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The theory of the incoherent scattering of light by a volume of gas is discussed. It is
shown that the wave mechanical treatment contains difficulties; the scattering process cannot
be accounted for alone hy the density fluctuation of an ensemble of atoms described by a col-
lective wave function.

Introduction

The passage of an electromagnetic wave through a gas can be treated
satisfactorily by classical theory. The atoms of the gas are forced to oscillate
under the influence of the electromagnetic field acting upon them. The super-
position of the radiation emitted by the atoms upon the primary radiation
field gives rise to the optical effects of refraction, also incoherent radiation is
produced, which may be called the Rayleigh scattering.

The effect of refraction is obtained by averaging the effects of the atoms;
a satisfactory treatment of these effects is obtained if one replaces the atoms
by smoothed out polarizable material.

The incoherent scattering is caused by the microscopic fluctuations of
the density which is obtained considering the atoms to be concentrated packets
distributed at random.

While the wave mechanical treatment of refraction is quite straight-
forward (see e.g. [1]) — in connection with the incoherent scattering a peculiar
problem arises. The scattered intensity is produced by isolated scattering
centres distributed at random. In the wave mechanical description the atoms
— even if they were concentrated at an initial moment into packets —
are expected to diffuse rapidly. In fact the atoms of a gas enclosed into a box
are expected, in the course of short time, to diffuse and ultimately to spread
out with nearly uniform density over the whole of the volume of the container.

The question thus arises — is it possible at all to account for the inco-
herent scattering by pure wave mechanics — or is it necessary to add to wave
mechanics other features (e.g. second quantisation) so as to account for pheno-
mena which seem to arise from the action of atoms concentrated into small
packets ?
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The question is certainly not trivial. Presently we show that the wave
mechanical treatment of an ensemble of atoms leads to expect density fluctua-
tions, which give rise to incoherent scattered radiation. However, the wave
mechanical fluctuations differ from the classical fluctuations and they give
rise to much smaller scattered intensity than the observed intensity (which
agrees with the intensity calculated by the classical theory).

We show thus in this paper that the wave mechanical theory of incoherent
scattering is not caused simply by the wave mechanically expected density
fluctuation of a gas. This negative result in itself seems to be of interest. We hope
to come back to the full wave mechanical treatment of the process in a later
publication.

Part 1
The classical theory of incoherent scattering

A wave incident on an ensemble of atoms produces harmonic oscillations
of the atoms. The oscillations are in phase with the incident radiation, there-
fore there are strict phase relations between the dipole fields the individual
atoms give rise to.

The phase relations between the fields of the oscillating atoms give rise
to beams of intensities comparable with that of the incident radiation. These
coherent beams together with the primary radiation give rise to the re-
fracted beam. .

In most directions, however, the fields of the dipoles have random phases.
Indeed, consider the radiation field in a point P far outside the volume of
the gas and also outside the region of the optical beam. The distances of the
individual atoms from P have random values and thus in spite of the existing
phase relations the fields arrive with random phases in P. Thus the individual
fields are incoherent and the total intensity in P fluctuates rapidly around
a value

JSNN'IA’ (1)

where N is the number of atoms in the gas and .J, the intensity of secondary
radiation emitted by one atom.
Further from electromagnetic theory it follows that

JAN“2J09 (2)

where J is the intensity of the primary beam and « the dynamical polarisability
of one atom.

The refractive index of the gas is obtained considering the coherent part
of the radiation fields of the atoms. The well-known theory of this phenomenon

leads to
n? — 1 = 4aaNJV . 3)
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From (1) and (2) we have
JS == ﬂNdz.Io 1) (4)

where 8 is a geometrical factor the value of which is obtained from the detailed
calculation. Thus measuring the refractive index n and the intensity J5 of the
incoherently scattered radiation, the number N of scattering centres can be
determined from (3) and (4).

A remark on the light of the sky

We note that the determination of Jg supposes the individual atoms to
be sources of secondary radiation which radiate independently into the vicinity
of the gas. The theory of Rayleigh considered the scattered radiation emitted
by small dust particles — and this theory was applied to explain the light
intensity of the sky. It was realized later that the sky light is not produced by
dust particles but is a scattering on the spatial fluctuations of the density of
air. According to (1) this fact can also be formulated by saying that the sky
light is due to the scattering on the individual gas atoms themselves, which
play the role of the dust particles of the original concept.

