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In this paper the effeet of the presence of couple stresses in ah elastic medinm on the 
propagation of shear waves is discussed. Two different analytical representations for the 
solution ate obtained. Diffusion is seen to dominate near the souree. Far down the source 
two wave fronts appear. One is associated with damping, the other, corresponding to the 
classical one, is associated with dispersion and its variation for large time is obtained in temas 
of .4iry function. By using the Fourier-Laplaee transforms, the displacement is expressed in 
terms of integrands of the modified Bessel function. The integrals ate nume¡ calculated 
for MI time • the results are presented by suitable graphs. 

1. In t roduc t ion  

Con t inuum mechanics  is the  s t u d y  of  the  response o f a  m e d i u m  to deform-  
at ion.  The  conse rva t ion  laws for mass ,  m o m e n t u m  and  energy  h a v e  to  be  
supp lemen ted  b y  a cons t i tu t ive  law to eha rac te ¡  the  med ium.  The  s t a t e m e n t  
of  a cons t i tu t ive  law is based on the  Hypothesis of  the  exis tence of a Stress 
Vector. As the  b o d y  deforms i t  is a s sumed  t h a t  cont iguous  pa r t s  exer t  a m u t u a l  

action across bound ing  surfaces.  I r  is further assumed t h a t  these  surface forces 
reduce,  in the  l imi t  of  vanish ing  area ,  to  a single force inclined, in general ,  
to  the  c o m m o n  normal .  S y m m e t r y  of  the  stress tensor  follows f rom this  further 
assumption. I r  is i m p o r t a n t  to realise t h a t  this s y m m e t r y  is ah a s sumpt ion .  
There  is no th ing  in the  d e ¡  of  basic  laws to p rove  it. Once i t  is reeognised 
as an as sumpt ion ,  i t  is na tu ra l  to  inquire  in to  the  consequence of  re jec t ing  ir. 
The m u t u a l  ac t ion  has  then to be a s sumed  to  reduce to  a forcc a n d a  couple,  
w i thou t  loss of  a n y  general i ty .  

Several  a t t e m p t s  have  been m a d e  to cons t ruc t  a new t h e o r y  of e las t ic i ty  
based  on this b r o a d e r  assumpt ion .  Reeen t ly  tlre subjec t  has  a t t r a e t e d  a t t e n t i o n  
again.  The  dif ferent  au thors  have,  somet imes ,  var ied  a t t i tudes  to  the  develop-  
ment .  TovPIN [1] has  given a general  rev iew of  earlier work  and  the  fo rmula t ion  
of  this general  t heory .  MI~qDLI~ and  TIERSTEN [2] have  reder ived  the  general  
and  l inearised equat ions .  T h e y  give solut ions to a n u m b e r  Of new prob lems .  
T h e y  conclude t h a t  the  ex i s ten te  of  eouple stresses m a y  be of  microscopio 
charae te r  and  m a y  not  show up  in o rd ina ry  problems of  engineer ing in teres t .  
KOITEa [3] reviews earlier work  b y  h imse l f  and others .  His  original enqu i ry  
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was to seek an explanation of fatigue by  use of this theory. He also gives 
solutions to a number of simple problems where the new theory can be tested. 
Kn6NEn [4] gives a quite novel explanation. He traces the diffieulty to the 
limiting procedure involved. In the reduetion of mutual  aetion to a resultant, 
one proceeds to the limit of vanishing areas. But  there exists a lower bound 
dictated b y  the interatomic distances beyond which one eannot shrink areas. 
This lower bound below which the dimensions of an element cannot shrink, 
gives rise to couple stresses of various orders in macroscopic phenomena. 
Hur~Txr~GTorr [5] gives an interesting discussion of the physical eircumstances 
under which couple stresses ate possible. I t  is possible that  the best indication 
of the existence of eouple stresses is given by  moving disloeations, sinee it is 
one of the bridges connecting the microscopio and the maeroscopic states 
of a body.  

