force is due to the particles changing their momenta,
via the interaction with the gravitational field of the star. This process has
been investigated for the first time by Bonpr and HoyvLe [2] and by Dobb
and McCreA [5-—6].

Let us consider first the case of non interacting particles. With references
to Fig. 1 we call p the angle between asymptotes of the hyperbolic trajectory
of a particle coming from B whose impact parameter is [. The particle comes
in from infinity and goes to infinity, in the direction of the asymptote DE,
thereby changing only the velocity direction (not modulus!), through an angle
y. From standard formulae of celestial mechanics (Ocoropnikov, [14])
one has:

tg_y)_: GM ’
2 e

where M is the mass of the star and V the relative velocity between star
and particle.

The vectorial change in the velocity is given in modulas by 2V sin 9/2
and makes an angle 7 4 /2 with the arrival direction. The component of AV
along axis SA is therefore |AT|= 2V sin? y/2. On expressing sin®y/2 by
tg ¥/2 one gets:

— 2V
MV%:W'
[ear]

Consider now a ring of radius /, thickness dl centered on S4 and area 2zl dl.
The total mass which crosses this area per unit time is p} 2nl dl, where p
is the cloud density. These particles act on the star with a force:

dF = AVV2aidl

from which we get the total force:

I 22 2 174
F=4aV2e ——!ﬂ¢—=2nch In {14 LV ’
0o 1. BV e G2M?
+G2M2

where [, is the extension of the cloud. This force is not negligible if

2 ys

ik
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i.e. when the linear dimensions of the cloud are much greater than the aceretion
radius ~ GM/V?2. This means that the braking effgct is essentially due to
the particles far away and not to those falling on the star,

One important consequence of this fact is that the same expression for
the force is valid also in the case of interacting particles.

As accretion increases when relative velocity decreases (cf. formula (3)),
Mc Crea [6] has investigated the problem if the braking of stars by inter-
stellar gas in the galaxy is responsible for the exceedingly great luminosity
of some of them and SALPETER [15] has examined whether the emission of
quasars can be explained in terms of the braking of massive objects by diffuse
matter.

§ 7. Hydrodynamics of accretion in the case of subsonic relative
velocity of stars and clouds

Let us now consider the case where the relative velocity between the
star and the cloud is equal or less than the sound velocity in the cloud. This
problem has been investigated by Bonp1 [1] in the hydrodynamical approxi-
mation. See also ZEL'DOVICH and Novikov [17], p. 435. A star of mass M
is at rest in an infinitely extended gas cloud with a density ¢_ and pressure
Po- The motion of the gas is stationary and spherically symmetric. We shall
neglect the increase of the star mass, so that the field of force is constant.
The gas can be characterized by its adiabatic index y, density p, pressure p
and sound velocity:

112
a= (_V!LJ .
e

The phenomenon obeys the following equations:
1) Continuity equation:

4nr’gy = A (constant), (7

where r is the radial coordinate, v the velocity of the gas directed toward
the star and A4 is a constant which represents the accretion rate in gram per
second.

2) Bernoulli equation:

2 P d GM
.*’_+J dp _
2 - 0 T

= const = 0.

The integration constant is zero because of boundary conditions at infinity.
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3) Adiabatic equation:
4
i (_9’ . (8)
pm Qw
By means of (8), the Bernoulli equation takes the form:

—1
! —1]= CM

Rt | e ©)

2 7=1 pullg
Eqgs. (8) and (9) are valid in case no heat exchange takes place between two
neighbouring fluid elements. We can however take account of heat exchange
by suitably modifying y, which in any case must always lie between 1 and 5/3.
The adiabatic index is in general defined as:

r

dlogp ]
0 10g @ /S = const.

’

where S is the entropy per gram given by
S = ﬂ—ln (L) + —?’—iln kT -+ constant.
p \mu) 2 p
Here & = 8.31 - 107 erg/°K - gr is the perfect gas constant, K = 1.38 - 10~
erg/°K is the Boltzmann constant with § = N K and IV, = 6.023 - 1023 gr-1
is Avogadro’s number (inverse of proton mass); u is the molecular weight
defined, for a neutral gas, as the number of nucleons in a nucleus. For a neutral
7

gas the number of particles per c.c. n is given by n = . The perfect gas

pmy
equation 1s:

If the gas is completely ionized the number of particles per c.c. n is given by

the number of nuclei per c.c., i.e. plus the number of electrons z e
gy pmy
1
n_1tz o
¢ My

In this way to a completely ionized gas can be attributed a molecular weight

N
142

where u is the molecular weight for the neutral gas.

