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Ah off-mass-shell continuation of the dual multiparticle amplitude is constructed in 
the analogue model for scalar particles. Ir is invariant under the SL (2; R) group, factorizable 
in the direct channel and the hadronic form-factor has a reasonable asymptotic behaviour; 
analytic properties, however, ate not satisfactory. In the scaling limit the two-current ampli- 
tude shows ah automatic cut-off in the transversal momentum, which is proportional to the 
momentum transfer (not fixed), so that an anomalous dimension appears in the model. 

Introduetion 

SUSSKI•D quite  recent ly  proposed a simple model  for m e s o n - - m e s o n  
in terac t ions  [1], in which the  mesons are considered to be bound  scalar  q~ 
pairs.  Dur ing  the in te rae t ion  m o m e n t u m  is t r ans fe r red  only to these  "va lenee  
q u a r k s "  and  not  to the  exchanged  quan ta .  F r o m  this a s sumpt ion  he was able 
to get the  Veneziano N-po i n t  funct ion.  

NIELSEN and SUS$KI~D have  emphas ized  t h a t  in the m e s o n - - c u r r e n t  
in te rac t ion  the  cur ren t  can be coupled direct ly  to the  exchanged  q u a n t a  [2]. 
This  a s sumpt ion  seems to have  expe r imen ta l  suppor t  in h igh-energy  lepton-  
had ron  processes. The  pa r ton  pic ture  offers a re la t ive ly  good descr ip t ion of  
these  processes and  one can ident i fy  the  exchanged  q u a n t a  wi th  pa r tons .  

S ta r t ing  f rom this idea the  above  au thors  cons t ruc ted  hadron ic  fo rm-  
fac tors  wi th  conven ien t  proper t ies  in the  q2 ~ 0 region. (q2 is the  mass  of  the  
scalar  current . )  Wi th  fu r the r  a ssumpt ions  t h e y  succeeded in giving a reason-  
able model  for deep inelastic e l e c t r o n - - p r o t o n  sca t te r ing  as well. 

The  modet  conta ins  cer ta in  a rb i t ra r iness  concerning the  cu t -o f f  to  be  
appl ied in divergences appear ing  in the  form-fac tor .  The choice of  the  cu t -of f  
influences the  behav iou r  of  the  fo rm-fac to r  considerably.  

SUSSKI~D has shown t h a t  the original ha rmonic  oscil lator model  is 
equ iva len t  to the analogue model  of  NIELSE~ [3]. I t  would be of  in teres t  to  
k n o w  whe ther  this equivalence  can be m a i n t a i n e d  for the  cur ren t  ampl i tudes  
also and whether  the  p rob lem of  divergences appears  in the analogue model .  

* Dedicated to Prof. L. J�93 on his 60th birthday. 
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In Section 2 the extension of the analogue model to the current ampli- 
tude is rephrased. The scalar-current form-factor for mesons will be constructed 
without cut-off a n d a  two-current amplitude derived. From the factorization 
of the amplitude in the s-channel we can deduce excitation form-factors. 

The dual and asymptotic properties of the two-current amplitude ate 
briefly discussed in Section 3 and finally in Section 4 the problem of the con- 
nection between the scaling and duality is investigated by means of a simple 
analogue model. 

The extension of the analogue model 

In the analogue model the equivalent picture of the world-sheet of 
SOSSKIND is a conducting plate of the same dimensions - - ~ >  ~ < q - ~ ;  
0 < 0 < ~r and uniform conductivity a (see Fig. 1). I f  the meson is free, a 

0 lr 
2~ 

Fig. 1 

four-momentum current flows in the sheet from a momentum source (PI) at the 
point 2 = - - ~  to source (P2) at ~ =  ~ .  Because of four-momentum conservation 
we have PI =- -P2 .  The current distribution (p(0; 2))can be evaluated by solving 
the problem of the D. C. generated by the source distribution given above with 
the subsidiary condition So p(O; 2)dO=pi. For uniform conductivity this gives 
a uniform current distribution independent of 0. 

The amplitude for the interaction of an arbitrary number of particles 
and currents is given by NIELSEN'S formula: 

A ---- S d(conf.)exp { ~ a  j'j2df} 
y d(conf.) 

