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An off-mass-shell continuation of the dual multiparticle amplitude is constructed in
the analogue model for sealar particles. It is invariant under the SL (2; R) group, factorizable
in the direct channel and the hadronic form-factor has a reasonable asymptotic behaviour;
analytic properties, however, are not satisfactory. In the scaling limit the two-current ampli-
tade shows an automatic cut-off in the transversal momentum, which is proportional to the
momentum transfer (not fixed), so that an anomalous dimension appears in the model.

Introduction

SussKIND quite recently proposed a simple model for meson—meson
interactions [1], in which the mesons are considered to be bound scalar ¢g
pairs. During the interaction momentum is transferred only to these “valence
quarks” and not to the exchanged quanta. From this assumption he was able
to get the Veneziano N-point function.

NieLseN and SuUsSSKIND have emphasized that in the meson—current
interaction the current can be coupled directly to the exchanged quanta [2].
This assumption seems to have experimental support in high-energy lepton-
hadron processes. The parton picture offers a relatively good description of
these processes and one can identify the exchanged quanta with partons.

Starting from this idea the above authors constructed hadronic form-
factors with convenient properties in the ¢> ~ 0 region. (¢? is the mass of the
scalar current.) With further assumptions they succeeded in giving a reason-
able model for deep inelastic electron—proton scattering as well.

The model contains certain arbitrariness concerning the cut-off to be
applied in divergences appearing in the form-factor. The choice of the cut-off
influences the behaviour of the form-factor considerably.

SusskIND has shown that the original harmonic oscillator model is
equivalent to the analogue model of NIELSEN [3]. It would be of interest to
know whether this equivalence can be maintained for the current amplitudes
also and whether the problem of divergences appears in the analogue model.

* Dedicated to Prof. L. JANossY on his 60th birthday.
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166 A. PATKOS

In Section 2 the extension of the analogue model to the current ampli-
tude is rephrased. The scalar-current form-factor for mesons will be constructed
without cut-off and a two-current amplitude derived. From the factorization
of the amplitude in the s-channel we can deduce excitation form-factors.

The dual and asymptotic properties of the two-current amplitude are
briefly discussed in Section 3 and finally in Section 4 the problem of the con-
nection between the scaling and duality is investigated by means of a simple
analogue model.

The extension of the analogue model

In the analogue model the equivalent picture of the world-sheet of
SUsSKIND is a conducting plate of the same dimensions —oco> ) <}-oo;
0 <0 <7 and uniform conductivity o (see Fig. 1). If the meson is free, a
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Fig. 1

four-momentum current flows in the sheet from a momentum source (p,) at the
point 1 =-—o0 to source (p,) at A=co. Because of four-momentum conservation
we have p; = — p,. The current distribution (p(0; 1)) can be evaluated by solving
the problem of the D. C. generated by the source distribution given above with
the subsidiary condition jg p(@;2)d0=p,. For uniform conductivity this gives
a uniform current distribution independent of 0.

The amplitude for the interaction of an arbitrary number of particles
and currents is given by NIELSEN’s formula:

A — { d(conf.)exp{—o | j2df} . (1)
{ d(conf.)

Here j(0; 1) describes the current distribution; o‘jj'?df is the total heat generation
in the plate (6")(Zp,) is separated from A); and j'd (conf.) denotes summation
over all possible couplings of external momenta to the meson. We know [2]
that the coupling of the on-mass-shell momenta is restricted to the boundary
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A SIMPLE EXTENSION OF THE ANALOGUE MODEL 167

of the plate (6§ = 0; x), whereas the currents can couple inside the sheet, too.
Two further rules must be stated for constructing the amplitude:

a) Requiring the amplitude to be 1 in the case of a free hadron, one has
to subtract the heat generation in the free hadron from aj'j2df, so we have

A= jd(conf) exp {—o f (j>—j3) df}/j d(conf). (1a)
One can see that this “0-point” heat is

H, = lim 20p%n | w, | -+ const., (2

fwy] >0

where w, = e'%; z; = 0, 1 i}, is the position of the source associated with the
ingoing momenta p,.