7

2
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So for neutral hydrogen and helium one has respectively: y =1 and
p = 4; for the same gases when completely ionized, u” = 1/2 and p’ = 4/3,
respectively. When the gas is either completely ionized or neutral, y can be
calculated by the above formulae getting:

In p = const —i-log 0,
from which

_3
r=

In general however the ionization state of a gas depends on pressure and
density, i.e. y is a function of p and g bounded between 1 and 5/3. (Cf.
Zev’povicH and Novikov [17] p. 213).

As during accretion the physical conditions of the gas are variable, one
can expect a variation of y too.

These configurations are particularly important for accretion onto
compact objects, while for normal stars, y can be considered fairly well constant.
Egs. (7) and (9) can be put in a dimensional form by introducing the sound
speed at infinity:

ol = p L=
[
and putting:

r—=x sV ="9YA,,s 0 = Z0u

the continuity equation takes the form:

x%yz = 1, (10)
where 1 is given by:
2
4= AnMCM)2 0, (11)
ad
The Bernoulli equation has the form:
1 -1 —1 1
— 42 + — 12
5 Y 1 - (12)
To solve (10) and (11), let us put
_r=t
u=ys °, (13)
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where u is the ratio of the local velocity of the gas v to the local sound speed

yp\'” : iy .
(—— In fact going over to original variables
e i

w2 L]‘T_
a, pua
But

i3 el b B Pl

and therefore, because (8):

12 r=1
a = a, [&. (_9__]?] = a, [__Q_ 2
9 Qw Qaa
so that
v
u=—
a
From (13) and (10), we get
2 y—1 2
LA G
x2 x2u
and (12) becomes
y—1
Yy RS 5%
v+1(,1_+_1_i2 — 2 V“[x +x ”‘]. (14)
2 y—1wu y—1

The right and left hand side of this equation are separately the sum of a posi-
tive and a negative power of their variables, and therefore each of them has
a minimum. The left hand side minimum occurs when u = 1 and is given by

141

. The x dependent part of the right hand side has a minimum when

2 y—1
1
x= Z(S — 3v), the value of which is
1 y+1 s
_&[_(5 — 37)] 7L, (15)
4 y—1

On substitution of these values in (14) one gets the results that 1 cannot be

greater than
S=3

1 2( 1) 5 37’ 2( —1)
A —( 7 ] = 16
‘ \2) ( 4 (16)
Therefore the accretion rate cannot be greater than
2
, 4nlc(f3M) O (17)
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A, takes on values between 1.12 (for y = 1) and 0.75 (for y = 5/3). This
means that if 2 >> 1., the problem has no solution and accretion cannot take
place. A simple graphical discussion (see ZEL’DOVICH and Novikov [17], p.
436) shows that if 1 > 2., the velocity of the gas is everywhere less than the
speed of sound (subsonic accretion everywhere). If 2 >> 1, there exists a dis-
tance above which the velocity of the gas is less than the sound speed and
beneath which it is greater (supersonic accretion).

In this case, as for x = 1/4(5—-3y),u =1, i.e. v = a, the radius at which
transition to supersonic accretion takes place is

_5—3y GM

=
4 a?,

112
At this radiusy = [ ] and so:

5—3y

2 1/2
vV, = @, = q, .
p=a = |2

2 1
As z = r=%, we get for the density:
5—3y

Only supersonic accretion an can give energy to the star, while the
subsonic case can be considered as a settling of the gas on the stellar atmos-
phere, the latter case is possible if pressure, near the star surface is suffici-
ently high.

To ensure supersonic aceretion, the existence of r, is not sufficient, but
it is also necessary that phenomena taking place in stellar atmosphere do
not perturb the gas conditions at a distance r,.

From the barometric formula, one can evaluate the height of the atmos-
phere:

o N, kTR? .
GMyu

The above condition is therefore
H+ R <r,.

If now r; > R, supersonic accretion is certainly possible for H << R and this
entails:

T < 107 (_M;]fR.Q .
My )| R
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Condition r, > R is definitely verified, for a realistic state of gas at infinity,
i.e. T <104 °K, even for stars with a radius substantially greater then R,.
A fortiori this condition holds for collapsed stars.
We have therefore a vast class of stars for which accretion is supersonic

and therefore can be a source of epergy.