Wave propagation is one of the important  experimental methods of 
evaluating elastic constants. So in the following we at tempt  to s tudy  the 
propagation of shear waves. The dilational wave propagated is nnaffected 
by  the existente of eouple stresses. The theory of singular surfaees gives 
a sharp wave front for this irrotational wave while ir does not lead to any 
discontinuous variation of rotation. So ir is only the shear wave that  is affeeted 
by  the new theory, therefore we s tudy the simplest shear wave generated b y  
a souree. The existenee of couple stresses drastically modifies these 'waves'.  
The governing equation is no more hyperbolic. We first give an exact integral 
representation of the solution. Using the interesting teehnique followed by  
STEXETEE [6] in the s tudy of magnetohydrodynamic waves in the presenee 
of viseosity and electrical eonduetivity, we obtain the solution a s a  super- 
position of solutions of 'elliptic' equations. We then give the Laplace transform 
solution. We obtain now ' two'  'wave-fronts'.  One is exponentially damped 
while the other, corresponding to the classieal wavefront,  deeays in amplitude 
as the cube root of the inverse distante for large distances, near to the wave 
front, while everywhere else it appears to fall off exponentially. 

2. Statement and solution of the problem 

Referred to a Cartesian System (x, y,  z) let the displacement rec tor  be 
(0, v (x, t), 0). We then seek the solution of the problem [2]: 

Here the ¡  member consisting of delta functions, gives the 
'souree' term; A may-be taken as the strength of this source; c = (p/~)x/2 gives 

Acta Physica Acadsmiae Seientiarum ttungarieae 41, 1976 



ELASTIC $HEAR WAVES 2 1  

the shearwave veloeity in absence of couple stresses; l is a new parameter,  
of the dimension of the length, and, is the square root of the ratio of the new 
elastie eonstant to shear modulus. We choose ct--* t so tha t  the new wave 
velocity is uni ty  and the new time has the dimension of length. We further 
set x ~ lx, t --* lt, v --+ vl and take the eoefficient of the souree term as unity.  
We then have 

( ~ ' 1 0 ~ v _  ~ ~ v _  1- -  ~ 0x 2 Ot 2 + ~'(x) ~(t). (2.la) 

In the absenee of eouple stresses l = 0 and we have the simple wave equation. 
Since the new parameter multiplies the highest derivatives it should exhibit 
boundary layer behaviour. But in addition ir ehanges the basie character of 
the equation, whieh is no more hyperbolie. This ehange in the eharaeter of 
the equation is brought out very elearly by the following solution. We also 
feel that  this procedure offers ah additional novel way of treating transform 
problems. 

The four th  order differential operator in (2.1a) does not formally 
separate into two seeond order ones. We ate able to effeet this 'faetorisation' 
by the following technique. 

Taking the Laplace transform of (2.la), we obtain 

(1 -- D2)D2~ = p~~ + r , (2.2) 

where a bar denotes Laplace transform, p the transform variable, and D denotes 
differentiation with respeet to x. This can be rewritten as 

(D 4 _ D  2 + p 2 ) ~ =  _ 8,(x).  (2.3) 

Formal 'factorisation'  leads to 

(D 2 - V  ~ V p ~ 2 D q - p ) ( D  2 + ] ~ V ~ D + p )  v =  -- 8 ' (x) .  (2.4) 

I f  v = exp(--t/2)u, then v(x, p)  = u(x,  p + 1/2) [7]. Replaeing p by (p -- 1/2) 
and v by u, we get, 

(D 2 - V 2 p p D + p - 1 / 2 ) ( D  2 + V ~ p p D + p - 1 / 2 ) ~ = - ~ ' ( x ) .  (2.5) 

Further ir 

u(x, t) = - -  

then we llave [7], 

{ T~) T exp -- w(x, T)  
2 ~V-~# -~ t  

~(x, p) = ~(x, V~). 

d T  , (2.6a) 

(2.6b) 
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So replaeing VP by p and u by w we obtain 

(D 2 - -  V 2 p D  -4- p2 _ 1/2) (D 2 -4- V 2 p D  -4- p2 _ 1/2) ~ ---- -- ~'(x). (2.7) 

The equation has now formally 'factored' out. The above is equivalent to 

(02 02 02 1 ) (  02 02 02 1] = 
-~x2 - V2 0xO-----t -4- at 2 2 -~x2 -t- ]l~ OxOt -t- -~ f  T )  w 

= - a ' ( x ) a ( t ) .  (2.8) 

To solve this we exploit the factorisation and introduce 

0 2 W 1 V 2  02 W 1 ..~ 02 W 1 1 
L1 wl - -  - -  wl  = --  ~(x)H(t) (2.9a) 