W=e'Z
Wz.q
2p,
*
Fig. 2

b) The second remark concerns the requirement of A-translation invari-
ance, which is suggested by the proper-time interpretation of 2 [1]. This is
the partial consequence of the invariance of our amplitude under the trans-

formation
w aw—+b 3)
cw-t+d
(a3 b; ¢; d are real parameters with | ab —e¢d | = L, w = ¢?, 5 = 0 - i1). This

property will be discussed in detail in Section 3. Because of the invariance one
can fix the coupling of one of the currents at 4 = 0.

With these two rules in mind let us construct the hadronic form factor
(the meson—current—meson coupling).

We map the sheet into the upper half-plane by means of the function
w = ¢, In order to satisfy the boundary condition the half-plane will be
reflected with respect to the real axis, without changing the signs of the sources
(Fig. 2). The heat generated in the sheet can be evaluated from Ohm’s law:

Hp,qg = —opsq (In | wy | + In [ wy ),
Hy = —oq¢ In | wq—w,’; I,
H, , = — lim 20p,;p, In [ w, |,
Jwy |+ oo
H,q=—- lim opyg(ln |w;, —w,| + In |[w; — w;k - (4)
AR
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168 A. PATKOS

Expanding the sam Hp p + H) ; in series at the point w, = oc, one gets

. 1
Hy, po+Hp, g = —lim 012p,(p;-+9) In jw,|+ | (-+2) |- (5)

[Wy[—>eo wll

Taking into account four-momentum conservation, it can be seen immediately
that (5) tends to (2),so H, ,,+ H,, does not appear in (la), as a consequence
of our first rule. By the second rule:

| wy | = 1, that is H, , = 0.

We shall now use the so-called scale invariance property of the heat generation
[3], which means that the expressions given by (4) are determined only up to
an additive constant. In order to ensure agreement with the NIELSEN—SuUss-
KIND form-factor, this constant is required to be —In 7/4, in H, and 0 else-
where (4, is defined in [2]).

Hy=—o0¢In

A
0 !wq“w;
T

], (1a)

Substituting (4a) into (la) one gets

2

oq

Fy(g) = [ 2:" sin @J (6)

One can now integrate over all possible values of 6, with a normalization factor
in the integrand (omitting the denominator of (la)):

og?

" _do (sin @)% . )

Fg) = | W(

22,

44

If we choose N(@) = sin? @ and o = 1, we get the form-factor of [2] without
using any cut-off. The choice of the form of N(f) is determined by the inter-
action. In [2] N(f) = sin? § for charge-symmetric interactions, N(f) = sin'/2)
for electromagnetic interactions. In the following Section it will be shown that
further restrictions appear if invariance of the volume element under real
Moebius transformations is required. In order to investigate the excitation
form-factors the two-current amplitude (Fig. 3) will be also discussed.

According to the first rule, the contribution of the p,-source can be
omitted. The other contributions are as follows (the procedure is the same as
before):

Acta Physica Academiae Scientiarum Hungaricae 32, 1972



A SIMPLE EXTENSION OF THE ANALOGUE MODEL 169

Jq2
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H, ., —0; H,, ——ogn |2 2l
prqr— T thqn'*’O'QI n 7|WQL'*WQ1| »
2.H 2 2'0 1 *
Hy, 0 =— 02t Injw,,[* H,,, =—o¢n :{diwqgﬁqu » (8)
H‘th = 0q [ln lwlh 7'w42| +In ‘wqf”wgzl] ”

The amplitude is

7 1
A :Jn d@1 sz J il—‘— u“(zpzqz‘*"ﬁ) ‘eiel — ei@z u!”qlqzleiel J— ue_iaz 0q.q: .
0 N(@1) 0 N(@2) o u

-

9)
o(gi +43) (
+ (sin @) (sin O,)0% ( 220] e

JT

(the new variable u = e~*: has been introduced). The same amplitude can be
derived (see Appendix) by the prescriptions of [1].

Now let us study the poles of (9) in the variable s. These poles occur from
the region u ~ 0 and their residues are proportional to polynomials in ¢, - ¢,.
The leading term describes the exchange of the pole on the leading trajectory
and for the s — ¢ =J (J = 0; 15...) pole is:

esy 4 f NG, N(@)(m@)”'(sm@)”q’[zio )a«ﬁ“". (10)

* (29, ¢,)/ (cos O, cos 6,)/ }_'

By factorization of (10) one gets the excitation form-factors shown in [2]:

(22 J“ql 1 (11)

Fadd®) = 120V ., | W"(@@—)(sin o< (e o) [ 2o
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170 A. PATKOS

Properties of the two-current amplitude

In this Section the properties of the amplitude (9) are briefly summarized.

