ON THE STATISTICAL TREATMENT OF THE
FERMION GAS I

By

P. SzipraLusy
PHYSICAL INSTITUTE OF THE UNIVERSITY FOR TECHNICAL SCIENCES, BUDAPEST

(Presented by P. Gombds. — Received: I. 5. 1958)

A new statistical method, very similar to the one generalized to contain the Weizséicker
inhomogenity correction modified by Gombds, is derived. With regard to the approximations
introduced the summation over quantum states need not be approximated by integration but
can be carried out exactly. In addition to the determination of the density from the variation
principle more accurate methods are described. It is shown that from Plaskett’s equation the
density can only be determined within the classical ,,allowed zone” and the proper equation
for the ,,forbidden zone™ is given.

1. Introduction

For the interpretation of the bound state of systems consisting of
particles with spin 1/2 the statistical method was first developed by Tromas {1}
and Ferwmi [2], who worked independently of each other. Later on the sta-
tistical method was improved in two main fields. On the one hand in order
to calculate the energy due to the interaction of particles more accurately,
the theory was generalized by Dirac [3] to contain the exchange interaction
and by GomBAs [4] to contain the correlation correction. These attempts,
however, failed to eliminate the essential shortcomings of the density calculated
on the basis of the Thomas-Fermi method. It is a common characteristic
of all the investigations aiming at the correction of these defects that they
are essentially independent of the interaction of the particles. In this connection
1 would like to refer to the papers of WEIZs AckER [5], GomBAs [6] and PLas-
KETT [7], which are the papers most closely related to the present one. It will
be shown that the Weizsiicker inhomogeneity correction modified by GomB4s
and the generalization of the Thomas-Fermi method suggested by PrLASKETT
can be traced back to a common basis further that the method described
here can be regarded as an improved version of these methods.

In connection with the statistical energy expression obtained here it is
suitable to make the following preliminary comment. In deriving the Thomas-
Fermi statistical energy expression with the aid of the Wentzel-Kramers-
Brillouin (WKB) method MarcH and PraAskerr [8] have shown that the
statistical method involves two essential approximations as compared with the
exact wave mechanical calculation. On the one hand it is based on the results
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of the WKB method and on the other it approximates the summation over
the quantum states by integration. To correct the latter error MARCH and
PLASKETT apply the Euler-Maclaurin formula which makes a more accurate
evaluation of the summation possible. In a former paper [9] we have shown
that with a certain approximating assumption the summation over the quan-
tum states can be carried out exactly. In the present paper this approximating
assumption is necessarily involved thus the exact summation of the quantum
states becomes possible.

We begin our investigation with wave mechanical considerations. Start-
ing from the Schriédinger equation of n fermions we consider the form the
one-particle state equations take if one-particle wave functions not orthogonal
to each other are chosen. The equations thus obtained underlie the derivation
of a new statistical model.

We now disregard the interaction of particles and restrict ourselves
to the one-dimensional problem.

2. Non-orthogonal one-particle wave function system

The Schrodinger equation of n particles in the potential field F{(x) is

S HE) =0, m
i=1
where
R d?
H = — 4V 1’
@) == VW 1)

is the one-particle Hamiltonian.
Apart from the normalization constant a proper antisymmetrical
solution of this equation is

Y (x) x.(01) - A (%) 2. (0,)
(%) 2 (01) - - - 9} (x) % (97)

e SN R I (2)
@Y (%) 2. (01) - -« ¢} (%) 1. (00)
P (x) 2 (01) -+ ) (5) 2= (0)
B9(x0) 72 (0) -+ 93 (%) 2. (0,) |

if the one-particle wave functions satisfy the equation
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He’(x) = ¢°(2) E. )
Here ¢°(x) is the row vector formed from the wave functions g;(x)
990 = (Q(]}.,(pg, - (pg), (3;)
E is a diagonal matrix
E,
E, ]
E _ : i . (3//)
\ E,)

The spin variable has been denoted by ¢ and the spin functions corresponding
to the two possible spin states by y. and y_ respectively. f and g are defined
in the following manner

where ¢ = 0 if nis even and ¢ = 1 if nis odd. If nis even f = g and the term
with index g in wave function (2) should of course be omitted. The spin function
of the g-th state may be either ¥y, or y_, this being indicated by the index
4+ of the spin function.

