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The theory of the incoherent scattering of light by a volume of gas is discussed. It is 
shown that the wave mechanical treatment contains difficulties; the scattering process cannot 
be accounted for alone by the density fluctuation of ah ensemble of atoms described by a col- 
lective wave function. 

In t roduet ion  

The passage of  an e lect romagnet ic  wave th rough  a gas can be t r ea t ed  
sat isfactor i ly  b y  elassical theory .  The  a toms of  the  gas are forced to oscillate 
under  the inf luence of  the  e lec t romagnet ic  f ield acting upon  them.  The super- 
posi t ion of  the  rad ia t ion  emi t t ed  b y  the  a toms upon the  p r i m a r y  rad ia t ion  
field gives rise to  the  optical  effects of  refract ion,  also incoheren t  rad ia t ion  is 
produced,  which m a y  be called the  Rayle igh scat ter ing.  

The effect  of  re f rac t ion  is ob ta ined  by  averaging the  effects of  the  a toms;  
a sa t i s fac tory  t r e a t m e n t  of these effects is obta ined  i f  one replaces the  a toms 
b y  smoothed  out  polarizable mater ia l .  

The  incoheren t  scat ter ing is caused b y  the  microscopic f luc tua t ions  of  
the dens i ty  which is obta ined  considering the  atoms to  be concen t ra ted  packets  
d is t r ibuted  at  r andom.  

Whi]e the  wave mechanical  t r e a t m e n t  of  re f rac t ion  is qui te  s t raight-  
forward  (see e.g. [1]) - -  in connect ion  wi th  the  incoherent  s ca t t e ¡  a peculiar  
problem arises. The  s c a t t e r e d  in tens i ty  is p roduced  b y  isolated scat ter ing 
centres d i s t r ibu ted  at  random.  In the  wave mechanical  descript ion the  a toms 

- -  even i f  t h e y  were concen t ra ted  at  an initial m o m e n t  in to  packets  - -  
are expec ted  to  diffuse rapidly.  In  fac t  the  atoms of  a gas enc]osed into a box  
ate expected,  in the  course of  shor t  t ime,  to  diffuse and  u l t ima te ly  to  spread 
out  wi th  near ly  un i form densi ty  over  the  whole of  the  volume of  the  container .  

The ques t ion thus  arises - -  is i t  possible a t  all to  account  for  the  inco- 
heren t  sca t te r ing  b y  pure  wave mechanics  --  or is i t  necessary  to  add to  wave 
mechauics o ther  features  (e.g. second quant isa t ion)  so as to  account  for  pheno- 
mena  which seem to arise f rom the  act ion of  a toms concen t ra t ed  into small 
packets  ? 
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The question is certainly not trivial. Presently we show tha t  the wave 
mechanical t reatment  of ah ensemble of atoms leads to expect density fluctua- 
tions, which give rise to incoherent scattered radiation. However, the wave 
mechanical fluctuations differ from the classical fluctuations and they give 
rise to much smaller scattered intensity than the observed intensity (which 
agrees with the intensity calculated by the classical theory). 

We show thus in this paper that  the wave mechanical theory ofincoherent 
scattering is not caused simply by the wave mechanically expected density 
fluctuation of a gas. This negative result in itself seems to be of interest. We hope 
to come back to the full wave mechanical t reatment  of the proeess in a later 
publication. 

Part I 

The classical theory o f  incoherent scattering 

A wave incident on an ensemble of atoms produces harmonic oscillations 
of the atoms. The oscillations are in phase with the incident radiation, there- 
fore there ate striet phase relations between the dipole fields the individual 
atoms gire rise to. 

The phase relations between the fields of the oscillating atoms give rise 
to beatos of intensities comparable with tha t  of the incident radiation. These 
coherent beams together with the pr imaryradiat ion give rise to the re- 
fracted beato. 

In most directions, however, the fields of the dipoles have random phases. 
Indeed, consider the radiation field in a point P lar outside the volume of 
the gas and also outside the region of the optical beato. The distances of the 
individual atoms from P have random values and thus in spite of the existing 
phase relations the fields arrive with random phases in P. Thus the individual 
fields are incollerent and the total intensity in P fluetuates rapidly around 
a value 

Js  ~ N J A ,  (1) 

where N is the number of atoms in the gas and J A  the intensity of secondary 
radiation emitted by one atom. 

