ФЕНОМЕНОЛОГИЧЕСКОЕ ОБОБЩЕНИЕ УРАВНЕНИЯ ТОМАСА-ФЕРМИ-ДИРАКА (ТФД) В СЛУЧАЕ ТЕОРИИ МЕТАЛЛОВ И ЕГО ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ

Д. Ф. КУРДГЕЛАИДЗЕ

(Представлено: Р. Gombás — Поступило: 23 декабря 1957 г.)

Обменное взаимодействие соседних металлических атомов описано феноменологически уравнением Т. Ф. Д. в виде : $\Delta \varphi = \bar{a}(\varphi^{t_2} + \bar{\tau}_0)^3 + \lambda_3$. Здесь $\bar{a}, \bar{\tau}_0$ и λ_3 являются свободными параметрами, которые могут быть подобраны к следующим свойствам металла : константа решетки, работа выхода или минимальный потенциал Ферми и средняя или граничная плотность электронов проводимости. Вышенаписанное уравнение обладает периодическими решениями, свойства которых в статье обсуждаются. Случай натрия, как показательный пример, трактуется в подробности.

Согласно электронной теории металлов уравнение (ТФД) с соответствующими граничными условиями — применимо и к металлу [1]. Если в случае изолированного иона граничные условия имеют вид:

$$\lim_{r \to 0} r S(r) = Z, \ \varphi(r_0) = \varphi_0 \tag{1}$$

где $\varphi(\mathbf{r})$ — решение уравнения (ТФД),

Z — заряд иона,

 φ_0 — потенциал ионизации,

то в случае металла условия (1) следует дополнить еще требованием периодичности решения с заданным периодом Ω .

Подобная, но двухмерная задача, когда нелинейное уравнение (ТФД) вырождается в линейное уравнение, была с успехом решена Ленардом— Джонсом [2]. Однако, если в случае линейных уравнений граничные условия удается удовлетворить при помощи наложения различных решений уравнения, то в случае нелинейных уравнений, ввиду отсутствия принципасуперпозиции, решение граничной задачи становится весьма затруднительным.

Указанное обстоятельство заставляет отказаться от одного из граничных условий в случае применения уравнения (ТФД) к металлу. Так например: обычно металл рассматривается как совокупность изолированных ионов, а периодичность вводится искусственным путем, как простое механическое повторение картины [1], [3], [4]. Но можно сделать ударение и на вторую крайность: решить граничную задачу с требованием периодичности и отказаться от решения уравнения в начале координат. Ясно, что первый подход может дать ответ только на те свойства металла, которые определяются в основном свойствами иона и не применим для решения задач связанных с электронами проводимости, а второй подход — наоборот.

В последнем случае, который нас интересует, уравнение (ТФД) следует однако обобщить. Дело в том, что при выводе уравнения (ТФД) не учитывается сложное обменное взаимодействие соседних атомов металла. Это взаимодействие слабо влияет на связанные элекроны и вносит существенный вклад

в поведение электронов проводимости [1]. Прямой учет указанного взаимодействия в уравнении (ТФД) обычным путем представляется довольно трудным и, следовательно, имеет смысл искать феноменологическое обобщение уравнения.

При этом можно исходить из того, что учет обменного взаимодействия Дирака в уравнении (ТФД), приводит только к появлению постоянного слагаемого τ_0 , при $\varphi^{\frac{1}{2}}$ в правой стороне уравнения, а учет корреляционной поправки Гомбаша в конечном счете сводится только к замене численного значения постоянного параметра уравнения (ТФД) — τ_0 [3].

Тогда обобщенное уравнение (ТФД) через варьируемые постоянные коэффициенты в виде :

$$\Delta \varphi = \bar{u} \left(\varphi^{1/2} + \bar{\tau}_0 \right)^3 + \lambda_3 \tag{1}$$

представляется нам довольно общим.