Invariance of the intergrand under Sl(2; R) transformation [3].

Up to now a particular mapping of the (0; 1) sheet into the upper half-
plane was used for the computation of the amplitude. In the case of an arbitrary
mapping realizable by

ae*4-b
celz - d
the integrand in (1) becomes (¢ = 1)
I"""l*walzmq1 l"’”l—"'vqgl2p1q2 []wa—'wq2| Iw;l,,, wqg']qlq2 qu1" w;l a - (12)

J10g, — W] |9 |1y — 10, | 2P0 |wy— 1w, | PP |10, — w, | PP,

In order to ensure invariance of the amplitude under this change of the con-
figuration of sources, that is under the SL(2; R) transformations of the upper
half-plane we have to multiply (12) by a factor | w, — w, 2. But from (2) it
can be seen that this is precisely the factor by which (la) differs from (1).
Therefore the meaning of the formal manipulation to assure SL(2; R)-inva-
riance is similar to leaving the 0-point energy in the case of harmonic systems
to ensure that the results are finite (p} = p; was assumed).
The invariance of the volume element

N jdw;|

v =[] (13)

'wi+1_wi| kol |w k—ka

can be demonstrated by direct evaluation (N is the number of particles on-
mass-shell, M is the number of currents). The SL(2; R) being a three-parameter
group we can fix the positions of the two on-shell particles and partially that
of one of the currents (] w; | = 1), then one arrives at the same volume ele-

ment as in (9) by putting N = 2, M = 2; N(0) = sin%.

Poles on the ¢; and q; planes

These poles arise from the region where 0; and 0, are approximately 0 or
7 and can be exhibited by integrating by parts at 6; = 0;7; they occur at
qi = 15— 1;...; if we use N(0) = sin?0. The residue of the two-fold pole at
¢} = ¢; = 1 coming from the region 6, = 0, = 0 or x is the dual amplitude

o duu=s"%(1—u)""% for N(0) = sin26,
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The contribution of the regions 0, = 0, - & and 6, = 0;z can be identified
with the parts of the amplitude which correspond to the (s;u) and (¢; u) duality

[1].
Poles on the s-plane
These poles arise from the u ~ 0 region at s —c¢=J,J = 0; 1;...,
appearing independently of the actual value of 0.
Factorization in the s-channel

This problem has been investigated in Section 2. The residue contains the
product of the two form-factors and a polynomial of q,g,:

3 Flq) Fi(g)

A= 12=1 J—(—0) (9,9.)’ + daughter poles, (14)
where
5y — (y2)! [ 22 sin @) (cos )L
R = (2 [ Oy cos0)) [0 s

Asymptotic behaviour in s

The main contribution comes from the region u ~ 1. The asymptotics
depends strongly on the actual value of 0. If the currents couple on the edge of
the interaction region, one obtains the dual part of the amplitude. But from
the region 6, = 0,, different rom 0; 7, one would have a trajectory of a slope,
which is half of that appearing in the dual part of the amplitude:

lim Ag,-6,40; ~ ~ J du J 3,‘5(2—) (2ps gt g)0% |1—e~%%00: f(w).  (15)
Here f(u) denotes the u-dependent part of the integrand. The part of the
amplitude which comes from the region 0 <Z f, = 0, < @, has s-independent
asymptotics.

The amplitude does not remain dual if we perform an analytic con-
tinuation from the mass-shell. It has inconvenient analytic properties in the
t-channel due to the factor lw, —w,, |%, (The position of the t-channel
poles depends on the actual value of ¢7). This factor cannot be removed without
fundamentally changing the physical content of the model.