The method of virtual lattices

The simple classical consideration giving the intensity Jg of incoherently
scattered radiation can be carried out by a method different from that given
above. The latter method is mathematically identical with the former, therefore
it leads necessarily to the same result. This method is useful in connection
with the wave mechanical aspects of the problem.

The radiation induced by an outer field on an ensemble of N atoms can
be treated by supposing the atoms to be scattering centres of linear dimensions
small compared with A the wave length of the incident light. The ensemble
of atoms can alternatively be replaced by a medium of dynamical polarizability

where p(r) is the relative density of the medium, thus

j o(r)d’r = N . (5)

Supposing the atoms to be points with position vectors r®™ we have

or) = 3 8(r — 1), (6)
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where d(r) is the three-dimensional Dirac j-function. More generally we may
suppose

e(r) = % 8*(r — x™), (M

where 6*(r) is a function with large positive values in the vicinity of r = 0,
vanishing outside. Thus (6) describes the density of an ensemble of atoms each
spread into a small vicinity of a point r".

The polarization density produced by a field can be taken as

P =ap(r)E.

The current density induced by the field is thus

i lpo L,
¢ c?

where A is the vector potential of the total field acting on the medium.
Thus in case of a periodic field

o

ZA  with = ¢/0 ®)

i=—

&

(here Q2 is the circular frequency of the radiation). The field emitted by the
oscillating medium can be derived from a vector potential

Aglr, 1) = — _“_J.M d3r'; (9)

A2 r—r|

heret’ =t — |xr — r'|/c. If the density g(r) is of the form (6), then (9) leads
to the same intensity of the scattered field as is obtained from the classical
consideration given further above. Instead of splitting o(r) into the densities

¢x) = 8*(r — x) (10)

of the individual atoms, we express the densities by Fourier series. For this
purpose we consider the gas to be enclosed into a cubic box with sides L,
thus we have

o(r) = Zo, ™, (11)

0y o (r) exp { ~ikvr} d3r,

T

Acta Physica Academiae Scientiarum Hungaricae 41, 1976



CLASSICAL AND WAVE MECHANICAL THEORY OF RAYLEIGH SCATTERING 45

where the k, are vectors with components

27 27 27
=, — 7y — V33 12
k, T Tt T (12)

here »,, v,, v3 are integers.
Considering the densities of the individual atoms we have also

g‘"’(t) — 2 ggn) ot
1 4

(13)
) = _II—F— 8*(r — r)ye ™ gy,
In case of §-functions in place of §* we have
1 e
ol = I Pl "
where (14)
‘Pf»n) = kv r(n) ¢
Thus
o = NJL?,
. (®) v 15
0 =—1— ¢ N_V_Ne"% if v5£0. (15)
v T I3 - JE

The right hand expression is obtained supposing the ¢{" to have random
values forn = 1, 2,. .., N, in that case the sum of the N complexunits exp (i(pf,”))
has an absolute value of the order of |/ NV and has random phase.

Relation (15) can be made more precise taking the ¢ to be random
variables and thus we can form expected values with respect to these variables;
we have

{e,») =0

<ol = NILS

if v520. (16)

The concept of taking the ¢{® as stochastic variables needs explanation.

Indeed, at a fixed time ¢ and a fixed configuration p(r) each Fourier
coefficient has a definite numerical value. When we introduce nevertheless
“expected” values this can be done for two reasons:

1) If the atoms are moving with thermal velocities, then the motions
are slow as compared with the frequency of the incident radiation — however,
in accord with (14) the thermal motion leads to rapid and independent changes
of the ¢!, Thus the expected values of p, can be taken to be expected values
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in short intervals of time which nevertheless are long as compared with the
time of oscillation of the primary wave.

2) The phases p{ vary strongly with ». Thus the expected values of g,
can also be considered as the average values of the g, inside a small region of
Fourier coefficients d, around ».

Reflexion on virtual lattices

The field of the scattered radiation can be decomposed to the contribu-
tions of the Fourier components

o(r) = o, ™ (7
of p(r). We may thus write
Aglr, 1) = X Afr,1). (18)
Taking the field acting on the atoms to have a vector potential

Afr, t) = A, exp {i(Kr — Q1)} . (19)

The vector potential of the scattered radiation field is thus, making use of
(9) and inserting p,(r) in place of g(r):

Ar, 1) =— :‘iﬁ’i;‘_o J exp {i [(k,4K)r' — Q(t—[r—r’|/c)]} ‘fr: . (20)

|r—r'|
The integral is to be extended over the volume of the gas. For points r far
outside the gas and also outside the optical beam the following approximations
can be used: in the factor 1/|r — r' ]

e —r¢'|~r,
in the exponent
v —1'|~r—rrr.

