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A new statistical method, very similar to the one generalized to contain the Weizsiicker 
~nhomogenity correction modified by Gomb• is derived. With regard to the approximations 
Ÿ the summation over quantum states need not be approximated by integration but 
can be carried out exactly. In addition to the determination of the density from the variation 
principle more accurate methods are described, h is shown that from Plaskett's equation the 
density can only be determined within the classical ,,allowed zone" and the proper equation 
for the ,,forbidden zone" is given. 

1. Introduction 

For the in terpre ta t ion of the bound  state of systems consisting of 
particles with spin 1/2 the statistical method was first developed by  THOMAS [1] 
a n d  FERMI [2], who worked independent ly  of each other.  Later  on the sta- 

tistical method was improved  in two main fields. On the one hand  in order 

to calculate the energy due to the interact ion of particles more accurately,  
the theory  was generalized by DIRXC [3] to contain the exchange interact ion 

and by  GoMB�93 [4] to contain the correlation correction. These a t tempts ,  
however,  failed to eliminate the essential shortcomings of the densi ty  calculated 

on the basis of the Thomas-Fermi  method.  I t  is a common characterist ic  

o f  all the investigations aiming at the correction of these defects t ha t  they  
are essentially independent  of the interact ion of the particles. In  this connection 
I would like to refer to the papers of WEIZSACKER [5], GOMB�93 [6] and PLAS- 

XETT [7], which are the papers most closely related to the present one. I t  will 

be shown tha t  the Weizsiicker inhomogenei ty  correction modified by  GOMB�93 
and  the generalization of the Thomas-Fermi  method  suggested by  PLASKETT 
can be t raced back to a common basis fur ther  tha t  the method  described 
here can be regarded as an improved version of these methods.  

In  connection with the statistical energy expression obtained here ir is 
suitable to make the following prel iminary comment .  In  deriving the Thomas- 

Fermi  statist ical  energy expression with the aid of the Wentzel -Kramers-  
Bril louin (WKB) me thod  MARCH and PLASKI~TT [8] have shown tha t  the 

statistical method involves two essential approximat ions  as compared with the 
exac t  wave mechanical  calculation. On the one hand  it is based on the results 
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of the  W K B  me t hod  and on the  other  it a p p r o x i m a t e s  the  s u m m a t i o n  over  
the  q u a n t u m  sta tes  b y  in tegra t ion .  To correct  the  l a t t e r  error  MAl~CI~ and  
PLASKETT app ly  the  Euler -Maclaur in  formula  which  makes  a more  accu ra t e  
eva lua t ion  of the  s u m m a t i o n  possible. In  a fo rmer  p a p e r  [9] we have  shown 
t h a t  wi th  a cer tain a p p r o x i m a t i n g  assumpt ion  the s u m m a t i o n  over  the q u a n -  
t u m  s ta tes  can be carried out  exact ly .  In  the present  pape r  this a p p r o x i m a t i n g  
a s sumpt ion  is necessari ly invo lved  thus  the  exact  s u m m a t i o n  of the q u a n t u m  
sta tes  becomes possible. 

We begin our  inves t iga t ion  with wave  mechanica l  considerat ions.  S t a r t -  
ing f rom the Schr6dinger equa t ion  of n fermions we consider the  fo rm the  
one-par t ic le  s ta te  equat ions  t a k e  if one-part icle  wave  funct ions  not o r thogona l  
to each o ther  ate chosen. The  equat ions  thus ob ta ined  underlie the de r iva t ion  
of a new stat is t ical  model .  

We now disregard the  in te rac t ion  of par t ic les  and  restr ic t  ourselves  
to the  one-dimensional  p rob lem.  