(1) 

Here j(O; 2) describes the current distribution; afj2dfis the total heat generation 
in the plate (�91 is separated from A); and S d (conf.) denotes summation 
over all possible couplings of external momenta to the meson. We know [2] 
that  the coupling of the on-mass-shell momenta is restricted to the boundary 
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of  the plate (0 z 0; ~), whereas the currents  can couple inside the  sheet,  too. 
Two fur ther  rules mus t  be s ta ted  for cons t ruct ing  the ampli tude:  

a) Requir ing the  ampl i tude  to be 1 in the  case of a free hadron ,  one has 
to  subt rac t  the hea t  generat ion in the free hadron  f rom (~j~2df,  so we have 

A = S d(eonf) exp { - -0  S ( f f - - J ~ )  d f } / . [  d(eonf).  (la) 

One can see tha t  this "0 -po in t "  heat  is 

H 0 ---- lim 2~p21n I w 1 I -}- const. ,  (2) 

where w 1 ---- eiZ'; z x -= 01 + i21 is the posit ion of  the  source assoeiated wi th  the 

ingoing momen ta  Pi- 

w2~ 
2P 2 

w }i 2q 
Fig.  2 

W = e  iz 

b) The second r emark  concerns the  requ i rement  of 2- t ransla t ion invari- 
ance,  which is suggested by  the  proper- t ime in te rpre ta t ion  of  Ÿ [1]. This is 
t he  par t ia l  consequence of the invariance of  our  ampli tude under  the  trans- 
fo rmat ion  

w ' - -  a w + b  (3) 
cw+d 

(a; b; c; d are real pa ramete rs  with I ab - -  cd  I = 1; w ---- e iz, z -~ 0 + i2 ) .  Tbis 
p rope r ty  will be discussed in detail  in Section 3. Because of the invar iance  one 
can f ix  the coupling of  one of the currents  a t  2 = 0. 

Wi th  these two rules in mind le t  us cons t ruc t  the hadronic  forro factor  
( the m e s o n - - c u r r e n t - - m e s o n  coupling). 

We map the sheet  into the upper  half-plane b y  means of the funct ion 
w = e iz. In  order to sat isfy the bounda ry  condit ion the half-plane will be 
ref lec ted  wi th  respect  to the real axis, w i thou t  changing the signs of  the sources 
(Fig. 2). The  heat  genera ted  in the sheet can be evaluated  from Ohm's  law: 

Hp2q - -  aP2q (ln ]wr ] + In ]w~ I), 

*[ ,  Hqq  = - -  aq  2 In [ Wq - -  Wq 

HV~p~ - -  lim 2 (~p lp2  In ]w x l, 

* [). (4) H p ,  q - -  lim aplq(ln I W 1 - -  Wq ] -}- In J W 1 - -  Wq 
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Expand ing  the sum Hp, p, -4- Hp~q in series at  the point  w 1 = ~c, one gets 

[ 1 1 Hp~ v2+Hpxq = --limlw,[~~ (l 2pi(pi+q) In tWl[  ~ -  ~~~-1] ( . . . )  �9 (5) 

Taking into account four -momentum conservation, i t  can be seen immedia te ly  
tha t  (5) tends to (2), so Hplp, + Hpl q does not  appear in (la),  a s a  consequence 
of our f irst  rule. By  the second rule: 

[ Wq I = 1, tha t  is Hp2 q = O. 

We shall now use the so-called scale invariance proper ty  of the hea t  generation 
[3], which means t ha t  the expressions given by (4) are determined only up to 
an addi t ive constant.  In order to ensure agreement wi th  the NIELSEN--Suss- 
KI~D form-factor,  this constant  is required to be - -  In u/20 in Hqq and 0 else- 
where (2 o is defined in [21). 

"q.= ~~~ln{~: w~ w=l! (4a) 

Subst i tu t ing (4a) into (la) one gets 

F~ 2~t~ sinO} ~q'' (6) 

One can now integrate over all possible values of 0, wi th  a normalization factor  
in the in tegrand (omitt ing the denominator  of (la)): 

F(q2)= f~ dO ~ N - - ~  { - ~ ) ( s i n  O)~q' " (7) 

I f w e  choose N(O) = sin 2 0  a n d a  = 1, we get the form-factor  of [2] w i thou t  
using any  cut-off. The choice of the form of N(O) is determined by the inter- 
action. In  [2] N(O) = sin 2 0 for charge-symmetric  interactions,  N(O) = sin1/20 
for electromagnetic interactions.  In the following Section it will be shown t h a t  
fur ther  restrictions appear ir invariance of the volume element under  real 
Moebius t ransformations is required. In order to  investigate the excitat ion 
form-factors the two-current  ampli tude (Fig. 3) will be also discussed. 