It can be concluded that the amplitude has reasonable properties in the
direct channel, but one is faced with having to exclude the ¢,q,-poles in the
crossed channel. Nevertheless the generality of the method presented here may
be of interest for further investigations.
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172 A. PATKOS

Scaling in the analogue model

NIELSEN and SussKIND imposed the scaling property on their model by
considering the contributions of only those diagrams in which the two currents
couple to the same exchanged quantum [2]. This assumption has an equivalent
picture in the analogue model, which can be related directly to the parton
model proposed by BjorRkEN and Pascuos [4]. If we identify N () with the
density of partons [2] (this factor earlier played the role of the weighting factor
in the summation of the contributions of different coufigurations), the longi-
tudinal momentum carried by a parton at a given 0 is pN(0)/n. The transver-
sal part of the parton’s momentum is neglected. Choosing

o = 03(6 — Ogy) (16)
for the g-current only), we restrict the coupling of both currents to the same
q Y pling

parton.
The heat generation is given b
g g Y

~A
H, - 92J 46 di'a, 56 —6,) = ¢ Ao,

0

. 2 (17)
H, — M(@_l)qj dO ¥ 5,5(0—6,) — 2 pg do, O
7 0 7
From Eq. (1a) the following amplitude can be evaluated:

=~ d6 (= 2pq

A= diexp!—|¢®+ -+ N @)Ja 2}:
L N©) ), P { [q N ©)|%
= do 1 (18)

o N(®)

)

! .
¢ +-2LN (6)
T

The imaginary part of (18) is

N

e o) )

and gives the scaling law of ImA. In order to have a definite scaling function,
we put N(0) = 7 sin?0
r——lmv ImAd= : . (20)

3/2 2
7 oo 32 |[1— x

where
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It is natural to try now to relate amplitude (9) in the BJORKEN limit [4] to the
above picture. The aim will be to demonstrate that in the scaling limit the main
contribution to the amplitude comes from the 6, = 0, region and that the am-
plitude shows the scaling property. We use (9) in the form given by Eq. (A3)
with cut-off sums like (A4). (A3) has only technical advantages over (9); as we
have seen, the results given by the two are identical. For the forward-scattering
(9, = —q.), we replace (A3) by

cos%k6, cos*k®,
_q2 —)'v —n2 }-v
_A . 7 d@ 4 f —S+C 1 3 k q * k
o N(@,) Jo N(O,)

e s €08 k8 cos kO, XE (21)
% k

e

Let us consider first the s — oo limit only (Regge limit). The main contribution

comes from the region X ~1. We introduce therefore the new variable X =1— e
s
and expand X* in Newton binomial, which yields
du —q* > —(cosk@ —Cos k@,)*
e :
N (91) N (@z)
2 > cos k6, cos kO, Sk' (k (_ _”_)l (22)
“e ¥ k =7\t s

Let us consider next the g2 —oc limit. The first exponent tends to 0 if 6; == 0,,
so expanding cosk 0, about 0, = 0,, retaining only the first nonvanishing

term, we acquire:

A o d@l J‘ J‘ du _qzz k sin? k@l(el 2)2
N(©,)) N(©,)

ko k (k u )
[2‘1’ D cos® kO, —kcos kB, sin kOO, —O)[k + > ( ) (- -
. eu ¥ k =1 ! s

Using the definition

- ¢ So ksin®ko,(0,-6,* ]
lime ¥ V‘]ZZ ksin? kO, T—— = 0(0,—0),) (23)
& 7

g+ oo
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for the é6-function, we have

de,
lim 6,—6,)e"
¢ —woJ N(©,) J N(@©,) J s q* 3k sin?k € Zk sink 0@, X ) 24)

b ()

Finally, we keep ¢*/s = x fixed. In this case only one term remains finite in the

second exponent:

limBA — 1 J‘

sVq
— k“‘ 2 @
VW . exp{[lzx% cos?k 1] u}.

Taking the u integration around u ~ 0:

N 2(@1)
(25)

1
qu N2(@ Zk sm2 k@, 1— 2x2' cos® k@,

limp 4 = (26)

After summing the divergent sums the 0,-integration for the imaginary part
can be made by means of the d-functions

1
1 i ] A———- o _sl12 k0, 27
img s g Im VJN(@I) ]/stm%@ ( chos 1)

The above demonstration confirms the assumption about the important region
of f-integration made in Eq. (16), but the power of y multiplying ImA in the
BjorkEN limit changes and its value is characteristic for the case of so-called
anomalous dimensions, proposed in some field theoretical models of scaling.
The physical basis for this change may be the different way of cutting-off the
transversal momentum. In the naive analogue picture (Eq. (16)), there is no
transversal part, but (as it can be seen from Eq. (23)) in the amplitude (9) the
contributing region is proportional to (}/¢2) ~*

*®
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Appendix

The two-current amplitude is derived by applying the preseription
of [1].