Substituting the wave function @ in (2) into equation (1) the energy
eigenvalue of the system is

8
&=22FE —qE,. (4)

i=1

The wave functions ¢ are orthogonal as they are the eigenfunctions
belonging to various eigenvalues of the same operator. This is indicated by
the index 0.

By direct substitution we find that equation (1) can also be satisfied
by such a wave function

@y (%) 2 (09) - -« @1(x) 2. (0n)
@1 (%) % (09) -« - @1 (%) 2 ()

..........................

D= | e . (5)
@ (%) 2. (01) - - @5 (%) 2 (92)
@r (%) 2- (01) - - - @7 (%) 2 (00)
g (1) 22 (01) - - - P (%) 2 (01)
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the elements of which statisfy the equation

Ho(x)=¢(x)€, (6)
where
¢ = ((Plv Pa-ves (pg) (61)
and
€1 --r €y
E=1 ......... . (6")
[P

Equations (3), (3'), (3”") correspond to the special case of equations
(6), (6"), (6’') where the matrix € is diagonal,i. e. the one-particle wave functions
are orthogonal to one another.

The eigenvalue now is

£
gzzzeii—qegg. (4')

At the same time it is obvious that the wave functions (2) and (5) can
differ but by a proportionality factor. From this follows that between the
one-particle wave function systems ¢° and ¢ the following linear relation
must exist

o

= - Cp.

k=1

As the components of both the vectors ¢° and ¢ are linearly independent,
C cannot be singular, i. e. there also exists the inverse transformation

@ = ¢°CY,

g
@ = _/\,“P?f ;. (7)

k=1

C? denotes the reciprocal of the matrix C.

It is suitable to take the wave functions (p? and ¢; as normalized to 1.
Further, as is known, in the case of a bound state the wave functions (p? and
@; can be regarded as real without restricting the generality. Thus

[ oo dx = 6,

and
{otdx =1.
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Now equation (7) immediately gives

g‘ 02
Seg=1
k=1
and

CY = s P (%) @; (") da’.
Apply transformation (7) to equation (3):
Ho(x) =¢(x)CECO.
Comparing this equation with equation (6) we obtain :
€ =CEC".
Using this transformation equation (6) takes the following form

(H+0,)9;(x) = E; ¢, (). (8

0; may appear in the concrete form of e. g. an integral operator

Pe™

0.9:(2) = |

k

(E; — E;) ¢k («') 92 (%) 9, (x7) d',

1

or, what is essential for our considerations below, it can also be writien in
the form
1
— 2 2
0i_2mn_z (pF—=% . )

where p* and 7; are the quantities defined by equations

d2¢? (x ,
~ B ey g0 )
dx?
and
d2o;
dx?
respectively.

Substituting the form (9) of O, into equation (8) after rearrengement we
may cancel by ¢;(x) and obtain for wave functions ¢9(x) the equation (3).
Thus if O; is expressed in the form (9) equation (8) is a trivial transformation
of (3). However, as we shall see later, with some further conditions on the
wave functions @, (pi—7:)/2m can be expressed in a semi-classical
approximation by the wave functions ¢, i. e. in such an approximation
equations (8) and (9) can still be used for the determination of a non-
orthogonal one-particle wave function system ¢.