2. Non-orthogonal one-particle wave function system 

where 

The  Schri~dinger equa t ion  of n part icles in the  poten t ia l  field V(x) is 

H(x~) qb = ~ q~, (I) 
i=1 

/~2 d 2 
H (x) - -  + V (x) (1 ')  

2 m dx 2 

is the  one-par t ic le  Hami l t on i an .  
A p a r t  f rom the normal iza t ion  

solution of this equa t ion  is 

' 0 X ~1 ( 1 )  z ( ~ 1 ) . .  ~~ (x,,) z (un) 

~o (xi) z -  ( o 0  �9 �9 �9 ~o (x~) z -  (~~) 

. ,  . . . . . . . . . . . . .  , . . . . . . . . . .  

~ =  
. ,  . . . . . . . .  , . . . . . . . . . . .  , . .  , 

~} (xi) x~ (~0 . . .  ~} (~~) z (~~) 
~~ (~,) z-  (ol ) - . .  ~} (x~) z- (~~) 
~~(xl) z~ (o l ) - . .  ~o (x~) z_~ (~,) 

if  the  one-par t ic le  wave  funct ions  sat isfy the equa t ion  

cons tant  a proper  a n t i s y m m e t r i c a l  

(2) 
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H ~v ~ (x) = ~v o (x) E .  

0 Here  ~v~ is the  row r e c t o r  fo rmed  f rom the  wave funct ions ~vi(x) 

~o = (~~, ~o . . . .  ~~), 

E is a diagonal  m a t r i x  

(3) 

(3') 

E = . (3") 

I "~:J 
The  spin var iable  has been  denoted b y  ~ and  the  spin funct ions corresponding 

to  the  two possible spin s ta tes  b y  Z+ and Z -  respect ively,  f and  g are defined 
in the  following m a n n e r  

f n - - q  n q - q  
2 2 

where  q = 0 if  n is even and  q = 1 if n is odd,  I f  n is even f = g and  the t e r m  
wi th  index  g in wave  funct ion  (2) should of course be omi t ted .  The spin funct ion 
of the  g- th  s t a te  m a y  be ei ther  Z+ or Z , th is  being indica ted  b y  the  index 

:~: of  the  spin funct ion,  
Subs t i tu t ing  the  wave  funct ion r in (2) into equa t ion  (1) the  energy  

e igenvalue  of the s y s t em  is 

g 

2 ~ ' E  . .= - -  ~ - -  q E e (4) 
i = 1  

The wave funct ions  ~v ~ are o r thogona l  as t hey  are the e igenfunct ions  
belonging to var ious  eigenvalues of the  same opera tor .  This is ind ica ted  b y  

the  index 0. 
B y  direct  subs t i tu t ion  we f ind t h a t  equa t ion  (1) can also be satisfied 

b y  such a wave  funct ion  

(]91 ( X l )  Z +  ( 0 " 1 )  " ' "  ~ 1  (Xn) Z~ ( f i n )  

( P I  ( X l )  Z -  ( ~  �9 �9 �9 ~ 1  (xn) Z- (fin) 

. ,  . . . . , .  . . . .  ~  , , . .  o ~ 1 7 6  

. . . . . .  , . . . . . . . . .  . . . . . . .  o , ,  

~~ (x~) zT ( O l ) . . .  ~j (~n) x ~ (,~.) 

~s (xi) z -  (,~1) �9 �9 �9 ~s (~,~) z -  (,~,~) 

% (,q) z~ ( O l ) . . .  % (x,)  z_+ (,~nl 

(5) 
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the  e l ement s  of  which  s t a t i s f y  the  e q u a t i o n  

H V (x) = V (x) E, (6} 
where  

V = ( V l ,  V2 . . . .  Vg) (6') 
and  

( ~11 " " " , ~ l g  

\ Eg I . . . ,  Egg 

(6") 

E q u a t i o n s  (3), (3'), (3")  co r re spond  to  t he  special  case of  e q u a t i o n s  

(6), (6'),  (6") where  the  m a t r i x  E is d iagona l , i ,  e. t h e  one-par t i c le  wave  f u n e t i o n s  
are o r t h o g o n a l  to  one a n o t h e r .  