Ox 2 Ox 0t Ot 2 2 

O 2 w~ ,-1/~ 02 w2 + 02 w2 1 
L2 w2 - -  - -  - -  w2 = -- ~ (x )H( t ) .  (2.9b) 

Ox 2 Ox Ot Ot 2 2 

Note that  Llw 1 = L2w 2, ALiso L1, L 2 are linear differential operators and so 
commute. Using this property we get 

L~L2(Wl - -  w2) = L2(L~wx) - -  LI(L2w2) = (L2 - -  L1) ( - -  ~ (x )H( t ) )  

= 2 V ~  02 Ox at (~(x)H(t))  = - -2  V 2  ~'(x)~(t) .  
(2.10) 

Comparing (2.8) and (2.10) we obtain 

1 
w = (w 1 -- w2). (2.11) 

2V2 

We further note that  (2.6a) can be integrated by parts to gire 

1 {[ T2) ]~ o ' { T ~ )  Oc~ } 
u (x , t )  - -  1 / ~  --  exp {---~-t w (x , T )  T=O -t- f'O exp - - ~ t  --~-t ( x ' T ) d T  = 

f ;  ( T2}Ow (2.12) -- 1 exp -- (x,t) dT. 
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Sinee we thus  need  (Ow/Ot), we need only  z 1 --(Owl/Ot ) and z 2 = (Ow2/Ot) 
sat isfying the  differential  equat ions  

O~z~ V~ O2z~ -4- ~2zl 1 
- -  z~ = - -  ~ ( x ) 8 ( t )  (2.13a) 

Ot ~ Ox Ot Ot 2 2 ' 

0 2 z2 0 2 0 2 22 1 
Ot s + V-2 oxZ2ot -4- --ot z 2 Z z - ~ -  t}(x)~(t) . (2.13b) 

To obta in  z 1 we change i t  to  the  canonical  s b y  the  following t rans-  
format ion of  variables.  Le t  

1 1 = x  + - ~ - t ,  n =-V-~-t (2.14) 

Using this we obta in  the equat ion for  Zl as 

0 2 z 1 0 ~ z 1 
0�91 3 q- - -  z 1 = --  2 6(�91 ~(~) O(�91 ~)  _ ~~ ~(~)~(~). (2.15) 

072 0(x, t) 

The last  J acob ian  t ransforms the  del ta  funetions to  the  new variables.  Bu t  
the Eq.  (2.15) is ah elliptie equat ion.  Thus  the solution of  the  basie problem 
of  'wave propaga t ion '  is obta ined b y  superposing solutions of 'elliptie equat ion ' .  
The new va ¡  ate of  eourse different .  In  view of  the  t r ans fo rmat ion  (2.12) 
eorresponds to  V ~ and no t  to t. So the  s o h t i o n  m a y  be said to be a superposi t ion 
of  the solutions of  a parabolie equat ion.  However  s tr iet  parabol ic i ty  would 
have  been there  only  i f  the t e rm in q in (2.1) were posit ive.  The above me thod  
is a novel  approach  to deal wi th  problems and also provides  an interes t ing 
revela t ion of  the  ehange in the  charac te r  of the basic equat ion whieh does not  
belong to  a ny  s t anda rd  type .  

I r  is now s t ra ight forward  to  wri te  solutions for  z 1 and z 2. 
We have,  

z 1 ---- V ~ Ko(Vx 2 + t 2 § V 2 x t ) ,  

z 2 = V ~ K0(~r(x z + t 2 __ V~xt) . (2.16) 

Using these we f ina l ly  obtain u as 

u(x , t )  = -  1 exp --  [Ko(V x2 -4- t 2+  } / ~ )  -- 
2 ~  

- K o ( V x  ~ + t ~ + r  d T  = 

- -  1 f/0 exp ( - -  u 2) [Ko(V x2 + 4tu 2 -4- 2}/~ x u )  - (2.17) 
V~ 

--  Ko (Vx2 "4- 4'u ~ - 2 ( ~ x u ) ]  du . 
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The original variable vis  easily obtained as v = exp (-- 1/2 t)u. The solution 
clearly exhibits v(0, t ) =  v(x, 0 ) =  0. The forro of representation indieates 
(x/Vt) as a similarity variable. 

