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The frictional effect of collisions of ionized with neutral atoms on the Rayleigh—Taylor
instability of a composite mixture through porous medium is considered in the presence of
a horizontal magnetic field. For the case of two uniform fluids separated by a horizontal
houndary, the magnetic field completely stabilizes certain wave-number band. For the case
of exponentially varying density, the collisions are found to have no effect as such on the
stratification. However for the stable stratification, the growth rates increase with the increase
in permeability of the medium whereas for the unstable stratification, the growth rates may
be both increasing or decreasing.

1. Introduction

CHANDRASEKHAR [l] has given a detailed account of the stability of
superposed fluids in the presence of magnetic field through non-porous medium.
When a fluid permeates a porous material, the actual path of an individual
particle of fluid cannot be followed analytically. The effect, as the fluid slowly
percolates through the pores of the rock, is represented by a macroscopic law.
This is the usual Darcy’s law. As a result of this, the usual viscous term in the
equations of fluid motion is replaced by the resistance term (u/k,)q, where p
is the viscosity of the fluid, k, the permeability of the medium and q the velo-
city of the fluid, calculated from Darcy’s law. WoopiNG [2] has considered
the Rayleigh instability of a thermal boundary layer in flow through a porous
medium.

It is quite frequent that the medium is not fully ionized and may be
permeated with neutral atoms. The medium has been idealized therefore, follow-
ing Hans [3], as a composite mixture of a hydromagnetic (ionized) component
and a neutral component, the two interacting through mutual collisional
(frictional) effects. Hans [3] and Braria [4] have shown that the collisions
have a stabilizing effect on the Rayleigh—Taylor instability. However, for
the Kelvin—Helmholtz configuration, Rao and KaLra [5] and Hans [3]
have found that the collisional effects are in fact destabilizing for a sufficiently
large collision frequency.

In the present paper we study the collisional and porosity effects on
the Rayleigh—Taylor instability of a composite mixture through porous
medium in hydromagnetics.
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2. Perturbation equations

Consider an incompressible composite layer consisting of an infinitely
conducting hydromagnetic fluid of density p, permeated with neutrals of
density g,, arranged in horizontal strata; through porous medium and acted
on by gravity force g(0,0, —g) and horizontal magnetic field H(H, 0, 0).
Assume that both the ionized fluid and neutral fluid behave like continuum
fluids and that effects on the neutral component resulting from the fields of
gravity and pressure are neglected. The magnetic field interacts with the
hydromagnetic component only.

Let d¢, op, q(u, v w) and h(h,, by, h,) denote respectively the perturba-
tions in density, pressure, velocity and magnetic field H; q,, v, u, and p denote
the velocity of the neutral fluid, the mutual collisional (frictional) frequency
between the two components of the composite medium, the magnetic permea-
bility of the medium and the viscosity of the hydromagnetic fluid, respecti-
vely. Then the linearized perturbation equations governing the motion of
the composite medium are

e Vop tgset e (Uxh)x B4 goriau— ) — g Q)
ot 4 k,

M (9 — @) » (2)
ot
V-q=0,V-h=0, (3)
/] do
9 5o = —w 22, 4
ot e wdz “)
@=v><(q><H). (5)
ot

Analyzing the disturbances into normal modes, we seek solutions whose
dependence on space coordinates x, y, z and time ¢t is of the form

Sz exp (k% + ikyy + nt), (6)
where £k, ky (k = V(ki + kf)) are the wave numbers along x and y directions

respectively, f(z) is some function of z and n is a complex constant.
Eliminating q, between Eqs. (1) and (2) and using (6), Eqs. (1)—(5) give

[n' + _”—] ou = —ik, op , (7)
k, |

n’ + —-”—] ov = —iky 8p + L (ik b, — ik, h,) (8)
k, 47
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[+ | oo —Dop — Le L Db — ibih) — g3, O
k, 4

ik, u + ik,v + Dw = 0, (10)

ik hy + ik, h, + Dh, = 0, (11)

ndép = — wDp, (12)

nh, = ik, Hu, nh, = ik,Hv, nh, = ik, Hw, (13)

where

el |yt g =2 and p—%
n-v, 0 o dz

Eliminating dp between Eqs. (7)—(9) and using Eqgs. (10)—(13), we get

2 2
n’[D{(pDw) — k2 pw] + ——1— [D{evDw) — k? pvw] + pekx H %
k, 47n

(14)
(D2 — kw0 + £ (Dgyw = 0.

3. Two uniform fluids separated by a horizontal boundary

Consider the case of two uniform fluids of densities g, (lower fluid) and
o5 (upper fluid) separated by a horizontal boundary at z = 0. Eq. (14) for
both regions of fluid reduces to

(D% — E?w = 0. (15)
The general solution of Eq. (15) is
w= Ae** | Be~ %z, (16)

where 4 and B are arbitrary constants.
The boundary conditions to be satisfied in the present problem are as
follows.

(i) The velocity w should vanish when z — + o (for the upper fluid) and
z — —oo (for the lower fluid).
(ii) w(z) is continuous at z = 0.
(iif) The pressure should be continuous acress the interface.