The contribution from a given configuration (6;; 6,)is

1
To,;0, = {%‘} <0 T(qy; O,)[{ni}> BT {niHT(g ©)105, (A1)

where | 0 > denotes the ground state of the meson, I{nﬁ} > denotes an excited
state in the occupation number representation, and T(q;; 0,) = /% *®) is the
scalar vertex-operator with the second quantized four-position X,(@;1) given
in [2]. If (A1) is rewritten in the coherent state basis and

2 wcos kO, S\ €os kB, - -
2 iy TR e 5 8)yk
819> = e ' 2 T
{k; 1} 5] ﬁ nﬂ! (A2)
gt XSO Y5 N cos k0, 600 -4, 1
R ¥ PR TCI
s—!%:knﬂ—c ay=Fu=0
Using the identity
fl dXXc—s-H— Elmﬁ _ 1
0 s—ec— > kn¥
3
we get
1 - 1 2 nk c—-s—l+knk
Te,;e, :J aX > J] —r [H—l-;ghi 5, c0s kO, cos kO,| “ X “e
0 nllﬁ uk nu.
. {i,cos“ kO, . 7 Cos?k @,
e
e K e k = (A3)
1 2
cos k@ cos k@
:j dXXcs-lexp {~q%2~ — ¢} 2‘
0 k

Xk
— 2¢19, > cos k) O, cos kO, T} .
K

As the exponent in the first exponential is divergent, it is necessary to introduce
a cut-off. From [1] we have:

b cos?kO 22,

__“__1 A4)
> k 5 log (A4)
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The third exponent can be evaluated without any cut-off:
p y
k
' cos kO, cos kO, Ek - = % Inll— Xe #6:+8)| L h |1 — Xei(®: - €], (A5)
k

Substituting (A4) and (A5) into (A3) Ty e is obtained in its final form as:

i+

20 ) in ©,)61 (sin Oy)et -

1
To,0, :J dXXe—s-1 (——0
0

T

(A6)
- 1—Xel@+0)|0t: |1 — Xei(61-02)|0:0:,

The amplitude comes from (A6) by integrating over @, and and agrees with
that given by (9) for o = 1:

* dO, (7 22, \4+at . 2
A—J N(6,) N(Q J X ( ) (sin 6,)1 (sin )% -

A7
. l]_ erl(@x—@t)lqﬂz Ileel(@x‘(“@ﬂ)quqz. ( )

The factorization in s is also clear from here, and the excitation form-factors

are the same as in [1].
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[NPOCTOE PACIIPOCTPAHEHHWE AHAJIOTOBOX MOOEJIU
HA CIIVUA CKAJISIPHBIX TIOTOKOB

A. TATKOWI

Pesiome

[IponomKenne payainpHOH MHOIOYACTHYHON aMIUIMTYIbl BHe 000JIOUKM Macchl OBUIO
NOCTPOEHO B aHAJIOT0BON Mojesu cKansipHbIX yactil. OHO HHBapHaHTHo npu SL(2; R) rpynne,
(aKTopU3HpyeTCsl B NpPSIMOM KaHale, a raipoHuueckuil ¢opmupyoomuii GakTop noxassbiBaeTr
000CHOBaHHOE aCHMITOTHYECKOE ToBefeHHe. Bee yke ero aHanMTHUYECKHE CBOHCTBA He SIBSIIOTCS
YILOBJIE€TBOPHTEIbHEIMH. [lyanbHasi aMIINTYla B CKaJIsIPHOM IIpejiesie TIOKa3blBaeT aBTOMATH-
YeCKHI NepepreiB B IOMIEPEYHOM MOMEHTE, KOTOPbHIU MponopUMoHaseH NepeHoca MoMeHTa (He
siBsieTcs1 KoHcraHToi). [Toaromy B MoZe/ M BOSHHKAET aHOMalbHOE H3MEDEHHe.
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