Further  from electromagnetic theory it follows that  

j A  ~ ~ 2 j  0 , (2)  

where J0 is the intensity of the primary beato and ~ the dynamical polarisability 
of one atom. 

The refractive index of the gas is obtained considering the coherent part 
of the radiation fields of the atoms. The well-known theory of this phenomenon 
leads to 

n 2 -- 1 = 4 3 z ~ N / V .  (3) 
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From (1) and (2) we have 

Js  = flN~2Jo, (4) 

where fl is a geometrical factor the value of which is obtained from the detailed 
calculation. Thus measuring the refractive index n and the in tens i tyJ  s of the 
iileoherently scattered radiation, the number N of seatte¡ centres can be 
determined from (3) and (4). 

A remark on the light of the sky 

We note tha t  the determination of Js supposes the individual atoms to 
be sources of secondary radiation which radiate independently into the vicinity 
of the gas. The theory of Rayleigh eonsidered the scattered radiation emitted 
by small dust particles -- and this theory was applied to explain the light 
intensity of the sky. Ir was realized later that  the sky light is not produced by 
dust particles but is a scattering on the spatial fluctuations of the density of 
air. According to (1) this fact can also be formulated by saying that  the sky 
light is due to the scatte¡ on the individual gas atoms themselves, whieh 
play the role of the dust particles of the original coneept. 

The method of  virtual lattices 

The simple classical consideration giving the intensity Js of incoherently 
scattered radiation can be carried out by a method different from tha t  given 
above. The latter method is mathematically identical with the former, therefore 
it leads necessarily to the same result. This method is useful in eonnection 
with the wave mechanieal aspeets of the problem. 

The radiation induced by ah outer field on ah ensemble of N atoms can 
be treated by supposing the atoms to be scattering centres of linear dimensions 
small compared with Ÿ the wave length of the incident light. The ensemble 
of atoms can alternatively be replaeed by a medium of dynamical polarizability 

~(r) = ~ e ( r ) ,  

where ~(r) is the relative density of the medium, thus 

S ~(r) d3r = N .  

Supposing the atoms to be points with position vectors r (n) we have 

(5) 

Q(r) = .~" 8(r -- r(n)), (6) 
n 
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where J(r) is the three-dimensional  Dirac ~-function. More generally we m a y  
suppose 

o(r) ---- ~_." (~*(r - -  r(n)) ,  (7) 
t i  

where ~*(r) is a funct ion wi th  large positive values in the vicini ty  of  r = 0, 
vanishing outside. Thus (6) describes the densi ty  of  ah ensemble of a toms each 
spread into a small v ic in i ty  of a point  r (n). 

The polarization densi ty  produeed by  a field can be taken  as 

P = ~~(r)  E .  

The current  densi ty  indueed by  the field is thus  

- -  9 

C C 2 

where A is the veetor potent ia l  of the to ta l  f ield act ing on the medium.  
Thus in case of a pe¡  field 

i - -  X0A with ~ = c / ~  (8) q 

(here [2 is the circular f requency of the  radiat ion) .  The field emi t ted  by  the 
oscillating medium can be derived from a r ec to r  potent ia l  

f e ( r ' ) A ( r ' , t ' )  d3r, ; (9) 
As(r ' t )  = -- ~2 I r - -  r'[ 

here t '  = t --  I r  -- r '  ] / c .  I r  the densi ty e(r) is of the  form (6), then  (9) leads 
to the  same in tens i ty  of  the  seat tered field as is obtained from the  classieal 
considerat ion given fur ther  above. Ins tead  of  spl i t t ing 0(r) into the  densities 

q(')(r) = ~*(r  - -  r  (10) 

of the  individual  atoms,  we express the densities by  Fourier series. For  this 
purpose we consider the  gas to be enclosed into a cubie box wi th  sides L, 
thus  we have 

~(r) = __Y ~~ e " ,~  , (11) 
v 

5; O, = ~ (r) exp {--ik~r} d3r, 
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where the k~ are vectors wi th  eomponents  