The continuity of pressure means that

Ao(QDw)‘F?tl—Ao(Q”Dw)-l”*'*aﬁ Ay(Duw )+~—2 Ay(g)w, = 0. (17)

1
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Applying the boundary conditions (i) and (ii), we can write

w, = Aeti(z < 0), (18)
and
wy, = Ae~*(z > 0), (19)

the same constant 4 has been chosen to ensure the continuity of w at z = 0.
Applying the condition (17) to the solutions (18) and (19), we get

1
nd 4+ {vc (oo -+ 1)1+ T(“ﬂ’l + azvz)} n - l—;i- (2, v; + ap7y) + 2k 0% +
1 1 (20)
+ gh(oy — «2)] nt [2kioh + gh(e, — a)] v, = O,

where vl = p H2/47(0, + 0y)-

(a) Stable case (g, > 0,)-

In this case, Eq. (20) does not allow any positive root as there is no
change of sign. This means that the system is stable.
(b) Unstable case (g, > p,).

In this case if

220} < ghleg — @), (21)

the constant term in Eq. (20) is negative. Eq. (20) therefore allows one change
of sign and so has one positive root. The occurrence of positive root implies
that the system is unstable. If

2k 03 > ghlag — @), (22)

Eq. (20) does not admit of any change of sign and so no positive root occurs.
The system is therefore stable.

Thus for the unstable case (g, > g;), the system is stable or unstable
according as g, — g, is less than or greater than u,H?%2/27gk. In the absence
of magnetic field, the system is unstable for g, > g,, as one of the values of
n given by Eq. (20) is positive. But the presence of magnetic field has got
stabilizing effect and completely stabilizes the wave-number band k >k,
where

k, = 278 (02— 01) sec? 6, (23)
peH?

and 0 is the inclination of the wave vector k to the direction of magnetic

field H.
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4. The case of exponentially varying density

Let us consider the density stratification in a continuously stratified
medium of depth d as
o) = g, (24)
where p, and g are constants. Let us assume that fd < 1, i.e., the variation
of density at two neighbouring points in the velocity field, which is much
less than the average density, has a negligible effect on the inertia of the fluid.
Following CHANDRASEKHAR [1], the boundary conditions for the case
of two free surfaces are

w=D*w=0 at 2=0 and d. (25)
The proper solution of Eq. (14) satisfying (25) is

w= A sin m;tz ) (26)

where A is a constant and m is any integer.
Substituting (26) in (14) and neglecting the effect of heterogeneity on
the inertia, we get

R L A

1 n n

which on simplification gives

n® + [’Vc(oto—}— 1) +-kL}n2+[-v_vc+ KRye — gﬂkz]n+

2
+[k§vz J— _g;ﬁ_lc_]",c:(),
L
where
2
v? :’:—H and L — (—":11] gty
g

For the stable stratification (8 <C 0), Eq. (28) does not have any positive
root implying thereby that the system is stable. For the unstable stratification
(B >0) and for k2 >k2w2L/gf, the constant term in Eq. (28) is negative.
This means that Eq. (28) possesses one positive root implying thereby that the
system is unstable. Let n, denote the positive root of Eq. (28). Then

2
n%+[vc<ao+1)+l]n3+[ivc+kiv2— ebk ]no+
k, k, L

2
+[k:2c v2 — —gﬁLk ]vc:O'

(29)
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To find the role of collisions concerning the growth rate of unstable
modes, we examine the nature of dn,/dv.. Eq. (29) gives

» gBk?
nd (o + 1) + —— +[kiv2——]
dno__ o (%o ) k, ny 7

dy, B 3n? + 2[70(“0 +1) + ——I:—{I n, + [—g—pc + kivz . gikz ]
1 1

Therefore if, in addition to k2 > kjv2L/gf, which is a sufficient condition
for instability, we have either of the conditions

(30)

Koz BBR [ivc + 2n, {vc(oco + 1)+ l}+ 3ng] , (D
L k, k,
dn/dy, is always negative. Thus with the increase in collisional frequency, the
growth rate decreases.

We conclude therefore that for k2 > k2v2L/gf, the system is unstable
and the growth rate, under either of the conditions (31), decreases with the
increase of collisions. If k2 < kZv2L/gB, the system is stable.

To find the effect of permeability of the medium on growth rates, we
examine the nature of dn/dk,. Eq. (29) gives

y
dn, I{(“u + v)n,

= 2
Py 3nd g oomy fody + 1) + ) 4] e 8P
k, k, L

Eq. (32) implies that for stable stratification (8 <C 0), dn,/dk, is positive;

meaning thereby that with the increase in permeability of the medium, the
growth rate increases for the stable stratification.
For unstable stratification (8 > 0) and for

2
%@_% 3n2 + 2n, [y, (2, + 1) +kL} + {7 R ] (33)

1 1

(32)

dno/dkl is negative or positive for the greater than or less than sign, respecti-
vely; meaning thereby that with the increase in permeability of the medium,
the growth rates are both decreasing and increasing for the unstable strati-
fication.
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