® Kk ¥
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For the following we shall need the expression of the density. The
.density of the i-th particle is by definition

) = 1Py e on Xy X i gy -+ o %) Py o dy oy dxyy . d,

[|®2dx, ... dux,

v{x

.and, as @ is antisymmetrical, ¥(x) is the same for any particle, the total density

thus being
o0(x)=nv(x). (10)

In the case of orthogonal one-particle wave functions the integration
can readily be carried out and the following result is obtained

e (x) = 2‘_‘:.; oY (x) — 998" (%). (10

To the energy expression (4) and the density expressions (10°) the follow-
‘ing meaning can be attributed. We may imagine the particles of the system
to fill the one-particle states characterized by the wave functions ¢; and the
-energy eigenvalues E; and the respective sums of the densities and energies
of the particles thus distributed give the density and energy of the system.
It must be emphasized that this is only to illustrate the situation as in reality
the densities of the individual particles are identical and according to (10)
they are equal to the n-th part of the total density.

Let us investigate the sitnation from this standpoint, in the case of
non-orthogonal one-particle wave functions. The expression (10') of the density

remains unchanged if

g 3
2 200 (x) —q9p' () =2 29t (%) — g5 (x)-
‘Then, provided that n is even, the transformation the matrix of which is
-C or C° is orthogonal. This means, however, that wave functions g; also form
an orthonormalized system of functions which contradicts our assumption.
'If n is odd, but sufficiently large, the wave-functions ¢; become quasi-orthogo-
nal, which is also incompatible with the following.

This problem can be solved if the wave functions satisfy the following
conditions

a) the wave functions ¢; should be everywhere positiv nodeless wave-
functions.

b) the densities »; = ¢: should average the densities v} — (p(,-’z as well
.as possible. (Thus e. g. v, = v{) Between the wave functions @; and @] the
linear transformation (7) must exist. The matrix components of C° should
'be chosen so that, in addition to satisfying condition a), the values of the
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integrals of »; and »{ agree for the subsequent intervals. (These intervals
are first of all determined by the nodes of wave-function ¢;. If i < g limits
for these intervals can also be designated between these nodes which are
suitable te assume where the two neighbouring nodes are far from each cther.)

Thus the functien

8
N(x)=2 2:11,» —q, (107

averages the densiiy g well and in the fellewing can also be regarded as a
density. Thus, with regard to equation (8) the visualizing idea that the energy
and the density of one-particle states can be regarded as the energy and
density, respectively of the individual particles can be maintained in the
case of the non-orthegonal one-particle wave function system g.

The necessity of condition a) will be shown below.

3. Semiclassical approximation
Consider what the semi-classical analogue of the expression (9) of O, is.

Applying the first approximation of the WKB method pi/2m is the kinetic
energy of the particle in the i-th state thus

x5(Ey)
2Sp,-dx: @C—12)h, (11)
x,(Eq)
where
pr= [2 m(Ei — V(x))]12 (11")

and x,(E;) and x,(E;) are the classical turning points.!

Introduce the notation

P; = (p; + pi+1)/2. (12)

P; can be regarded as the maximum momentum of the particles occupying
the quantum states of energy lower than that of the (i 4 1)-th quantum
state. The density of these particles be denoted by

N=2 3. (12')
k=1

1 Here E; means the eigenvalue obtained in the WKB approximation, whereas in
the preceding chapter E; detoned the exact eigenvalue. In the following the exact
eigenvalue as well as the eigenvalues obtained in the various approximations will be
detoned by E;. In the case where this might lead misunderstanding special reference will
be made.

4 Acta Physica IX/1—2
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As a first approximation of the WKB method the well-known statistical
relation can be derived :

i
P,="N,. (13

4
We note that in a former paper [9] this relation was improved to
distinguish between systems comnsisting of an even or odd number of particles.

Thus for the g-th state:

p_"_n. (13")
2 n

Here the notation Pg = P has been introduced. If n is even (13') goes over
into (13). (Then N = Ng.)

v; can be written in the form
1 2
vp=—(N; = N;—y) = - (P; — P;_)) (14)
2 h
By relation (11)

Piri—pi-i=2m (Ei+y— Ei—y),
(1=2)

based on which and using (12), (13) and (14) we obtain

g = P Ein— Einy) 1

h P
(i=2) (14")
where

Pi= (pi+1 + pi-1)/2.