The  e igenvalue  n o w  is 

g 

= 2 X7 Ei i _ q Ego. (4 ')  
i = l  

At  the  same t ime it is obv ious  t h a t  t he  w a v e  func t i ons  (2) and  (5) can  

differ b u t  b y  a p r o p o r t i o n a l i t y  fac tor .  F r o m  this  follows t h a t  b e t w e e n  t h e  

one-pa r t i c l e  wave  f u n c t i o n  s y s t e m s  V ~ and  V t h e  fo l lowing l inear  r e l a t i o n  
m u s t  exis t  

V ~ = v C ,  

g 

V ~ = " vkCki-  
k ~ l  

As the  c o m p o n e n t s  o f  b o t h  t he  vec tors  V ~ a n d  V are l inear ly  i n d e p e n d e n t ,  
C c a n n o t  be s ingular ,  i. e. t he r e  also exists the  inverse  t r a n s f o r m a t i o n  

V = V ~ C o, 

g 

Vi = ~ ~k'~ki" (7) 
k = l  

C o deno te s  the  rec iprocal  o f  t he  m a t r i x  C. 

I r  is su i table  to  t a k e  t he  wave  func t ions  V ~ a n d  V~ as no rma l i zed  to  1. 
F u r t h e r ,  as is known,  in t he  case of  a b o u n d  s ta te  t h e  wave  func t ions  V ~ a n d  

Vi can  be r ega rded  as real  w i t h o u t  res t r ic t ing  the  genera l i ty .  T h u s  

a n d  

j" V ~ V ~ dx  = ~gk 

t v~ dx = 1. 
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Now equation (7) immedia te ly  gives 

g ~  2 ~ C  o, : 1 kt 
k = l  

and 
c~i = ./ ~o (x') ~~ (x') dx'. 

Apply t ransformat ion (7) to equat ion (3):  

H ~ (x) ~- ~v (x) C E C 0. 

Comparing this equat ion with equation (6) we obtain : 

E =- C E C  o. 

Using this t ransformat ion  equation (6) takes the following form 

(H -4- Oi) ~i (x) = E t ~o i (x). (8)~ 

Oi m a y  appear in the concrete form of e. g. an integral operator  

�9 g 

o~ r 0,) = j " (E, - -  E~) V o (~') V o (~) Vi (x') a~' ,  
k = l  

or, what  is essential for our considerations below, it can also be wri t ten in 
the form 

1 
Oi ~~_ 2 m  (p2 _ :7~2) , (9) 

where p~ and :r~ are the quanti t ies defined by  equations 

_ ~2 d ~ ~~ (x) _ p~ (x) ~? (x)  
d x  2 

and 

(9') 

_ / ~ 2  d2 ~v~ (x) _ :t~ (x)  ~v~ (x)  ( 9 " )  
d x  2 

respectively. 
Substi tuting the form (9) of 0i into equat ion (8) after rearrengement  we 

m a y  cancel by  ~vi(x) and obtain for wave functions ~v0(x) the equat ion  (3). 
Thus if  0i is expressed in the form (9) equat ion (8) is a trivial t ransformat ion  
of (3). However, as we shall see later, with some fur ther  conditions on the 

2 2 wave functions q~k ( P i - Z ~ i ) / 2 m  can be expressed in a semi-classical 
approximation by  the wave funetions ~k, i. e. in such an approximation 
equations (8) and (9) can still be used for the determinat ion of a non- 
orthogonal one-particle wave function system ~v. 

ti  $ r 
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For  the following we shall need the expression of the  densi ty.  The 
dens i ty  of the i - th  part icle is by  defini t ion 

v (x) = J~t 4~ (xi . . . . .  x i - l ,  x, xi+~ . . . . .  xn) 12 d x ~ . . ,  d x i _ i d x , . . ,  dx ,  