In computations, 1, can be considered of unity order, so that from (17)
we get
_dM  4aG*M:?o,

dt ad,

A (18)

If a star moves with respect to intersteller gas at a speed less than the speed
of sound, accretion is essentially dominated by sound velocity, while for
supersonic relative velocity (cf. formula (4)) it is dominated by the star velocity.

The hydrodynamical problem in the case of arbitrary relative velocity
has not yet been solved. We have only Bonp1’s conjecture (Bonpi [1]) that
accretion rate is given by

A — 47(GM)? o, , (19)
(v% + a2)3"

which admits, as limiting cases, formulae (4) and (18). BonNDI’s conjecture
has not been confirmed, not invalidated: there is only a partial confirmation
by Dopp [4]. In any case, formula (19) agrees with one’s intuition and certainly
gives the correct order of magnitude.

In order to make up one’s mind which of the theories exposed so far is
to be applied to real cases, one must first of all check whether the body has a
subsonic or supersonic velocity with respect to the gas.

If the velocity is subsonic, one can apply (approximately) the theory
discussed in this section (body at rest), if on the contrary one has to do with
supersonic velocity one must apply the theory of Section 1.

In the cases so far examined, i.e. those relative to stars, the geometrical
radius of a body turns out to be always many orders of magnitude less than
the various accretion radii considered; in the case of galaxies or of clusters
of galaxies the geometrical radius and accretion radius are comparable.

§ 8. The general hydrodynamical problem

The general hydrodynamical problem, i.e. the solution of hydrodyna-
mical time dependent equations at various Mach’s number, has been studied
for the first time by Hunt [13] though in an incomplete form. The procedure
consists in integrating the time dependent equations of fluid dynamics, from
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a given initial time up to the time when a stationary solution is reached. The
fundamental equations are:

% 1 9 1

=9 (2
ot r2 or (r#m) + rsin 0

%(n sin ) = 0

(conservation of mass per unit volume),

om 1 o m? 1 0 [mn
St e w

0 rsinf 90 | o
2
r r r

(conservation of radial momentum per unit volume),

on 1 8 {rPmn 1 d n%) , vgm p
—_—t— — — — 8= ——"——+ —cotf
at + rz Jr ( e ]+ rsin@ o0 HP+ 0 )sm ] r + r o

(conservation of transverse momentum per unit volume),

OF 1 o 2
9= = 9 |(E m
ot + 2 or [T ( T P) ]

— 2 [( +p)—sme] =

(conservation of total energy per unit volume),

p=@-1

1 an—{—n?’
Y

(equation of state).
The solution found by HuNT by numerical integration of the above
equations are not general, because:

a) the mass M of the star is taken as a constant.
b) The braking forces of Section 6 are neglected.

¢) The cooling of the gas is not taken into account.
d) Only y = 5/3 is considered.

While assumption from a) to c) are well justified in many cases of
Physical interest, assumption d) is a severe restriction to the generality of the
solution (the author is fully aware of this limitation).

Hunt’s results (for Mach’s numbers 0.6; 1.4; 2.4) confirm the result
obtained in preceding sections. In particular:

1) for subsonic relative velocities one has practically spherical symmetric
accretion and therefore Bonp1’s theory for a body at rest can be applied.
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2) In the case of supersonic relative velocities there appears a shock
front, which, for increasing Mach’s number, approaches the body and shrinks
downstream to the axis of accretion (HoyLE— LyrrLETON—BoONDI’s theory).

§ 9. Conclusions

The physical theory of accretion, as it appears from the above conside-
rations turns out to be in a fairly satisfactory state. In fact one can confidently
use the laws discussed in the preceding sections to get reliable order of magni-
tude estimates. It appears also that the main features were already clear by
the mid fifties and no substantial progress has been made since then. There
remains however a set of important problems still to be solved or deepened.

1) A thorough investigation of the general hydrodynamical problem
with varying  and any star velocity is still lacking. This problem is erucial
for the theory of accretion onto collapsed stars in binary systems where the
velocities are highly supersonic. HunT’s solution, which takes into account
Mach’s numbers up to 2.4 is clearly inadequate. It would be very interesting
also a proof of BonNDI’s conjecture (19).

2) Due to the great difficulties of the magneto-hydrodynamical equa-
tions, the influence of a magnetic field on accretion has not yet been satis-
factorily investigated. What one can find in the literature is only a host of
partial results which, though very important, are not yet systematically
arranged in a general framework. This state of affairs is particularly relevant
for accretion onto neutron stars and black-holes, in connection with the theory
of galactic X-ray sources. We hope to give a survey of these partial results
in a forthcoming paper.
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