With this, according to equation (9’) taking the condition a) at the end
of the previous chapter into account

2 2 '1/2
iyz?: _ji_ {1/2d_pl~,
2m 2m dx?

(i=2)

which in the region V < E;

" 9m 2m dx?
(i =>2) (15)
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To evaluate this let us consider the following.
MiLNE [10] suggests the following way to determine the eigenvalues

2({Pdx=ih, 16)

where P; satisfies the following second order differential equation

A2 d: p;-12
———P 2 _— Pz 4 V(x 16’
2m 2m dx? +V ()= (167)

The similarity between the equations of Milne’s method and those of
the WKB method is striking, an essential difference, however, is that MILNE’s
method is exact (E; is the exact eigenvalue). Comparing equation (16') with
(11') we see that in the WKB approximation, in which case the eigenvalues
E; in the equations (16°) and (11°) agree, p, and P, must be related in the
redion V' < E;in the following manner

2 p—1.2
ﬁl_p2 — AE—P? — _ﬁ__P’l/Zd Pl . (17)
2m 2m 2m dx?

Assumption (16) makes very plausible that the function P; and the
momentum P; in (13) may be taken as approximately equal. This relation
has been shown by Plaskett [7].

Assuming further that

d2P;- d2p,~1/2 d2 —1 2
p1/2 =pl2 St = . ___’ 17
g P T TR (a7

we obtain from (17) and (15) that in the region V < E;

(i=2) (15)

In the region V' > E; 0; == 0 as here the wave functions ¢¢ and ¢; can
be taken as approximately equal by conditions b) of the previous chapter,
since in this region the function ¢ has no node.

By substituting this form of O; into equation (8) we obtain a system
of equations from which the wave-functions ¢; and the eigenvalues E; can
actually be determined :
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A2 1 42 yliz 1
 2me ; +*P2 V:Eiv V E,-, 87
2moli2 dx? om N (V <E) ®)
A% 1 d2yl2 ”
Toman g T Ee U ED, #")
(i=2)
2 2 3,1/2
LY

2m iz dx?

For the following the relation of equation (8') to PLASKETT’s equation
is essential. Substituting in equation (8') the approximation (14') of »; valid
for the region V < E; and using (17')

2 2 —1;2
B oNeENDE Ll ey B w<E). (16"

2m dx? 2m
(=2

However, in the region V' > E; the assumption can be allowed that
v; is proportional to N; as, if V > E; »; is practically identical with N;. Thus
according to equation (8"),
2 2 V1,2
— iergz 42 VY2 +V =E,(V>E). (16"}
2m dx?

Plaskett’s equation is obtained by replacing P’ in equation (16') by
P; in (13).-The equation thus obtained agrees with (16”) it does not, however,
involve the restriction that the equation is valid only for the region V < F,;.
In deriving form (15’) of O; Plaskett’s equation has been used and the first
approximation of the WKB method has been applied. Thus one term of
equation (8') also contains these approximations. Equation (8"') is free of
them as it can be regarded as the direct consequence of the fact that in the
region ¥ > E; the wave functions ¢; and ¢; are approximately equal. Equation
(16"), which is the approximation of equation (8') is identical with Plaskett’s
while equation (16”') is, according to above, certainly more accurate in the
region V' > E;than Plaskett’s equation. We may thus conclude that equations
(16"") and (16'"’) are the improved versions of Plaskett’s equation.