We find thus

exponent ~ i[(k, + K — K)r' - Ky — Qt], (21)
where
Q
k-2
c r

Inserting (21) into (20) and carrying out the integration over a cubic box with
edges L;, L,, L; we find thus in a good approximation
g, AO L3

Ar, 1) = r

D, (a) eiKor—20
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where

1 )
Eh

8 sin

1 1
—al, | sin |—alL,{ sin
2 J & 4

D, (a) = (22)

(aL,) (aLs,) (aLy)
with
a=k, K- K,.

The expected value of the intensity of the radiation in the direction of the
vector K is thus proportional to

2 2
ey = =E2 5 D @ 4. (23)

We find with the help of (16) if we take | A, |?> to be proportional to the primary
intensity
o2

A2

JolJo=N- 1D, [*. (24)

Rayleigh scattering as Bragg scattering

So as to see the significance of the above considerations, we note tha
D,0) =1 and D, (a) has a pronounced maximum in the vicinity of a = 0
[see (22)]. Appreciable intensities are thus obtained in directions K so that
a~0,i.e.

K~ K, —k,. @5

The above relation has the form of the Bragg condition known in X-ray
spectroscopy. The densities p,(r) correspond to virtual lattices with lattice
vectors k,. Only those lattices contribute appreciably to the scattered radiation
for which (25) is satisfied. These lattices give reflexions into narrow cones
pointing into definite directions.

The incoherently scattered radiation consists thus of the very numerous
Bragg reflexions on the virtual lattices. The phases of the various reflexions
are randomly distributed, therefore the reflected rays are incoherent and the
intensities J, arising from the reflexions can be added so as to obtain the total
intensity. Thus the expected value (| A4, |*> [see (23)] gives the intensity
of radiation in a direction which depends on ».

We note further that the lattice corresponding to one particular y-value
gives appreciable reflexion only if

Ko —k, |~ K= Qc. (26)
For k -values for which (25) is not satisfied practically no reflexion takes place.
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The k,-values satisfying (25) give radiation inside a cone with opening
angle of the order of |/Z/L. On the other hand lattices with neighbouring vectors
k, give the maximum intensities in- directions K with angles of the order of
#/L between them. From this qualitative consideration we see that the Bragg
reflexions overlap to a considerable extent.

Scaterring on diffused atoms

We see that the scattered intensity on the medium with density g(r)
depends only on the expected values of the absolute squares of the Fourier
coefficients p,. Thus any density distribution p(r) for which (16) holds will
give the correct intensity distribution for the scattered radiation. We may
therefore replace the g(r) by g"(r) so that

o () = 3 g™, (27)
with
_ 1 i
=g v, (28)

where the ™ have random values which may however differ arbitrarily
from the ¢{® = k ™,

The ¢((r) thus obtained correspond to the densities of “diffused particles”.
The g™ (r) because the original phase relations of the Fourier coefficients have
been destroyed does, in general, not possess a pronounced maximum. Never-
theless the Fourier coefficients of

er) = ")

have the form (15), i.e.

0o = N/L3,
_ 29
e, = 1 ewg‘) VN ¢ v 0 @
vEIE ~m e

where the g, differ from the ¢, but the modified phases have still randow values.
From the above considerations it follows that

<§v> = <Qv> = 0 ?

A8, 1B = o P> = NI, y 0. (30)

We see thus that the particles if they “diffuse”, they produce a change of
distribution in accord with

o(r) — e(r) (31)
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CLASSICAL AND WAVE MECHANICAL THEORY OF RAYLEIGH SCATTERING 49

and the distribution of the scattered radiation is not affected. More precisely, the
expected values of the scattered intensities in various directions remain unaf-

fected by the change (31).
The diffusion process (31) has some similarity to the wave mechanical

diffusion of a packet — one might suspect therefore that the scattered intensity
of radiation which is not affected by the *“classical diffusion” (31) might alse
remain unaffected by wave mechanical diffusion. This is, however, in general
not the case, as will be seen in Part II.