— В уравнении (1).

$$ar{a}=\lambda_1\,a^1\,,\quadar{ au}_0=\lambda_2\, au_0\ \lambda_1,\ \lambda_2,\ \lambda_3= ext{const}$$

 λ_1 , λ_2 , λ_3 новые параметры, остальные обозначения те же самые, что и в случае обычного уравнения (ТФД) [3]:

$$\begin{aligned} a' &= 4 \pi \, \sigma_0 \,, \ \sigma_0 = 0.0955 \, (1/e a_0)^{3/2} \simeq 0.1 \, (1/e \sigma_0)^{3/2} \\ \tau_0 &= 0.254 \, (e/\sigma_0)^{1/2} \simeq 1/4 \, (e/a_0)^{1/4} \,, \ \sigma_0 = \hbar^2/me^2 \\ \varphi &= V - V_0 + \bar{\tau}_o \,, \ V = V_k + Ve \end{aligned}$$

$$(2)$$

V₀ — постоянная,

V_к — потенциал внешнего поля,

V_е — потенциал электронного газа,

V — полный потенциал в данной точке,

$$\varrho = \lambda_1 \sigma_0 \left(\varphi^{1/2} + \tau_o \right)^3 + \lambda_3 / 4 \pi \tag{3}$$

плотность электронного газа, — действительно: при $\lambda_3 = \lambda_2 = 0$ $\lambda_1 = 1$ имеем уравнение (ТФД), при $\lambda_3 = 0$, $\lambda_2 = 0,88$ $\lambda_1 = 1$ уравнение (ТФД) и при $\lambda_3 = 0$, $\lambda_2 = 1$, $\lambda_1 = 1$, уравнение (ТФД) с учетом поправки *Гомбаша*.

Введение трех свободных параметров дает возможнось согласовать с экспериментом три основные параметры металла, длину кристаллической решетки, работу выхода или минимальный потенциал Ферми, и среднюю или граничную плотнось электронов проводимости. Поскольку уравнение (1), как показывается ниже, имеет замкнутые периодические решения, указанную выше программу можно осуществить математически строго.

Будем считать металл бесконечным по всем трем направлениям и будем искать периодические решения уравнения (1), удовлетворяющие условию

$$\varphi > 0, \ \varrho > 0$$
 (4)

везде.

Так как предполагаетс я представить периодичность кристаллической решетки через периоды решения уравнения (1), то следует ограничиться простой кубической решеткой.

Кроме того, ищется решение формально справедливое для всего пространства, но по сути дела оно справедливо только в области электронов проводимости. Потенциал внутри ионного остова следует находить обычным путем, как сферически симметричное решение обычного уравнения (ТФД) с соответствующими граничными условиями [3]. В связи с этим — поскольку не известна точная граница между двумя областями — возникает затруднение в нормировке решения уравнения. Невыполнима и задача сшивания двух указанных решений на границе. Однако, так как задача нормировки в конечном счете сводится к определению одного из свободных параметров, то ее можно решить косвенным путем.

Решение уравнения (1) удобнее искать в виде :

$$\varphi = a^2 \left(\beta + e_n^2(\sigma)\right)^2 \tag{5}$$

где а, β — действительные постоянные числа.

$$\sigma = \vec{\omega} \, \vec{r} + c$$

$$\mathbf{e}_{ni} \, (\sigma) = \operatorname{cn} \sigma + i \operatorname{sn} \sigma \tag{6}$$

спо и sno — эллиптические функции.

Ввиду того, что $e_n(\sigma)$ в некотором смысле является обобщением плоской волны на случай эллиптических функций и обладает во многом сходными с ними свойствами, то некоторые из этих свойств мы здесь укажем:

$$e_{n}(\sigma) e_{n}^{*}(\sigma) = 1$$

$$\operatorname{cn} \sigma = \frac{1}{2} \left(e_{n}(\sigma) + e_{n}^{*}(\sigma) \right), \quad \operatorname{sn} \sigma = \frac{1}{2i} \left(e_{n}(\sigma) - e_{n}^{*}(\sigma) \right)$$

$$e_{n}(u+v) = e_{n}^{(1)}(u,v) e_{n}^{(1)}(v,u); \quad e_{n}^{(1)}(u,v) = \frac{\operatorname{cn} u + i \,\operatorname{sn} u \,\operatorname{dn} v}{\sqrt{1 - k_{1}^{2} \operatorname{sn}^{2} u \,\operatorname{sn}^{2} v}}$$