2~ 2zt 2Jt 
L = ~ ' 1 / 1 ,  T V 2 ,  T } ' 3 •  

here ti, v2, v 3 are integers. 
Considering the densities of the  individual  atoms we have also 

(12) 

0(n)(r) = ~ ~~") e i k , ,  " , 

v 

1 f ~* (r -- r (n)) e - ik ,"  d 3 r .  
0(,') = L3  

(13) 

In case of ~-functions in place of ~* we have 

w h e r e  

Thus 

L 3 

cf{~ n) = k,  r {n) . 

~o = N / L 3  , 

L 3 L z n 
i f  v # 0 .  

(14) 

(15) 

The r ight  hand  expression is obta ined supposing the  ~(~") to have random 
values for n = 1, 2 . . . . .  N ,  in t h a t  case the sum of the N complexuni ts  exp (i~~')) 
has an absolute value of the order of V�9 and has random phase. 

Relat ion (15) can be made more precise taking the ~~") to be random 
variables and thus  we can forro expected values with respect to these variables; 
wc have 

( O ~ > = 0  ] i f  v # 0 .  (16) 

<10~12> = N / L  6 1 
The eoneept of tak ing  the ~(n) as stoehastie variables needs explanation.  

Indeed,  at  a f ixed t ime t a n d a  f ixed configurat ion e(r) each Fourier  
coefficient has a definite numerical  value. When we introduce ncvertheless 
"expec ted"  values this can be done for two reasons: 

1) I f  the  atoms are moving wi th  thermal  veloeities, then  the motions 
are slow as eomparcd with the f requency of the incident radiat ion -- however, 
in accord with (14) the thermal  motion leads to rapid and independent  changes 
of the ~(n). Thus the cxpected ~alues of ~v can be taken  to be expected values 
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in short  intervals of t ime which nevertheless ate long as compared with the 
t ime of oscillation of the  pr imary  wave. 

2) The phases ~(n) va ry  strongly with r. Thus the expected values of Q~ 
can also be considered as the average values of the e~ inside a small region of 
Fourier  coefficients £ around r. 

Ref l ex ion  on virtual  lattices 

The field of the scat tered radiat ion can be decomposed to the contribu- 
tions of the Fourier eomponents  

~v(r) = ~~ e ik" (l 7) 

of e(r). We m a y  thus write 

As(r, t) = ~ A~(r, t ) .  (18) 

Taking the field aeting on the atoms to have a vector potential  

A(r, t) = A 0 exp {i(Kr -- ~ t )} .  (19) 

The vector  potential  of the scattered radiat ion field is thus,  making use of 
(9) and inserting ~~(r) in place of ~(r): 

A ~ ( r , t ) -  ~Q~A~ f d3r '  . (20) ~2 exp { i [ ( k ~ + K ) r '  -- ~2(t- - lr- -r ' l /c)]}  lr--r'--~ 

The integral  is to be extended over the volume of the  gas. For  points r lar  
outside the gas and also outside the optical beam the following approximations 
can be used: in the factor  1/I r - r '  I 

in the  exponent  

We f ind thus 

where 

I r - - r ' [ ~ - r ,  

I r  - -  r '  l " -"  r - -  r '  r / r  . 

exponent  ~ i[(k v + K --  K0)r' + Kor -- Q t ] ,  

~Q r 
K 0 - -  

r r 

(21) 

Insert ing (21) into (20) and carrying out the integrat ion over a cubic box with 
edges L1, L2, L3; we f ind  thus  in a good approximat ion 

A~(r, t) -- ~~~ A~ L3 D~(a) d(Kor-~t) , 
~2 r 
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where 

with 

8 sin { 21~- aL1) sin l 21--- aL2) sin { 21--- aL3} 

Dv(a) : (aL1) (aL2) (aL3) -- (22) 

a - ~ k ~ - ~  K - -  K o .  