Part 11

Wave mechanical determination of the incoherent scattering intensity

Using results of former publications [1] we can suppose, that the intensity
scattered by an ensemble of atoms with dynamical polarizibility « is the same
as the intensity scattered according to classical theory by a medium of
polarizibility :

#(r) = Nag(r), (32)

where p(r) is the density of the quantum mechanical ensemble of atoms. More
precisely, considering an ensemble of IV H-atoms supposing the state of the
ensemble to be described by a wave function ¥(7,, 7,; t) where

r, =0, . ..V n=12

the suffix n = 1 referring to proton, n = 2 to electron coordinate vector;
the upper indices refer to the various atoms. The density of the k-th electron
can thus be written

() = [ | Py, 1) PO — )@V 1 &V, (33)

where the §-function is used to express in a concise manner that integration
is to be carried out over 6N-3 variables, i.e. all the variables except the compo-
nents of the coordinate vectors of the k-th electron. (The proton densities
can be worked out in a similar fashion; however, we may neglect the contribu-
tion of the protons to the radiation.)

Because of symmetry we have

0f’(r) = of’(x) , k=2,3,..,N
thus the density appearing in (32) can be taken as
e(r) = Not'(r) . (34)
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There exist a large number of wave functions ¥ which satisfy the wave equation
representing the ensemble of N H-atoms. We have dealt with the difficulty of
choice of the wave function elsewhere [2].

Particular wave functions

In a former paper [3] we have dealt with the emission of photons by
the ensemble of N atoms corresponding to a volume of gas enclosed in a cubic
box with sides L. Two types of wave functions were found both describing an
ensemble of atoms with momenta p,, py, . . ., p)y of translational motion. These
wave functions were built each of two body H-wave functions. Both types of
wave functions thus constructed lead to the emission of photons of the same
manner as it was found in the case of a single atom enclosed in a box (see [3]).
Thus both wave functions lead to a process which appears to be the independent
emission of photons by individual atoms.

The first of the two wave functions thus considered corresponds to a con-
stant electron density. In the latter state (if realized in nature) the ensemble
would behave as a perfect crystal and no incoherently scattered radiation
was to be expected. This type of wave function (as was pointed out in [3])
must be expected to describe arather unstable configuration in which the energy
is concentrated into kinetic energy and energy of excitation without radiation
energy. The latter configuration does not seem therefore to represent the state
which is realized in nature; this conclusion is further confirmed by the fact
that the state produces no incoherent scattered intensity.

The second type of wave function which appears to be more suitable to
represent the emission of photons by independent atoms is of the following type.

Consider

@ .
PO, r?; 1) = F,(R) g,(s) =", (35)

a normalized solution of the two body wave equation giving a stationary
state of an IH-atom enclosed into a box such that R is the coordinate vector
of the centre of gravity and s the coordinate vector pointing from the proton
to the electron.
The wave function (35) thus represents an H-atom with some trans-
lational momentum p, in the ground state or in an excited state with energy E,.
We form the linear combination of NV wave functions of the form (35), i.e.

@) N @

¥=3e¥0, |o|=1N. (36)
=1
Further write
&)
P = Prr(®D, ¥®58) = (L, 1P, 1) . (37)
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Thus ¥, is the 2N-body wave function which happens to depend only on
one proton coordinate r{Y and one electron coordinate rf.
The wave function used in [3] is thus

1

Y=

det ¥y, (38)

The electron density obtained from (38) with the help of (33) and (34) is found
in a good approximation to be

o(r) = N | F(r) /L3,
where

F(r) = (%‘ o F(r), (39)

the sum is to be extended over the amplitudes of the N states occurring in
the ensemble. So as to calculate the scattered intensity we have to determine
the Fourier coefficients of the density o(r).

When calculating the Fourier coefficients of the density it is important
whether or not the states k, (v=1,2, ..., N) occupy all the states in a compact
region of momentum space. Supposing this to be the case we take the » to
take all the values where kX < k2. ; k%, has to be chosen so that the above
condition should be satisfied by IV k, vectors. In the latter case we have with

the help of (34) and (36)
o= N e q/L?,
m

<Q§> = N2 2 <cp.+v (,‘;: cf’;+v cy.'>/Lﬁ .
28

In the above sums the expected values of the terms with y = u’ vanish.
If the value of v is not too large, there remain about IN non vanishing terms
thus each equal to 1/IV2 so

(o> = NJL®.

Thus the Fourier coefficients of the wave mechanical density are equal to
those obtained from the classical model. The wave function thus obtained
gives therefore the correct intensity for the incoherent scattering.