BarringEr and MarcH [11] investigated the solution of Plaskett’s
equation in the case of an oscillator potential and found that the solution
is not unique. According to the above, however, we must proceed in such
a manner that the solution of equation (16'') obtained in the region V < E;
must be fitted to the solution of equation (16’"') obtained in the region
V> E;. The fitting is a new condition for the solution of equation (16")
whereby the solution is likely to become unique.
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The question arises whether an equation could be found from which
the density could be determined for the whole space. Assume that in the region
V < E; the densitiy is large as compared to the variation of the density.
Then we have

N d2 N1z — d2 N1z
dx? dx?

nl 2y uation (16”) can be written in the form

2 V.1/2 12
P N ENEE L py Bpp BPR g
2m dx? 2m m dx?
Applying (17) and (17')
1 P2 A2 A prye 4> P12 _ ~1—p2 B ﬁp,l/zﬁl’j—l’z’
2m m dx? 2m° ' 2m ' da?

further, by generalizing relation (17) to some extent

1, A%, dPpil® 1
Lol - P
2sz 2mp d;\c2 2m v
Thus
A2 d2 N1z 1
——Nj12— + —p2 =E.. 18
2m dx? 2mP'*1+V E, (18)

If i =1 this equation goes over into the exact wave mechanical equation,
further, if ¥V > E; into equation (16 '), since, in this case, P,-2,1/2m can be
neglected. Thus equation (18) can be regarded as valid for all states and the
whole space.

4. The statistical energy expression

Starting from equation (18) a further approximation makes it possible
to express the energy of the system with the aid of the particle density of
the system. The energy value E; is obtained by multiplying equations (18)
by N;/2i and by integrating over the whole space. The total energy is obtained
by summation according to (4)

£ = 2 { 2mfN12d21X1/2d —}—--——JN Ndx+ (N, V dx

_ e _ N1/2d2N§2d ﬁ_J‘N N, dx JN Vdx
2g| ZmJ E + o i
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9i
Introduce the approximation that V; = Z!N. Then the energy expres-

n
sion 1is
E=6w+ &+ Ep (19)
where
A dz N12 A2 1 [ dN)?
£ o= — — | N1/2 - dx = -1 = | ,
Ew 2mJ dx? 8m N\dx)dx
h? 1 — —1 ’
Ex=— — (g —1e(2g— 1) — q{g—1) j]\mdx,
8mnd 3
&, = |V Ndx.

Obviously &y is just the energy which is generally called the Weizsicker
inhomogeneity correction. It is suitable to compare the kinetic energy &«
with the Fermi zero point kinetic energy. The expression for the zero point
kinetic energy has been improved upon in a previous paper [9] in such a
manner that — under condition similar to those of the present paper —
instead of integrating over the momentum space we summed over the states
exactly

h* 1g(4g*—1)
60~ gm na[ 6

—q(g— 1/2)2UN 3dx.

Comparing the expressions of £x and &, we have
EK == tgo

,_2(8—1gg—1)—6q(g—1)
g(4g>—1)—6q(g—1/2)

where

or in a different manner

n—2 .
t= if n is even,
n—+
—1 —1)2 42
t:(n )_[L)i_] if n is odd.
n[n®+ 2]

If the number of particles is 1 or 2, £, = 0 thus here the total kinetic
energy is represented by the Weizsdcker correction only and the relations
go over into the exact wave mechanical expressions.

The fact that in the satistical theory the zero point kinetic energy should
be decreased when the Weizsiicker correction is incorporated in the theory
was first pointed out by GomBAs [6]. His method was confirmed by his cal-
culations for atoms.
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5. Determination of the density

The statistical equation determining the density can be obtained by
searching for the density for which & is a minimum. Elementary calculation
yields

A2 1 d* Nz 11

AL VT L (e—1)g@s—1) —3q(g— 1P LV =V,,
2m N2 dx? +2mng2[(g )g( 8 ) q(g )] + 0
19)

where V, is the Lagrange multiplicator.

The determination of the density is more accurate if the following
procedure is applied. Let us write equations (16”’) and (16"’) for the g-th state.
Take into account that Pg = P and if n is even Ng = N and if n is odd, we

2
may use the approximation V, = 28 N,
n

A2 d2N12 1

— 2 N — P21 V=E, (V<E), 20
- e oot ¢ (V<E,) (20)
2 V1/2
B NNy B, (v >E). (20')
2m dx?