According to the first  rule, the contribution of the pl-source can be 
omitted.  The other contributions are as follows (the procedure is the same as 
before): 
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~',q~ 

Jq2 

W =r 

Fig .  3 

wq "q2 2P2 Wq,,ql 
w~q2 Wq~ ~ ql 

H mq~=O; Hq~q~= aq) ln Iwq~-wq~l , 

Hp2q2 =-- ap2qz ln'wqzl2;Hq2q2 ~~---aq'~ln {--~~ ]Wq~--Wq2l}, 

Hqxqz . . . .  ~rqlqz[ln]wq~ Wqz] ~-ln IWql W;2]], 

(8) 

The amFlitude is 

A =lO N(Ox) do1 l i  N(02) do2 flo d-~Uu"(2mq~+q:)lei~ -ei~176 

(q, + q~ 
�9 (sin o i )  e~ (si= o~) ~, o 

(9) 

(the new variable u = e -aq~ has been introduced).  The same ampli tude can be 
derived (see Appendix) by  the prescriptions of [1]. 

Now let us s tudy  the poles of (9) in the variable s. These poles oceur from 
the region u ~-~ 0 and their  residues are proport ional  to polynomials in ql " q2. 
The leading term describes the exchange of the pole on the leading t ra jec tory  
and for the s---  c = J (J  = 0; 1 ; . . . )  pole is: 

]{esjA=r dO1 r do2 (sinOl)~q~(sinO2)~q~{2__~)~(q~+q~). 
J N(O,) J N(02) 

1 
�9 (2ql q2) J (cos 01 cos 0 2 ) J -  

J! 

(10) 

By factorization of (10) one gets the excitat ion form-factors shown in [2]: 

f dO ( s i . O ) ~ r  1 F/,...gfiq 2) = (~ ~~O')J qp, l.-qt~J ~ V J !  " (11) 
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Properties of the two-current  ampli tude 

In this Section the proper t ies  of the ampli tude (9) are br ief ly  summarized.  

Invariance of  the intergrand under SI(2; R) transformation [3].  

Up to now a par t icular  mapping  of the (O; 2) sheet  into the upper  half- 
plane was used for the computa t ion  of the ampli tude.  In  the case of an a rb i t r a ry  
mapp ing  realizable by  

aeiZ-~- b 
W - -  - -  

ceiZ ~-d 

the  in tegrand  in (1) becomes (a = 1) 

[wl-- Wq,] 2p~q~ [wx-- Wqj2p ~q~ []Wq,- Wq2 ] W'q1 - Wq2 jlq'q~ [Wql- wq~,l q~ 

�9 ]Wqu--wq]q~ Iw2--wq~l 2p~q~ Iw2--Wq2] 2p'q' Iw2--wx[2mq~,~ 
(12) 

In  order  to  ensure invar iance of  the  ampl i tude  under  this change of the  con- 
f igura t ion  of  sources, t ha t  is under  the SL(2; R) t rans format ions  of  the uppe r  
half-plane we have to mul t ip ly  (12) by  a factor  E w2 - -  wl 12P~. Bu t  f rom (2) i t  
can be seen t ha t  this is precisely the factor  b y  which ( la)  differs f rom (1). 
Therefore  the  meaning of the  formal  manipula t ion  to  assure SL(2; R)-inva-  
riance is similar to leaving the  0-point  energy in the  case of harmonic  systems 
to ensure t h a t  the results are f ini te  (p~ = p~ was assumed).  

The  invariance of the vo lume element  

N Idwti l~r d 2 wk 
d V ~  : T I  2M 1 1  " (13) 

i=l [wi+a--wil k=l Iwk--w~l 2 

can be demons t ra t ed  by  direct  evaluat ion (N is the  n u m b er  of  particles on- 
mass-shell, M i s  the number  of  currents).  The  SL(2; R) being a t h ree -pa rame te r  
group we can f ix the positions of the two on-shell part icles and part ial ly t h a t  
of one of  the  currents  (] w31 = 1), then  one arrives at  the same volume ele- 
ment  as in (9) by  pu t t ing  N = 2, M = 2; N(O) = sin20. 