.and, as ~ is ant isymrnetr ical ,  v(x) is the same for an y  part icle,  the to ta l  dens i ty  
thus  being 

Q (x) = n y ( x ) .  (10) 

In  the case of or thogonal  one-particle wave funct ions the in tegra t ion  
can  readi ly  be carried out  and the following resul t  is obta ined 

g 

Q (x) ---- 2 > "  q0 o2 (x) - -  q ~o~ (x). (10') 
i = l  

To the energy expression (4) and the densi ty  expressions (10') the follow- 
i n g  meaning  can be a t t r ibu ted .  We m a y  imagine the  particles of the sys tem 
to fill the  one-particle states character ized by  the wave funct ions ~v~ and the  
e n e r g y  eigenvalues E i and the  respective sums of the  densities and energies 
of the particles thus d is t r ibuted  give the densi ty  and  energy of the sys tem.  

I t  mus t  be emphasized tha t  this is only to i l lustrate  the s i tuat ion as in rea l i ty  
the densities of the individual  particles are ident ical  and according to (10) 
t h e y  ate equal to the n-th pa r t  of the to ta l  densi ty .  

Le t  us investigate the s i tuat ion from this s tandpoin t ,  in the case of 
non-or tbogonal  one-particle wave functions.  The expression (10') of the dens i ty  
remains unchanged if 

g g 

2 "~' ro0e . T i  ( x i  - -  q ~~2  ( x )  = 2 ~ '  ~~ ( x )  - -  q ~~ (x).  
i = 1  i = 1  

T h e n ,  provided tha t  n is even,  the t ransformat ion  the ma t r ix  of which is 
C or C o is orthogonal .  This means,  however,  t ha t  wave funct ions ~i also form 
an or thonormal ized  system of  funct ions which contradic ts  our  assumption.  

I f  n is odd,  bu t  sufficiently large, the wave-functions qi become quasi-orthogo- 
nal, which is also incompat ible  with the following. 

This problem can be solved if the wave funct ions sat isfy the following 
conditions 

a) the  wave functions ~vi should be everywhere  posit iv nodeless wave- 
func t ions .  

O 2 b) the  densities vi = ~~ should average the densities v ~ = q0i as well 
a s  possible. (Thus e. g. v I = v ~ Between the wave funct ions qi and ~v ~ the  
l inear t ransformat ion  (7) mus t  exist.  The ma t r ix  components  of C o should 
?b~ chosen so tha t ,  in addi t ion to satisfying condi t ion a),  the  values of the  
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integrals of vi and v ~ agree for the subsequent  intervals.  (These intervals  
are first of all de termined by  the nodes of wave-funct ion ~Ÿ I r  i < g limits 
for these intervals can also be designated between these nodes which are 
suitable te assume where the two neighbouring nodes are far f rom each ether.)  

Thus the fnnct ion 
g 

N (x) = 2 .Ÿ - -  q~,g (10") 
i - -1  

averages the densi ty  ~ well and in the following can also be regarded  a s a  
densi ty.  Thus,  with regard  to equa t ien  (8) the  visualizing idea t h a t  the energy 
and the densi ty  of one-part icle states can be regarded as the  energy and 
densi ty,  respect ively of the individual  particles can be main ta ined  in the 
case of the non-or thogonal  one-part icle wave funct ion system ~. 

The necessity of condit ion a)  will be shown below. 