Some criticism of the above result

In spite of the fact that the wave function given by (38) and (39) gives
the correct intensity of incoherent scattering, we do not think that the above
function is likely to be realized in nature. It seems very unlikely that the real
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state of the gas is composed of all states k, so that all states k, < k., should
occur with about equal amplitudes. It is more reasonable to consider a wave
function of the form (39) so that the coefficients ¢, c,, . . ., ¢, correspond to
wave numbers k;, k,, . . . k,, each of them giving a harmonic contribution to
the density but the values k, do by no means contain all the possible stationary
states. We can thus write

&= |7 if u represents one of the N states
occurring in the ensemble (40)
0 otherwise.

We have thus
2 o F () = 3y F. (),

(N) ]

where on the right hand side a large fraction of the terms vanish.
We obtain e.g. something like a thermal distribution if we suppose that*

V= [ 0 with a probability 1 — p(u) (41)

VN with a probability  p(u)
1 .
P =5 N@ajm e,

where p2 = p} + ui -+ p3s gy Uas g the components of u.
The Fourier expansion of the density is thus

o(r) = ;‘ A

o =2 Vu¥i-i-
n
The expected value is

(o> =0, A=20

because of the random phase factors of the y,. For the squares of the Fourier
coefficients we find

donl®y = Z Yuvia?i Vw-a) -
[y

For A 5= 0 on the right only terms with ¢ = p’ are different from zero.

* The kinetic energy of the system is thus found to be proportional to l/x, thus « is
a parameter proportional to the reciprocal absolute temperature.
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We find
Ja®y=dr.Pl1yid
P-

and with the help of (41)

(I oy By = - (am o™ NILS.

Comparing the above value with the classical value we find the classical value
N/L8 to be multiplied by a small factor, which gives the incorrect intensity of
incoherent scattering — therefore we find a strong discrepancy with the
classical result.

The density fluctuation thus calculated has a maximum in the region

when
ait~1.

In case of visible light A > 1 thus the maximum is found for « > 1; we see
thus that even the maximum value of {| g, [*> is much below the value IN/LS
obtained from the classical theory. We see thus that the scattered light
obtained from the consideration of the wave mechanical density fluctuation
of the ensemble has an intensity proportional to N the number of atoms;
however, the intensity has a strong temperature dependence and the calculated
intensity is much smaller than the observed one at the temperature where the
scattering is maximal.

The above result appears to be surprising at first sight. Indeed, we may
consider a wave function which in the initial state ¢ = 0 leads to a density
distribution g(r) as given by (11) or p(r) given by (28). From the general
considerations given in (1) we must expect that this distribution leads to the
same Rayleigh scattering as is expected from classical theory. Therefore at
least for a short time the configuration thus obtained leads indeed to the
correct scattered intensity. However, the detailed calculation shows that the
wave mechanical diffusion leads to changes, in the course of which the Fourier
coefficients of the density p(r) or p(r) change rapidly so that the amplitudes
show a strong decreasing tendency. Therefore the initial configuration in
which the density is of the form p(r) or p(r) is according to wave mechanics
an exceptional one which in the course of the diffusion shows a tendency of
smoothing out until a state with very much smaller fluctuations is reached.

Concluding remarks

The failure of the procedure might be attributed to the incorrect choice
of the wave function of the ensemble. We do not think this very likely, because
linear combinations of the wave functions we have chosen should in general
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give fluctuations which are even more smoothed out than that of the wave
function considered here.

The discrepancy pointed out here is one encountered (although not
pointed out) in the original treatment of the Compton scattering by KLEIN
and NisHINA [4]. In that work the correct Compton intensity of the scattered
radiation is obtained by using wave functions of the free electrons which
contain all possible momentum values with equal amplitudes. If the original
configuration of the free electron were to be replaced in the treatment of
KiEIN and NisHINA by a wave packet which contains a reasonable spectrum
of frequencies, then a cross section much smaller than the observed one would
be obtained.

It seems therefore that initial states with a constant spectrum of momenta
have some physical significance the nature of which is, however, not obvious.

We think that the correct scattered intensity might be obtained by
extending the consideration we have given here. A correct description might
be obtained considering not simply the average fluctuation of the ensemble —
but considering the avalanches which develop in an ensemble as the result of
suitable thermal disturbances. We think of a process very alike the one con-
sidered for the emission of single photons in our previous papers. We hope to
come back to this problem later.
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