The expeoted value of the intensity of the radiation in the direction of the 
rector  K is thus proportional to 

~2 <Q2> L 6 ID~(a)] 2 ]A0[2. (23) <lAr(r, t)[2> -- ~4 r2 

We find with the help of (16) i fwe take ] A 0 12 to be pr0portional to the primary 
intensity 

~2 

Jv/Jo = N .  IDv[ 2. (24) 
r 2 

Rayleigh scattering as Bragg scattering 

So as to see the significance of the above considerations, we note tha 
D~(0) = 1 and Dv(a ) has a pronounced maximum in the vicinity of a = 0 
[see (22)]. Appreciable intensities ate thus obtained in direetions K so tha t  
a ~ 0, i.e. 

K ~ K 0 - - k v .  (25 

The above relation has the form of the Bragg condition known in X-ray 
spectroscopy. The densities p~(r) correspond to virtual lattices with lattice 
veetors k~. Only those lattices contribute appreciably to the scattered radiation 
for which (25) is satisfied. These lattices gire reflexions into narrow cones 
pointing into definite directions. 

The incoherently seattered radiation consists thus of the very numerous 
Bragg reflexions on the virtual lattices. The phases of the various reflexions 
ate randomly distributed, therefore the reflected rays are incoherent and the 
intensities J~ arising from the reflexions can be added so as to obtain the total  
intensity. Thus the expected value <1 ~4~ ]2> [see (23)] gives the intensity 
of radiation in a direction which depends on r. 

We note further tha t  the lattice corresponding to one particular v-value 
gives appreeiable reflexion only if 

[ Ko - -  k~] ~ K -~ ~ / c .  (26) 

For k~-values for which (25) is not satisfied practically no reflexion takes place. 
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The k~-values satisfying (25) gire radiation inside a cone with opening 
angle of the order of ~ .  On the other hand lattices with neighbouring vectors 
k~ give the maximum intensities in. directions K with angles of the order of 
~q between them. From this qualitative consideration we see tha t  the Bragg 
reflexions overlap to a considerable extent. 

Scaterring on dif fused atoms 

We see that  the scattered intensity on the medium with density 0(r) 
depends only on the expected values of the absolute squares of the Fourier 
coefficients ~~. Thus any density distribution p(r) for which (16) holds will 
gire the correct intensity distribution for the scattered radiation. We may 
therefore replace the 0(n)(r) by ~(n)(r) so tha t  

with 
~(") (r) = ~ ~(~n)e~'~, (27) 

~~)= L3 e ' (28)  

where the ~(n) have random values which may  however differ arbitrarily 
from the ~(n) = k~r(n). 

The ~(n)(r) thus obtained correspond to the densities of"diffusedparticles".  
The ~(")(r) because the original phase relations of the Fourier coefficients have 
been destroyed does, in general, not possess a pronounced maximum. Never- 
theless the Fourier coeffieients of 

have the forro (15), i.e. 

Yo = N / L  3 , 

1 elr ~ v~-O 
(29) 

where the ~~ differ from the ~~, but  the modified phases have still random values. 
From the above considerations it follows tha t  

<~v> = <~& = 0 ,  

<l ~v I~> = <I ~~ l~> = N / L  6 , v ~ O .  
(30)  

We see thus that  the particles ir they "diffuse", they produce a ehange of 
distribution in aecord with 

Q(r) ~ ~(r) (31) 
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and the dis t r ibut ion of the sea t te red  rad ia t ion  is not  affeeted.  More preeisely, the  
expeeted  values  of  the  scat tered  intensit ies in various direet ions remain unaf- 
fected by  the  change (31). 

The diffusion process (31) has  some similar i ty  to  the  wave meehanieal  
diffusion of  a packe t  -- one might  suspeet  therefore  t h a t  the  scat tered  in tens i ty  
of radia t ion  which is not  affected b y  the "classieal diffusion" (31) might  also 
remain una f f e e t ed .by  wave mechanieal  diffusion. This is, however ,  in general 
no t  the case, as will be seen in P a r t  I I .  