3. Semiclassical approximation 

Consider what  the semi-classical analogue of the expression (9) of Oi is. 
Applying the first approximat ion  of the W K B  method  p~/2m is the  kinetic 
energy of the part icle in the i- th s tate  thus  

where 

~~(E~) 
2 S p i d x  = (i - 1 /2 /h ,  (111 

x~(Ei) 

pi = [2 m ( E i  - V(x))]l~"- (1i') 

and x i (E l  ) and x2(Ei ) are the classical tu rn ing  po in t sJ  

In t roduce  the no ta t ion  

Pi  = (Pi "3l- Pi+I)/2" (12) 

Pi can be regarded as the max imum m o m e n t u m  of the particles occupying 
the  qua n tum states of  energy lower than  t h a t  of the  (i -r 1)-th q u a n t u m  
state.  The densi ty  of  these particles be denoted  b y  

i 

Ni = 2 ~,7 vk. (12') 
k = l  

1 Here Ei means the eigenvalue obtained in the WKB approximation, whereas in 
the preceding chapter Ei detoned the exact eigenvalue. In the following the exact 
eigenvalue as well as the eigenvalues obtained in the various approximations will be 
detoned by El. In the case where this m~ght lead misunderstanding special reference will 
be made. 

14 Acta Physica IX/1--2  



210 P. SZ• 

A s a  first approximation of the W K B  method  the well-known statist ical  
relation can be derived : 

h 
P~ = ~ Ni,  (~3) 

We note tha t  in a former paper [9] this relation was improved to 
distinguish between systems consisting of an even or odd number  of particles. 
Thus for the g-th state : 

p = - - h - - N .  (13') 
2 n  

Here the  notat ion P g  = P has been introduced. I f  n is even (13') goes over 
into. (13). (Then N = Ng. )  

vi can be writ ten in the form 

1 2 (Pi - -  Pi - l )  ~i = ~ ( N i  - -  N i - l )  : -h- 

By relation (11') 

(14) 

2 P i §  - -  /}2--1 = 2 m (Ei+ 1 - -  Ei_ l ) ,  

(i > 2) 

based on which and using (12), (13) and (14) we obtain 

where 

'~i ~ - -  
m (El+ 1 - -  Ei_I) 1 

h Pi 

(i ~ 2) (14') 

PŸ = ( P i + l  "Av Pi-x)~ 2 .  

With this,  according to equat ion (9") taking the condition a)  at the end 
of the previous chapter into account 

]~2 d 2 n ' l ] 2  

2 m 2 m dx  2 

(i ~ 2) 

which in the region V <  E i 

O i =  1 2 •  )i2 pŸ237 1/2 
2 m P i  ~ 2 m  dx 2 ' 

(i > 2) 

0 1 ~ 0  , as p2 _~~2. 

(15) 



ON THE STATISTICAL TREATMENT OF THE FERMION GAS I 21 ] 

To evaluate this let us consider the following. 
MILNE [10] suggests the following way to determine the eigenvalues 

2 ~ P" dx = i h ,  (16) 
o o  

where PŸ satisfies the following second order differential equat ion 

1 /~2 d e , pi-x,,2 
___ PŸ _ PŸ + V (x) = E i. (16') 
2 m 2 m dx  2 

The similarity between the equations of Milne's method and those of 
the W K B  method is striking, an essential differenee, however, is t ha t  MILrr 
method is exaet (Ei is the exaet eigenvalue). Comparing equat ion (16') with 
(11') we see tha t  in the W K B  approximation,  in whieh case the eigenvalues 
Ei in the equations (16') and (11') agree, p, and Pi' must  be related in the 
redion V ~ E i in the following manner  

1 2 = - 1--pŸ 2 t t2-PŸ237 (17) 
2 m  Pi 2 m --  2 m dx  2 

Assumption (16) makes very plausible tha t  the function PŸ and the 
momen tum Pi in (13) m a y  be taken as approximate ly  equal. This relation 
has been shown by Plasket t  [7]. 

Assuming fur ther  tba t  

2 �9 
P i '  ,2 d2PŸ -1/~ __ pi1,.2 d2pi -1/2 pi,1.2 d P i - l "2 ,  (17') 

dx 2 dx  2 dx  2 

we obtain from (17) and (15) tha t  in the region V < Ei 

1 h 2 
0 i = ~ m P ~  = 3 2 m  N2 ,  

(i ~ 2) 

0 1 ~ 0  

(15') 

In the region V >  Ei Oi - -  0 as here the wave functions ~v ~ and ~vi can 
be t aken  as approximate ly  equal by  eonditions b) of the previous chapter,  
sinee in this region the  funet ion ~o ~ has no node. 