I t  was not possible to convert it into simpler representations. We could 
represent the modified seeond type of Bessel function byuse of addition theorem 
and convert ir into a series of integrals involving eonfluent hypergeometrie 
functions. But  that  does not help to reveal the nature of propagation any 
more clearlythan (2.17). Forlargex,  K0 can be replaced by  exponentials by  use 
of their asymptotic forros. The contribution to the integral is then seen to be 
provided by  the vieinity of the origin. This indicates the dominant behaviour 
near x ~-~ t. To see these things clearly we obtain below the Laplaee transform 
solution by  a straightforward process. 

3.  A s y m p t o t i e  f orms  

We take the Fourier and Laplaee transform of (2.1a) and perform 
the Fourier inversion. We then obtain for, x > 0 the Laplaee transform of v as 

1 x 1 x 
I e x p ( - - V P d - - 2 - ~ ) s i n ( V P  2 V-2) (3.1) 

2 2-- T 

1 1 x x 
V1_4p2 exp (-- Vp- ~ -~ - -~ - ) s inh  ( V ~ - - ' - ~ - )  " (3.la) 

I f  we replace the original dimensional variables x and t, we can in faet pass 
the limit l --~ 0 of the two exponentials in (3.1a), 

E x ] ml,2 = exp -- -~- (V 1 -4- 2 lp • Vl~---~~p) , 

m 1 -+ exp (-- x/l), m 2 ~ (-- px).  

(3.1b) 

This solution corresponding to m 1 thus tends to zero as l = 0, while that  
eorresponding to m 2 leads to the solution 

1 vc= - - - -6 ( t - - x ) .  (3.2) 
2 

This solution (3.2) is the solution of the original problem (2.1) in absence of 
couple stresses viz. l = 0. We then have a wave front travelling without  
ehange of form. 
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I t  is i m p o r t a n t  to  no te  t h a t  the  Laplaee t rans form is def ined a s a  single 
va lued fune t ion  on the  Browmwhieh  con tour  whieh is any  line parallel  to  the  
imaginary  axis in the  complex p-p lane ,  such t h a t  aH the  singularities lie to  
its left. Any  line now such t ha t  Be 10 > 1/2 satisfied the  requi rement .  However ,  
ir mus t  be no ted  t h a t  p ---- 1/2 is n o t a  s ingular i ty  of  the in tegrand,  while 
p = - -  1/2 is the  only  singulari ty,  being a braneh point .  

Fo r  u ~ 1, and small x, we expand  the  sine funet ion  and per form the  
inversion to  ob ta in  

(-i)0z (~) i ~  {x,  }1 x ( - -1)"  n d n 1 exp t . 
v = ~ exp t - -  (3.3) 

2 ~/2 (2n -b 1)! dx ~ 8t 

The series (3.3), exhibi ts  the  diffusive na tu re  of  the solut ion near  the  boundary .  
Again sinee p ---- 1/2 is n o t a  b ranch  point  the  imaginary  axis is an admissible 
contour .  Tak ing  this  we get 

Y~ 

xT0 
7~ 

{ VV 1~/ 
c o s  ut  - x u s +  -4 2 du  - 

{ ~~ 1 11 cos(ut )  exp - - x  u2q- 4 2 du .  

U 

(3.a) 

The seeond in tegra l  is everywhere  exponent ia l ly  small for  large x and so i t  
m a y  be disregarded.  The f irs t  in tegra l  is, however ,  of  the  known forro discussed 
in the l i t e ra tu re  [8]. We obtain  

v_ 12),'~~[(2)"~t ~> 1 ~~5> 
where A i  denotes  the  Airy  funct ion.  

The va r i a t ion  of the  ampl i tude  as inverse cube root  of  dis tanee near  
the  wave f ron t  t ~-~ x is elear f rom above.  The same conclusions can be seen 
f rom the m e t h o d  of  steepest descent in greater  detail .  The  exponent ia ls  in 
the  inversion of  (3. la)  can be wr i t t en  as 

exp [ - -  x{m(p)  -- ~p}] ,  (3.6) 
where J ( t / x ) =  1/k. 