Part II 

1Vave mechanical determination of the incoherent scattering intensity 

Using results of former  publieat ions [1] we can suppose,  t h a t  the in tens i ty  
sca t tered  b y  an ensemble of a toms wi th  dynamieal  polar iz ibi l i ty  ~ is the  same 
as the  in tens i ty  sea t te red  aceording to elassical t h eo ry  b y  a medium of  
polarizibi l i ty 

~(r) = N ~ e ( r ) ,  (32) 

where ~(r) is the  dens i ty  of the q u a n t u m  mechanical  ensemble of  atoms.  More 
precisely, eonsidering an ensemble of N H-a toms  supposing the  s ta te  of  the  
ensemble to  be described by  a wave funet ion ~ ( r l ,  r2; t) where 

rn  = r~~, ~~~ . . . . .  ,~N) n = 1 , 2  

the suff ix n ---- 1 referr ing to p ro ton ,  n = 2 to e lectron coordinate  vector ;  
the upper  indiees refer  to  the var ious atoms.  The dens i ty  of the  k-th electron 
can thus be wr i t t en  

~(k)(r) = S [ ~ ( r l ,  r2; t)12 6(r?) _ r)d3N t i  d3N r2 ' (33) 

where the  ~-function is used to express in a concise m an n e r  t h a t  in tegra t ion  
is to be carr ied out  over  6N-3 variables,  i.e. all the  variables  except  the eompo- 
nents  of the  eoordinate  veetors  of  the  k-th electron.  (The p ro ton  densities 
can be worked out  in a similar fashion;  however ,  we m a y  negleet  the contr ibu-  
t ion of  the  pro tons  to the radiat ion.)  

Because of  s y m m e t r y  we have  

k = 2, 3 . . . . .  N 

thus  the dens i ty  appear ing in (32) can be t aken  as 

~(r) = Nei ' ) (~) .  (3a) 
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There  e x i s t a  large n u m b e r  o f w a v e  funct ions ~ which sat isfy the wave equat ion  
represent ing  the  ensemble of  N H-atoms.  We have  deah  with the  d i f f i cuhy  of 
choice of the wave func t ion  elsewhere [2]. 

_Particular wave . funct ions  

In  a former  paper  [3] we have deah  wi th  the  emission of  photons  by  
the  ensemble of N a toms corresponding to a vo lume of gas enclosed in a cubic 
box  wi th  sides L. Two types  of wave funct ions were found bo th  describing ah 
ensemble of a toms with momen ta  Pi, P2 . . . . .  PN of  t ransla t ional  mot ion.  These 
wave funct ions were b u i h  each of two body  H-wave  funetions.  Bo th  types  of 
wave funet ions thus  cons t ruc ted  lead to  the  emission of photons  of  the  same 
m a nne r  as ir was found in the  case of a single a tom enelosed in a box  (see [3]). 
Thus  bo th  wave funct ions  lead to a process which appears  to be the  independen t  
emission of photons  by  individual  atoms.  

The  first  of the two wave funct ions thus  considered corresponds to  a con- 
s t an t  electron densi ty.  In  the  la t te r  s ta te  (ir real ized in na ture)  the  ensemble 
would behave  a s a  perfec t  crys ta l  and no incoheren t ly  sca t te red  rad ia t ion  
was to  be expected.  This t ype  of wave func t ion  (as was poin ted  out  in [3]) 
mus t  be expected  to  describe a r a the r  unstable  conf igura t ion in which the  energy 
is concen t ra t ed  into kinet ic  energy and energy of  exci ta t ion  wi thou t  radia t ion  
energy.  The l a t t e r  conf igura t ion  does not  seem therefore  to represent  the  s ta te  
which is realized in na tu re ;  this conclusion is fu r the r  conf i rmed b y  th›  fact  
t h a t  the  s ta te  produces no incoherent  sca t te red  intensi ty .  

The  second t ype  of  wave funct ion which appears  to be more suitable to  
represen t  the emission of  photons  by  indep.endent a toms is of the  following type .  

Consider 
(2) 
~(0(r0), tI2); t) ---- F~ (R) ~,(s) e -i~',', (35) 

a normal ized solution of  the  two body  wave equat ion  giving a s t a t iona ry  
s ta te  of  an H- a tom enclosed into a box  such t h a t  R is the  coordinate  r e c t o r  
of  the  centre  of  g rav i ty  and s the  eoordinate  vee to r  point ing f ro m  the  p ro ton  
to  the  electron.  