Roles on the q2 and q~ planes 

These poles arise f rom the  region where 01 and 02 are approx imate ly  0 of 
and can be exhibi ted by  in tegra t ing  by  par ts  at  0 i = 0;~; t hey  occur a t  

q~ = 1; - -  1 ; . . .  ; i f  we use N(O) =- sin20. The residue of  the two-fold pole at  
q~ = q2 = 1 coming from the region 01 = 02 = 0 of ~ is the dual ampli tude 

S~duu-~-2(1-u)-,-2; for N(O)--  si .20.  
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The contribution of the regions 01 = 02 ~ ~ and 01 = 0;~ can be identified 
with the parts of the amplitude which correspond to the (s;u) and (t; u) duality 

[11. 

Poles on the s-plane 

These poles arise from the u~-~0 region at s - - c  = J , J =  0; 1; . . . .  
appearing independently of the actual value of 0. 

Factorization in the s-channel 

This problem has been investigated in Section 2. The residue contains the 
product of the two form-factors a n d a  polynomial of qlq2: 

where 

A = ~" FJ(qŸ FJ(q~) 
j=l 31--($--c) (qlq2)J + daughter poles, 

FJ(q~) = (V2)J)" de 
N(e) 

- -  (sinO)q2 (cosO)J  [ ~ )  q' 
V F ( J + I )  

(14) 

Asymptotic behaviour in s 

The main contribution comes from the region u ~ 1. The asymptotics 
depends strongly on the actual value of 0. I f  the currents couple on the edge of 
the interaction region, one obtains the dual part of the amplitude. But from 
the region 01 = 02, different rom 0; ~, one would have a trajectory of a slope, 
which is hall  of that  appearing in the dual part  of the amplitude: 

lira Ae~=e~+so; ~ ~'~ du (2p2q2 JŸ qq ]i--e-2ieiqlq~- f ( u  ). (15) 

Here f (u )  denotes the u-dependent part of the integrand. The part of the 
amplitude which comes from the region 0 < 01 =~ 02 < n, has s-independent 
asymptotics. 

The amplitude does not remain dual if we perform an analytic con- 
tinuation from the mass-shell. I t  has inconvenient analytic properties in the 
t-channel due to the factor i W q l _  Wq 2 ]qlq2. (The position of the t-channel 
poles depends on the actual value of q~). This factor cannot be removed without 
fundamentally changing the physical content of the model. 

I t  can be concluded that  the amplitude has reasonable properties in the 
direct channel, but one is faced with having to exclude the qlq2-poles in the 
crossed channel. Nevertheless the generality of the method presented here may 
be of interest for further investigations. 
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Scaling in the analogue model 

NIELSEN and SUSSKIND imposed the scaling property on their model by  
considering the contributions of only those diagrams in which the two currents 
couple to the same exchanged quantum [2]. This assumption has an equivalent 
picture in the analogue model, which can be related directly to the parton 
model proposed by BJORKEST and PASCHOS [4]. If  we identify N-~(O) with the 
density of partons [2] (this factor earlier played the role of the weighting factor 
in the summation of the contributions of different configurations), the longi- 
tudinal momentum carried by  a parton at a given 0 is pN(O)/zr. The transver- 
sal part of the parton's momentum is neglected. Choosing 

(7 = (70�91 - -  Oql ) (16) 

(for the q-current only), we restrict the coupling of both currents to the same 
parton. 

The heat generation is given by 

Hqq = q2j o dO d2'(70 ($(O -- O1) : q2 ).(7o, 

Hpq -- 2p" N--(O1)q ~~ dO d2' (70 ~(0-- O1) = 2 pq ~(7o �88 
7r J o 

(17) 

From Eq. (la) the following amplitude can be evaluated: 

A = l i  dO ~qN(0)]~o~} N(O) f /  d). exp {-- [q2 + = 

=lo  ~o 1 x(o) a~ q2+ 2--P--~q N ( 0 ) ) ~ r  

(18) 

The imaginary part of (18) is 

f~ ( ] I f  ~ dO ~{x N(O)) (19) l~~r Im A ~-- N(O)aodO - ~ q2 ~_ 2p'qjr N (0) = o N(O) (7o 

and gives the scaling law of ImA. In order to have a definite scaling function, 
we put  N(O) = ~ sin 2 0 

1 1 -- v Im A , (20) ~o ~x3/~ V1---~ 
where 
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q2 
x :  - ;  v =  - p q .  