For  each f ixed  ~ or k, for large x, the  maj0r  cont r ibu t ion  to  the  integral  
comes f rom the  ne ighbourhood of the  s t a t ionary  points,  given b y  m'(p) = ~ as 

iol, 2 = :qz ~_1 ([8 --  4k 2 --  k 4 + 8 VI - k2] 1/2 ~- [8 ~- 4k2- -k  4 -  8 V1~---~-~]1~). (3.7) 
t ~  
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Of the  above two roots ir can be verif ied Pl,2 belong to  rnl. 2 respect ively.  However ,  
Pi  gives an exponent ia l ly  small contr ibut ion.  Limi t ing  a t tent ion  to  the  neigh- 
bou rhood  of the  wave-f ront ,  t --~ x with k z = 1 -k e, we obta in  

2 
~.2 = -~- ~-. ( 3 . 8 )  

Thus  for  t = x, origin is a saddle point .  The  p a th  of  s teepest  deseent  is sueh t h a t  

Im[m(p)  --  p ]  = 0, Re[m(p)  - -  p ]  > 0 .  (3.9) 

Scales - ( i )  �91 cm =0.1 unit time a[ong t - axis 
2 cm = 0.05 unit disp[acement along U - ~ i s  

(ii) 4 cm = 0.5 unir time olong t - oxis 
2 cm = 0.01 unir displocement olong U-oxis 

0.35 ( i i i ) �91 cm =10.0 unit time dong t - ox i s  
O. 16 t , ' '~ .2,~m = 0.2 = 10 "4 unit displacement olong U-Qxis 

~1.10 ~ - - .  

~i~ '" " ' ~ - - -  �9 " / ~ , 7 - .  . . . . . . . . . . . . . . . .  
�9 �9 �9 % 

/ ~ i )  . . . . .  ( i i )  X= 1.0 
/ ~ "~-,~---( i i i )  X = 100 

I ~ ~81~ / " -  
,0.30 / ---,- 

" ~ t  ~me O' ' ' t 

10.0 20.0 30.0 

Fig.  1. T h e  c u r v e  o f  d i s p l a c e m e n t  a g a i n s t  t i m e  f o r  x = 0 .1 ,  x = 1 .0  a n d  x = 10 .0  

I t  can be verif ied t ha t  the  pa th  s tar ts  f rom the  origin, at  angles q-(2~r/3) and 
at  inf in i ty ,  is asympto t ie  to  V ~  sin (0/2) = -t- 1. The analyt ieal  expression 
for the  pa th  is not  easy to  obtain.  However ,  [m(p) - - p ]  behaves,  near  the  
o r ig inas  p3 and so, with ah exponent ia l  error,  we can take  the pa th  of  def ini t ion 
of  Ai ry  integral  [8]. Then  we are led essential ly to  the  same eonclusions as in 
(3.8). F o r  e > 0, t < x, P2 is real,  giving an exponent ia l ly  small eo n t ¡  
This shows t ha t  there  is a sharp fall in the  ampl i tude  jus t  in f ron t  of  t = x 
i.e. ahead  of the  elassical wave.  Howevr jus t  behind  the  f ront  ir has an oseil- 
l a to ry  behaviour  sinee p2 gives two points on the  imaginary  axis. 

The  Figure shows the  solution as ealeulated f rom (2.17). For  different  
values  of  x the ranges of  the  values of  t and u ate t aken  as follows. 

x = 0.1, t (0.01, 3.0), u (0.0, 11.10). 
x = 1.0, t (0.10, 6.0), u (0.0, 11.10). 
x = 10.0, t (1.0, 60.0), u (0.0, 11.10). 
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4. C o n c l u s i o n  

T h e  e x i s t e n c e  o f  coup l e  s t r e s ses  c h a n g e s  t h e  c h a r a c t e r  o f  t h e  p r o p a g a t i o n  

b a s i c a l l y .  A w a v e  u n c h a n g e d  in fo r ro  in  t h e i r  a b s e n c e  is m o d i f i e d  d r a s t i c a l l y .  

l~lear t h e  s o u r c e  i t  is  h i g h l y  o s c i l l a t o r y  a n d  d i f fus ive ,  w h e r e a s  l a r  f r o m  t h e  

source ,  t h e  a m p l i t u d e  d e c a y s  as t h e  i n v e r s e  cube  r o o t  o f  d i s t a n t e ,  f a l l i n g  o f f  

e x p o n e n t i a l l y  a h e a d  a n d  in  an  o s c i l l a t o r y  m a n n e r  b e h i n d  t h e  c l a s s i ea l  s h e a r -  

w a v e  f ron t .  
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