Instead of using equation (20) of Plaskett we may also proceed in the
following manner. Equation (8°) for the g-th state is

A2 1 d%v}? 1
—— = £ 4 P+ V=E, (VE,). 21
2mvi2 dx? 2m ( ) 1)
Calculate the density from equation (19°) for the case when the number of
particles of the system is n and n — 1 resp. The difference between these
two will yield approximately »,. Knowing v, and using (13") from equation
(21) we may express N

N— 2m

A2 1 d2y} ] ‘, (V <E,). @1

E,~V+4 ——

2myp2  dx?

h g

Equation (20) and (21°) are both approximations of equation (21},
In conclusion it should be mentioned that for a large number of particles
we may obtain from (21) a partial differential equation for IV as the continuous
function of the number of particles. Regarding N as the derivable function

n
‘o N oN

of the number of particles, then v, :J Py dk and if n is largev, = an which

n

n—1

substituted into equation (21) yields that
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2

ON PN NI
4monox29n 8mlioxon 8 m n2 on
o N2 o N\2
+V(# :Eg(_—],(V<Eg).
on| on

Similarly, starting form equation (8'’') assumed for the g-th state

29N BN A% (92N ]2 oNiE Nz
4m 3nodx29n 8midxon (Gn flonl’
(V>E).
Acknowledgement

Thanks are due to Professor P. GomBAs for continuous interest in

this work.
REFERENCES
1. L. H. Tuomas, Proc. Camb. Phil. Soc., 23, 542, 1927.
2. E. Ferwmi, Z. Phys., 48, 73, 1928.
3. P. A. M. Dirac, Proc. Camb. Phil. Soc., 26, 376, 1930.
4. P. GomBAs, Z. Phys., 121, 523, 1943.
5. C. F. WEIZSACKER, Z. {. Phys., 96, 431, 1935.
6. P. GomBis, Acta Phys. Hung., 3, 105 and 127, 1953 ; Acta Phys. Hung., 5, 483, 1956 ;

Ann. d. Phys., 18, 1, 1956.
J. 8. PraskeTT, Proc. Phys. Soc., A. 66, 178, 1953.

1.

8. N. H. MarcH and J. S. PrLaskeTrT, Proc. Roy. Soc., 235, 419, 1956.

9. P. SzépraLusy, Acta Phys. Hung., 7, 433, 1957.

10, W. E. MiLNE, Phys. Rev., 35, 863, 1930.

11. R. A. BaLLIiNGER and N. H. MarcH, Proc. Phys. Soc., A. 67, 378, 1954.

O CTATUCTUYECKON TPAKTOBKE ®EPMHMOH-I'A3A
I. CEN&®AJIYIIN

PeswomMme

BoIBOAUTCST HOBAS CTATHCTHYECKAA MOAENb, KOTOpAsi B GOJIbILIOH Mepe NOfoGHA BUAOUI-
meHeHHoM I'ombamem mojenu Baitlicekkepa, HOIOJHEHHOH NMONPABKOH HA HEOAHOPOXHOCTb-
Tlpu BBEJEHHBLIX IPUOIMKEHUAX CYMMHPOBAHUE 110 KBAHTOBBIM COCTOSIHMSIM He HAaj0 ammpo-
KCUMHPOBATb MHTEIPUPOBAHMEM, A MOXKHO IIPOM3BECTH TOYHO. Kpome ompeaeseHus1 MIOTHOCTH
M3 BApUALHOHHOr0 MPHHUMIA, IMOKA3aHbl M 0omee TOYHblE METOABI pacyera. [JOKa3bIBAETCs,
4TO IJIOTHOCTL M3 ypaBHEHMi Tljacketa MOXKHO OIPEJENIUTb TOJNIBKO B PAMKAX «KJIACCUYECKU
JOTYCTUMO¥ 0071aCTH» U BBIBOTUTCS COOTBETCTBYIOIME YPABHEHHE HA «3ANPEIEHHYI0 0071aCTby,