The  wave funct ion (35) thus  represents  ah H -a to m  with  some t rans-  
la t ional  m o m e n t u m  p~ in the  ground s ta te  of in ah exci ted s ta te  wi th  energy E~. 

We forro the  l inear  combinat ion  of  N wave funct ions of  the  forro (35), i.e. 

(2) N (2) 

v = l  

F u r t h e r  write 
(2) 

~ g c  = ~Kc(r(1), r(2); t) = ~K1(r~ ), tI2), t ) .  (37) 
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Thus }[JKL is the 2N-body wave function which happens to depend only on 
one proton coordinate r(~ ) and one electron coordinate r(�91 ). 

The wave function used in [3] is thus  

1 
} / f -  V~~�9 }gKL" (38) 

The electron densi ty  obtained from (38) with the help of  (33) and (34) is found 
in a good approximat ion  to be 

~(r) = N I F(r)[2/L3, 
where 

F(r) = ~ cvF~(r), (39) 
(N) 

the sum is to be extended over the  ampli tudes of the N states occurring in 
the ensemble. So as to caleulate the  scat tered in tens i ty  we have to determine 
the Fourier  coefficients of the densi ty  Q(r). 

When calculating the Fourier  coefficients of the densi ty  i t  is impor tan t  
whether  of no t  the  states k~ (v = 1, 2 . . . .  , N) occupy all the states in a compact  
region of m o m e n t u m  spaee. Supposing this to be the  case we take the v to 

2 . 2 take aH the values where k 2 < kmax, kma x has to be chosen so t ha t  the above 
condition should be satisfied by  N k~ vectors. In the la t ter  case we have with 
the help of (34) and (36) 

Q~ = N .~ %+ c~/L3,  

<~}> = N 2 ~ <%+~ c~ c~+. %,>q 6. 

In the above sums the expeeted values of the terms with  q # q vanish. 
I f  the value of  v i s  no t  too large, there remain about  N non vanishing terms 
thus eaeh equal to 1/N 2 so 

<Q~> = N Ÿ  ~ . 

Thus the Fourier  coefficients of the  wave mechanical  densi ty  ate equal to  
those obtained from the classical model. The wave funct ion thus  obtained 
gives therefore the  correct in tens i ty  for the incoherent  scattering. 

Some criticism of the above result 

In spite of the fact  t ha t  the wave function given by  (38) and (39) gives 
the correct in tens i ty  of incoherent  scattering,  we do not  th ink  t h a t  the above 
function is l ikely to be realized in nature .  I t  seems very  unlikely t ha t  the real 
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state of the gas is composed of aH states k~ so tha t  aU states k~ < kma x should 
occur with about equal amplitudes. I t  is more reasonable to considera  wave 
function of the form (39) so tha t  the coefficients q,  cz, . . . .  c N correspond to 
wave numbers kl, lh . . . .  k N each of them giving a harmonic contribution to 
the density but the values k~ do by no means contain all the possible stat ionary 
states. We can thus w¡  

Cg = 

0 

if p represents one of the N states 
occurring in the ensemble 
otherwise. 

(4o) 

We have thus 

%F~(r) : 2 7~F~,(r), 
(N) t~ 

where on the right hand side a large fraction of the terms vanish. 
We obtain e.g. something like a thermal dist¡  if we suppose that* 

Y~ = l  0 with a prohability 1 --P(P) (4]) 
ei~/f -�9 with a probability p(#) 

1 
P(~) = T N(2~/~)~ e-~~', 

where ~�91 =/~~ + 1,2 + #~; #1,/12, f�91 the components of p. 
The Fourier expansion of the density is thus 

The expected value is 

e ( r )  --~ 2 ex eik~r, 

ex = 2 ~~ v:-~. 
P 

<ex> = 0 ,  ~ = 0 

because of the random phase factors of the y~. For the squares of the Fourier 
coefficients we find 

$ $ <[ ex 12> = ~ < ~ ~ 7 . - ~ ~ ~ ' ~ ' ~ ' - ~ >  �9 
g, ~�91 

For ~ ~ 0 on the right only terms with/~ = / ~ '  are different from zero. 