By  subst i tut ing this form of OŸ into equation (8) we obtain a system 
of equations from whieh the wave-funetions qi and the eigenvalues Ei can 
ae tual ly  be determined : 



212 P, SZ• 

- -  Ir2 1 d 2 v ~ / ~ - / I ~ p ~ + V = E i , ( V < E i ) ,  (8')  
2 m v~l~ dx ~ 2 m 

]J 1 d z r~q 
§ V = E,,  (V > E,),  (8") 

2 mv}/  2 dx  2 

(i 2 2) 

- -  ]i2 1 d2 v~q -? V E 1 
2 m vlJ2 dx ~ 

For the following the relation of equation (8') to PLASKETT's equation 
is essential. Substituting in equation (8') the approximation (14') of v i valid 
for the region V <  E i and using (17') 

ir2 NI,'~ d~ Ni~;~ 1 

~ 2 m 
+ 2~mP~ A- V Ei,  (V  < Ei) .  (16") 

dx 2 

(i ~~ 2) 

I-Iowever, in the region V> El the assumption can be a]]owed that 
v iis proportiona] to Ni as, if V �87 Ei vi is practica]ly identica] with N i. Thus 
according to equation (8"), 

iŸ Ni-1'2 d ~ N~j2 - -  - -  + V = Ej,  (V > E~). ( 16 '" )  
2 m dx  2 

Plaskett 's  equation is obtained by replacing P'i in equation (16') by  
Pi in (13)..The equation thus obtained agrees with (16") it does not, however, 
involve the restriction that the equation is valid only for the region V < Ei. 
In deriving form (15') of 0i Plaskett 's  equation has been used and the first 
approximation of the WKB method has been applied. Thus one term of  
equation (8') also contains these approximations. Equation (8") is free of  
them as ir can be regarded as the direct consequence of the fact that  in the 
region V > Ei the wave functions ~o ~ and qi are approximately equal. Equation 
(16"), which is the approximation of equation (8') is identical with Plaskett 's  
while equation (16'") is, according to above, certainly more accurate in the 
region V > Ei than Plaskett 's equation. We may thus conclude that equations 
(16") and (16'") are the improved versions of Plaskett 's equation. 

BALLINGER and MARCH [11] investigated the solution of Plasket t ' s  
equation in the case of ah oscillator potential and found that the solution 
is not unique. According to the above, however, we must proceed in such 
a manner that  the solution of equation (16") obtained in the region V < E~ 
must be f i t ted to the solution of equation (16'") obtained in the region 
V >  Ei. The fitting is a new condition for the solution of equation (16") 
whereby the solution is likely to become unique. 
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The question arises whether an equation could be found from which 
the density could be determined for the whole space. Assume that  in the region 
V < Ei the densitiy is large as compared to the variation of the density. 
Then we have 

d 2 Niq d 2 -',N:-I/2 -- " ' t  __ N/ lq  _ _ N i  1 q  

dx 2 dx 2 

n i  ~:] uation (16") can be written in the form 

lz2 d 2 Ni:/2 1_ 1~2 d ~ p[:/~ 
_ _  _ _  N?lq ______ ._]_ p2 __ __ p~/2 _ + V = E i . 

2 m dx o" 2 m  m dx 2 

Applying (17) and (17') 

1 P~ _ ]~2p~/2 d 2 p : 1 2  _ 1 ]~2 d 2,,:-~j2 
-2m m d x  2 2 p2 . . . .  x/2 rz 2 m r~  dx 2 , 

further, by generalizing relation (17) to some extent 

Thus 

1 ]~2 

2 m  p 2 -  ~mmP~ ~'2 d2p~ :~1/2- 1 p 2 1 .  
dx  2 2 m 

2 m ]~~ N?lq d2 N~:2dx 2 ~- 2 m--1 p2i_~ + V ~ Ei" (18) 

If  i = 1 this equation goes over into the exact wave mechanical equation, 
further, if V >  Ei into equation (16"), since, in this case, P~ l / 2m can be 
neglected. Thus equation (18) can be regarded as valid for all states and the 
whole space. 