2r 

I t  is na tura l  to t ry  now to relate ampl i tude  (9) in the BJORKEN limit  [4] to the 
above picture.  The airo will be to  demons t ra te  t h a t  in the scaling l imit  the  main 
cont r ibut ion  to the ampl i tude  comes from the  01 : 02 region and t h a t  the  am- 
pl i tude shows the scaling proper ty .  We use (9) in the form given b y  Eq.  (A3) 
wi th  eut-off  sums like (A4). (A3) has only technical  advantages  over  (9); as we 
have  seen, the results given by  the  two ate identical.  For  the forward-scat ter ing  

(ql = --q2), we replace (A3) by  

dO1 dOz d X  X -s+c-t e ~ k 
A = N(O,) N(O2) 

coskOa cos kO2 X/z 2q z ._~ 
k k e 

cos-~k~~ 
k 

(21) 

Let  us consider first  the  s ~ ~  limit only (Regge limit). The  main cont r ibut ion  
u 

comes from the regiou X ~ 1 .  We in t roduce therefore  the new variable X = 1--  - 
s 

and expand X k in Newton  binomial ,  which yields 

: f dO 1 ~ dO= ~ du e.e-q=~'~ -(c~176 

2q_2 w cos kO~ coS k O ~ k  "l----='~s -- 

X e k 

X 

(22) 

Le t  us consider nex t  the  q2 --~c~z limit.  The  f i rs t  exponent  tends to 0 ir 01 =~ 02, 
so expanding cos k 02 abou t  02 = 01, re ta in ing only the  f irs t  nonvanish ing  

te rm,  we aequire:  

k0 
f d01 [" dO2 I du -q~~j'ksin~k01(01-02) ~ = e k 

f2q '  ~ cos t kO~--k cos k01 sin kO~(O2-OO]k �9 ~ . '  - -  -~ -  

�9 e u . e L k I = " - - i  I 

Using the definit ion 

k0 
_ qZ .~X' k ~in = kO, (O~-Ox) ~ 

lim e k (23) 
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for the �91 we have 

l~m j" ao~ 
N(Oi) 

f dO 2 f du ~~ 
- -  N(6)2) s Vq~~ksin2k--~91 ~ ( ~ 2 - - ~ 1 )  e u ~  

k (24) 

"exp{2q2~c~  I---~}t l=l 

Finally, we keep q2/s ~- ~c fixed. In this case only one term remains finite in the  
second exponent:  

l i m B A - -  1 f dO1 f 
~ V~ N~(O~) du • 

X ~ l k s i n  2kO 1 " exp 1 2 5 ~ ' c o s  2kO 1 u . 
k k 

Taking the u integration around u ~-~ 0: 

l i m B A _ l f d O i V  ~r 1 . ( 2 6 )  
s V~  N2(O1) ~'  k sin ~ kO~ 1--  25 ~Y cos a kO 1 

k k 

After summing the divergent sums the 01-integration for the imaginary par t  
can be made by means of the �91 

l imBs .~~ i lnA  l__~_~~f d ~  1 
~) ~ 2  k sŸ kol 

k 

( ko ) 
1 2 x , ~ c o s  2kO 1 . (27) 

k 

The above demonstration confirms the assumption about the important  region 
of 0-integration made in Eq. (16), but  the power of v multiplying ImA in the 
BJORKEN limit changes and its value is characteristic for the case of so-called 
anomalous dimensions, proposed in some field theoretical models of scaling. 
The physical basis for this change may be the different way of cutting-off the 
transversal momentum. In the naive analogue picture (Eq. (16)), there is no 
transversal part, but  (as it can be seen from Eq. (23)) in the amplitude (9) the 
contributing region is proportional to (V~)-1. 

I would like to thank DR. I. MONTVAY for bis helpful discussions and encouragement. 
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Appendix 

The two-cur ren t  ampl i tude  is der ived b y  applying the  prescript ion 
of [1]. 