* The  k ine t ic  energy  of  t h e  s y s t e m  is t h u s  found  to  be  p ropor t iona]  to  | /~ ,  t h u s  ~ is 
a p a r a m e t e r  p ropor t iona]  to  t he  rec iprocal  absolu te  t e m p e r a t u r e .  
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CLASSICAL AND WAVE MECHANICAL THEORY OF RAYLEIGH SCATTERING ,~  

We find 

and with the help of (41) 

1 
<1 Qx 12> = T (0~7C)3/2 e - l / 2  :~~" N / L  e " 

Comparing the above value with the classical value we find the classical value 
_N/L 6 to be multiplied by a small factor, which gives the incorrect intensity of 
incoherent scattering -- therefore we find a strong discrepancy with the 
classical result. 

The density fluctuation thus calculated has a maximum in the region 
when 

~~~~  1 . 

In case of visible light ~ ~ 1 thus the maximum is found for ~ ~ 1; we see 
thus tha t  even the maximum value of ~] ~~ ]2> is much below the value N / L  6 

obtained from the classical theory. We see thus tha t  the scattered light 
obtained from the consideration of the wave meehanical density fluctuation 
of the ensemble has an intensity proportional to N the number of atoms; 
however, the intensity has a strong temperature dependence and the ealculated 
intensity is much smaller than the observed one at the temperature where the 
scattering is maximal. 

The above result appears to be surprising at first sight. Indeed, we may 
considera  wave function which in the initial state t ~ 0 leads to a density 
distribution ~(r) as given by (11) or ~(r) given by (28). From the general 
considerations given in (1) we must expect that  this distribution leads to the 
same Rayleigh scattering as is expected from c]assical theory. Therefore at 
]east f o r a  short time the configuration thus obtained ]eads indeed to the 
eorrect scattered intensity. However, the detailed calcu]ation shows that  the 
wave mechanical diffusion leads to changes, in the course of which the Fourier 
coefficients of the density ~(r) or ~(r) change rapidly so tha t  the amplitudes 
show a strong decreasing tendency. Therefore the initial configuration in 
which the density is of the forro ~(r) or ~(r) is according to wave mechanics 
ah exceptional one which in the course of the diffusion shows a tendency of 
smoothing out until  a state with very much smaller fluctuations is reached. 

Coneluding remarks 

The failure of the procedure might be attributed to the incorrect choice 
of the wave function of the ensemble. We do not think this very likely, because 
linear combinations of the wave functions we have chosen should in general 
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give f luc tua t ions  which ate  even more smoothed  out  than  t ha t  of  the wave 
func t ion  considered here.  

The  discrepancy po in ted  out  here is one encountered  (a l though no t  
po in ted  out) in the original t r e a t m e n t  of the Compton scat ter ing b y  KLEIN 
and NISHIr~A [4]. In t h a t  work the correct  Compton in tens i ty  of  the  sca t te red  
rad ia t ion  is obta ined b y  using wave funct ions of the free electrons which 
conta in  all possible m o m e n t u m  values with equal  ampli tudes.  I f  the  original 
conf igura t ion  of the free electron were to be replaced in the t r e a t m e n t  of 
KLEI~ and NISHINA by  a wave packet  which contains a reasonable  spec t rum 
of  frequencies,  then  a cross section much smaller t h a n  the observed one would 
be obtained.  

I r  seems therefore  t h a t  initial  s tates with a cons tant  spec t rum of  momen ta  
have  some physical  s ignif icante the na tu re  of  which is, however,  no t  obvious.  

We th ink  t ha t  the  correct  sca t tered  in tens i ty  might  be ob ta ined  b y  
ex tend ing  the considerat ion we have given here.  A correct  descript ion might  
be ob ta ined  conside¡  no t  s imply the average f luc tua t ion  of the  ensemble -- 
bu t  considering the avalanches  which develop in an ensemble as the  resul t  of  
sui table the rmal  dis turbances.  We th ink  of a process ve ry  alike the  onc con- 
sidered for the emission of  single photons  in our  previous papers.  We hope to  
come back  to this problem later .  
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