4. The statistical energy expression 

Starting from equation (18) a further approximation makes it possible 
to express the energy of the system with the aid of the particle density of 
the system. The energy value Ei is obtained by multiplying equations (18) 
by Ni/2i  and by integrating over the whole space. The total energy is obtained 
by summation according to (4) 

- -  i d x  -4-  dx N i V dx  - -  
= ~ ~ j  z dx  2 32 m i  ~-1 , 

i = 1  

~, t ]~2 /" ~/2]V1q h 2 +fNgVdx . 
2gt - ~ J N ~ ' ~ : ~ ~  ~ dx+32mfNil~dx 1 
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In t roduce  the  approx imat ion  tha t  Ni =--2 i N. Then  the energy expres-  
n 

sion is 
= �91 '-~ ~'~K -~ "~~'P (19) 

where 

~ W -  - -  I N 1/2 - dx = 
2mi  dx 2 8 m J N  dx  I dx, 

h 2 1 [ ( g - -  1 ) g ( 2 g - -  1) I r  
~ K - - 8 m n  3 3 . . . . . .  q ( g - 1 ) 2  N 3dx, 

~~ = S V Ndx .  

Obvious lyCw is just  the  energy which is general ly  called the Weizsiicker 
inhomogene i ty  correction. I t  is suitable to compare  the kinetic energy ~K 
with the  Fermi  zero point  kinet ic  energy.  The expression for the  zero point  
kinetic energy has been improved  upon in a previous  paper  [9] in such a 
manner  t h a t  - -  under  condi t ion similar to those of the present  paper  - -  
instead of integrat ing over the  m o m e n t u m  space we summed  over  the s ta tes  
exac t ly  

~o = 8 m n 3 q (g --  1/2)2 N 3dx. 

Comparing the expressions of �91176 K and r0  we have 

E K --~- t~"  O 

w h e r e  

2 ( g - - l )  g (2g- -  1) - -  6 q ( g - -  1)2 
t =  

g (4 g2 --  1) - -  6 q ( g - -  1/2) 2 

or in a different manner  

n - - 2  
t - -  if n is even~ 

n + l  

(n - -  1) [(n - -1)  2 -4- 2] 
t . . . .  if  n is odd. 

n [n 2 + 2] 

I f  the  number  of particles is 1 or 2, ~K = 0 thus  here the to ta l  kinetic 
energy is represented by  the  Weizsiicker correct ion only  and the relat ions 
go over  into the exact  wave mechanical  expressions. 

The fact  t ha t  in the satist ical  t heo ry  the zero point  kinetic energy should 
be decreased when the Weizsiicker correction is incorpora ted  in the t h eo ry  
was f irs t  po in ted  out by  GOMB�93 [6]. His me thod  was confi rmed by  his cal- 
culat ions for atoms. 
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5.  D e t e r m i n a t i o n  o f  t h e  d e n s i t y  

The statist ical  equat ion determining the densi ty  can be obta ined  by  
searching for the dens i ty  for which ~ is a minimum.  E lemen ta ry  calculat ion 
yields 

]~2 1 d 2 N1.2 1 1 
_ - -  - ~-  - -  - -  [ (g  - - 1 )  g (2 g - - 1 )  - -  3 q (g - - 1 ) z ]  p2  + v = v 0 

