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Similarity solutions in closed forms for propagation of plane shock waves in a relati-
vistic gas of uniform number density are obtained. The shock moves with constant speed.

Introduction

Similarity solutions for one-dimensional flow of a relativistic fluid
headed by a shock front in a cold gas are studied by ELTcROTH [2], by assum-
ing the velocity of the fluid as the similarity variable.

In the present paper similarity solutions in closed forms are obtained
when the plane shock front moves through a homogeneous medium of uniform
nucleon number density.

The origin of the (x,t) inertial co-ordinate frame is taken at a plane
where an initial disturbance is given.

We find that such a flow for the similarity parameter & = 2%, a and b
being suitable constants, exists only when the shock moves with a constant
velocity. The solutions given in this paper are applicable only to a medium
of uniform pressure or a cold gas.

Equations of motion and boundary conditions
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where p is the pressure and E the proper energy density, both measured in
the rest frame of the fluid; cf is the fluid velocity in the (x, t) inertial frame,
¢ being the speed of light and n is the nucleon number density.
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The shock conditions are
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Here [ ] signifies the discontinuity sign and dX/d¢ is the velocity of the shock,
X being the distance of the shock plane from the origin.
The nucleon density of the pre-shock stage is given by

ny == constant. @)

Solutions of the equations

We next introduce the following similarity transformations as done by
CouraNT and Friepricss [1] for non-relativistic motions of gases:

B == U&),
t

p = 222 P(§),
E — x4 o2 Z(8),
n = x** Q(§),

where
& = x%?b,

Here A, k, a and b are constants to be determined from the problem.

By their direct substitutions in Eqs. (1)—(3) and boundary conditions
(4)—(6), we find that these forms are compatible only when we choose ajb = —1
and A 4+ k = 0. Without any loss we take a =1 and b= —1, 1 =0 and
kE=o.

For our subsequent work we choose the similarity parameter in dimen-
sionless form as

n=". (8)
ct
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At the shock front 7 = 5, and is taken as constant. So,

X vV
No=—"=—"» (9)
ct c
V being the constant velocity of the shock front.
The boundary conditions at the shock front may be re-written as

&= ﬂanN + 1 , (10)
Po 1—Bme
B _mN+h (11)
E, N(no — 1)

2
™ LB (12)
n, Mo — B1

where N = E /p,and the subscripts 1 and 0 stand respectively for quantities
just behind the shock and just in front of it.

We find that unlike its non-relativistic analogue, there are two characteris-
tic parameters, instead of one, namely, 7, = V/cand N, depending on the
equation of state of matter in its pre-shock condition.

In the region behind the shock plane we take the equation of state,

1
— _E. 13
p=- (13)

Eqs. (1)—(3) are now transformed as

e 1 M

R

A=t
Combining (1) and (2) we also find as ELtcroTH [2]

Egs. (1) and (2) are next re-arranged as
_1_£=_¢ﬂ3_ 4 . (Bn + n — 2p) (18)
E dyp dnp (1—p) (14 38— 4fn)
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and

1dE_df 4  (pn—1-p) (19)
Edypy dyn (1—p8) (48— 3n—np)

Comparing (18) and (19) with (17) when df/dn == 0, we get,

Pntn—2 _ 26m—-1-p _, (20)
1+382—4fn 48— 3n—nf*
1 1

l=— or

[ERAN R

1
The trial | = — yieldsas a solution

V3

where

Vgn—l
f=—— (2D
V3—n

1
and ] = — T/?, represents the solution

p=3ntl (22
V341
Case T

We next investigate the existence of solutions for the case N =3,
which is appropriate for an ultra-relativistic initial state.

For the choice ny = const. (Eq. (7)), we easily find from the shock con-
ditions that in this case both E,; and p, are constants,

Egs. (10) and (11) now give

3t —1

51 =
27

, 0< <1 and By < 1. (23)

1
Besides, the solution (21) is consistent with (23) only when 7, = —V—§

1
and 7, = 1. Both these values of 7, are not tenable, as 1, = ﬁin this case

implies the shock speed as equivalent to the speed of sound and 7, = 1, the
shock speed attaining the photonic speed. The solution (22) is also inconsistent
with the requirement (23).

So, for the medium considered here, we should take the other alternative

in Eqs. (18) and (19), namely, df/dn = 0
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Hence,
B=5h (24)
E=E, (25)
and
n = n,, (26)

which are all constants.

Case 11

Next we seek solutions for the other possibility p, = 0, appropriate for
a cold gas. The modified shock conditions yield

s
B, = 2m9 4 K‘“?o 3 27)

1
Solution (21) is consistent with (27), only when 7, = g andso = -—

V3
Besides, it is found that solution (22) is unfavourable and extraneous.
For the value of 8 as given by (21), and from (18) and (16), respectively,
we find that

1og—§=72—[1 +’7+21og(2_1/3)] (28)

1

log~—V3[ i+”+21g(2—lﬂ] | (29)

n,

In this case if the gas is pushed instantaneously and thereby set into
motion, there is a possible backflow as clearly indicated by our solutions. As
7 — —1, both the energy density and number density tend to zero, thereby
showing that a portion of matter moves backward and the edge of vacuum
is at p == —1. At this boundary we find that the relativistic material moves
with the speed of light inte the vacuous region.
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