The contr ibut ion  from a given conf igurat ion (Ox; O2) is 

Te,;e~ = _~~ <01T(ql; 01)l{nffk}> 
{,,~} s-- _.Y kn~- ({n~}lT(q2; O2)[0 >, (Al)  

where [ 0 > denotes the  ground state  of the meson, l{n k} > denotes an exci ted  
s ta te  in the occupat ion number  representa t ion,  and T(ql; 01) = e i q l  x(O~) is the 
scalar ve r tex-opera to r  with the second quant ized  four-posit ion X~(O;,~) given 
in [2]. I r  (Al)  is rewr i t ten  in the  coherent  s ta te  basis and 

To~e,, = . ~  e ~ ~ ~ - - -  ];k :ffk).q, __~ ~ n~ 1 
" k !  

X~ cos 2 kO, a /x=/~~=0"  -q~ --' k " + 3/~ -c cos ko~ 8(k).q. 1 
�9 e k k 

s X k n ~  c 
Ix;k 

Using the iden t i ty  

we get 

To,;o~ : f l  

1 k 
F d X X C - S - l +  2 kn~ __ 

JO s--  c--  Z kn~ 
k 

dX Z H  1-�91 

~~ COS z kO~ COS z kO~ -q, .~ ~- -q:~" 
k k 

�9 e e ~ 

1 [ 2 - -  COS2 k 0 1  

- -  2qlq2,~ cos k 1 01 cos kO 2 - ~ -  . 
k 

2 ~n k c - s - l + k n  k 
ql,  q'z~ COS kO 1 cos k02] ~ X ~. 

) 

q~.~ c~ 
k k 

(A2) 

(A3) 

As the exponent  in the f irs t  exponent ia l  is divergent ,  it  is necessary to in t roduce  
a cut-off. F rom [1] we have:  

ko _ _ c ~  2 kO ~-- 1 log 22~ 1 log sin O. (A4) 
"~' k 2 ~ 2 k 
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T h e  t h i r d  e x p o n e n t  c a n  be  e v a l u a t e d  w i t h o u t  a n y  c u t - o f f :  

X k 1 
~~, cos k 0 1  cos kO., - 
k " k 2 

[ l n l l  - X e  i(el+e.)[ +hxl  1 _ X e i ( ~ , -  e,)l]" ( A 5 )  

Substituting (A4) and (A5) into (A3) To,o .  ~ is obtained in its final form as: 

To ,  o. • d X X  ~ - s - ~  (sin 01)q~ (sin O2)q~ �9 
0 

�9 1--Xei(~176162 [1 Xei(~176 

(A6) 

The  a m p l i t u d e  comes from (A6) by integrating over  O 1 and  and  agrees with  
t h a t  g iven  b y  (9) fo r  a = 1: 

. I 2~0 ~q~+q~ . . . . . . . .  "-ji.~o.~S'o' .~.~.o'~ ~Idxxc_s_IIT ~sln.l,~.,sulO.)q~ " 

�9 ]1 X e i ( ~ 1 7 6  q,q. ] l - - X e i ( ~ 1 7 6  q.q. . 
(AT) 

The factorization in s is also clear from here, and the excitation form-factors 
ate the same as in [1]. 
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HPOCTOE P A C H P O C T P A H E H H E  AHAJIOFOBOITI MOJ2EJ-IIA 
HA CJ-IWqAITI CI(AJI~[PHblX HOTOKOB 

A. FIATKOIM 

Pe3mMe 

Ilpo~on>KeHHe ~yanbH0fi MHOFOqaCTHqH0fi aMHnHTynbt BHe 060JI0qKH Maccb~ 6b~no 
n0CTpOeH0 B aHaaOrOBOfi Mo~eJm cKaa~pHblX qaCTHIL OHO UHBapHaHTHO npn SL(2; R) rpynne,  
r B np~MOM Kana~e, a ra~poHtlqecKHfi qbop~qpymmn¡ ~aKTop noKa3biBaeT 
060CHOBaHIIOe aCHMnTOTHqecK0e noBe~eHHe. Bce :me evo aHaanTnqecKHe CB0nCTBa He ~BaflK)TC~a 
yJIOBYleTBOpHTeYlbHbIMH. ~]~yanbHa~ aMHJIHTy~a B cKa�91 npene~e HoKa3bIBaeT aBTOMaTH- 
qeCKHfi nepepbm B IIOIIepeqHOM MOMeHTe, KOT0pblfi HponopunoHaneH HepeHoca MOMeHTa (He 
Y[BJ]~[eTC.q KOHCTaHTOH). I-I09TOMy B MO/~eJIH BO3HHKaeT aHoMaYlbH0e H3MepeHHe. 
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