2m N 1/2 dx 2 2 m n g 2 
(19') 

where V 0 is the Lagrange mult ipl icator .  
The de terminat ion  of the densi ty  is more accurate if the following 

procedure is applied. Let  us write equat ions (16") and (16"') for the  g- th  state.  
Take into account  t h a t  Pz ---- P and ir n is even N ---- N and if  n is odd, we 

m a y  use the approximat ion  N e = 2 g  N, 
n 

]q N lI2d2 N x'2-4---1-p2-{-V----E a, ( V < E e ) ,  (20) 
2 m dx 2 2 m 

N-1'2d2 N1/2 -~ - V----Ea, ( V > E g ) .  (20') 
2 m dx 2 

Ins tead of using equat ion (20) of P lasket t  we m ay  also proceed in the 
following manner .  Equa t ion  (8') for the g- th  s tate  is 

lA 1 d 2v~, 2 +  1 p2 § V ~ _ E g ,  ( V < E z ) .  (21) 
2 m v~/2 dx 2 2 m 

Calculate the densi ty  from equat ion (19') for the case when the n u m b er  of 
particles of the system is n and n --  1 resp. The difference between these 
two will yield approx imate ly  vg. Knowing vg and using (13') from equat ion  
(21) we m a y  express N 

N=~--"he 2m E a -  V+ 2mv~'2 dx2J~ (V<Ea)" (21') 

Equat ion  (20) and (21') are both  approximat ions  of equat ion (21). 
In eonelusion it should be ment ioned tha t  for a large n u m b er  of partieles 

we ma y  obtain from (21) a part ial  differential  equat ion for N a s  the eont inuous 
funet ion of the number  of partieles. Regarding N a s  the derivable funet ion 

"0 N dk O N  [ 
of the number  of particles,  then v a = ] ‰ k and if n is large v a ---~ - -  which 

On ,J 
r t - - 1  

subst i tu ted into equat ion (21) yields tha t  
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~2 ON OaN 

4 m  On Ox20n 
g~ N ~ + 

+ 8mm !O~S¡ + 8 m n~ 

l0 NI2 /0_Ni2 ' -]- V ~ _  = E x ( V  < Eg). 
t "On] lO ni 

Similarly, starting form equation (8") assumed for the g-th state 

]~~ ON O3 N + + 

4 m  OnOx20n 8mmioxOnJ ~On] 
=F~,I~NI ~, 

~Onl 

(V > Eg) . 

T h a n k s  are due  to  

th is  work .  
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O CTATHCTHqECKOIYl T P A K T O B K E  ~ E P M H O H - F A 3 A  

H. C EH~A.I'IYILIH 

P e 3 l o M e  

BbIB0,AHTCfl HOBa~ CTaTHCTHqeCKafl MOAe.llb, ~oTopa:a a £ Mepe HORO‰ BH,~OH3- 
MeHeHH0~ I"oM6ameM MOAe.rIH Bafil.lceKKepa, .~0H0.nHeHH0~ lI0rlpaBK0~ Ha He0~H0p0,~H0CTb- 
13pH BBe,~eHHblX IJpH6.~H>KeHHflX cyMMHp0BaHHe 130 KBaHTOBbIM C0CT0flHH~IM He Ha;lo amlp0- 
KCHMMpOBaTb HHTeFpHp0BaHHeM~ a MOM(HO IIp0H3BeCTH T0qH0. l-(poMe or[peRe.~eHVlfl II.IIOTHOCTH 
H3 BapHall~HOHHOF0 npHHI/tlIIa~ IIOKa3aHbI H 60.nee T0t{HMe MeT0,~bI pacqeTa. ,~0Ka3blBaeTC~, 
qT0 II...q0TH0CTb H3 ypaBHeHHfi l-[~acKeTa MOMZIt0 0tlpe,~e.~HTb TOJIbK0 B paMKax ((KJIaCC•qeCKH 
~0FIy'CTHMOH O‰ H BbIB0~HTClI:I COOTBeTCTByIOUlHe ypaBHeHHe Ha t(3anpe~eHHylO 06.~aCTb)~. 