$$\left(7\right)$$

$$\frac{d e_{n}(\omega x)}{dx} = (i \,\omega) e_{n}(\omega x) \,\operatorname{dn}(\omega x)$$

$$\frac{d^{2} e_{n}(\omega x)}{dx^{2}} = (i \,\omega)^{2} \left\{ (1 - k_{1}^{2}/2) e_{n}(\omega x) + k_{1}^{2}/2 e_{n}^{3}(\omega x) \right\}$$

$$\left(\frac{d e_{n}(\omega x)}{dx}\right)^{2} = (i \,\omega)^{2} \left\{ k_{1}^{2}/4 + (1 - k_{1}^{2}/4) e_{n}^{2}(\omega x) + k_{1}^{2}/4 e_{n}^{4}(\omega x) \right\}$$

где k_1 — главный модуль эллиптических функций.

При предельном переходе имеем:

$$\omega^{2} > 0, \ 1 > k_{1}^{2} \ge 0 \quad e_{n}(\sigma) \rightrightarrows e^{i\sigma}$$

$$\omega^{2} > 0 \quad 1 \ge k_{1}^{2} > 0 \quad e_{n}(\sigma) \rightrightarrows \frac{1 + \sin\sigma}{\operatorname{ch} \sigma}$$
(8)

Подставляя выражение (5) в (3), для плотности электронного газа находим :

$$4 \pi \varrho = \bar{a} a^3 (\gamma + e_n^2 (\sigma))^3 + \lambda_3 \tag{9}$$

где

$$\gamma = \beta + \bar{\tau}_0 a \tag{10}$$

После подстановки в (1) выражении (5) и (9), получим уравнение относительно $e_n(\sigma)$ в виде:

$$e_n^3 e_n'' + \beta e_n e_n'' + 3 e_n'^2 e_n^2 + \beta e_n'^2 + \frac{a}{4} (s \gamma^3 + 3 \gamma^2 e_n^2 + 3 \gamma e_n^4 + e_n^6) = 0 \quad (11)$$

где

$$e_n \equiv e_n(\sigma), \quad e'_n \equiv \frac{d}{d\sigma} e_n(\sigma),$$
 (12)
 $a = -\bar{a} a/\omega^2$

новый параметр s связан с λ_3 соотношением :

$$\lambda_{3} = (s-1) \bar{a} (\alpha \gamma)^{3} = \frac{s-1}{s} [s \bar{a} (\alpha \gamma)^{3}] = \frac{s-1}{s} [4 \pi \varrho_{\min}] =$$

$$= \frac{s-1}{s} [4 \pi \varrho_{1}^{*}] \lambda_{1} \lambda_{2}^{3}$$
(13)

Используя теперь свойство $e_n(\sigma)$ по (7) для параметров решения α , β , k_1^2 , ω^2 получим систему алгебраических уравнений, решение которых дает:

$$a = \frac{\bar{\tau}_{0}}{\gamma - \beta} = \frac{\bar{\tau}_{0}}{\gamma (1 - 5 s \gamma^{2})}, \beta = 5 s \gamma^{3}$$

$$k_{1}^{2} = a/5, \quad \omega^{2} = -a \bar{a}/a \qquad (14)$$

$$a = [0, 1 + 3/16 \ (1 - s \gamma^{2}) \gamma]^{-1}$$

$$\gamma^{2} = \eta/s, \ \mu = x/s$$

$$s = x + 0, 1 \ x^{3} - \frac{1}{2} \ x^{2} \qquad (15)$$

Для того чтобы выяснить характер решения рассмотрим случай обыкновенного уравнения (ТФД). Тогда, как уже было сказано выше, имеем : $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 0$ (s = 1) и находим :

$$\gamma = \pm 0.731, \quad \beta = \pm 1.950, \quad \alpha = \mp 0.82 \tau_0$$

$$a = \begin{pmatrix} 6.085\\ 28,00 \end{pmatrix}, \quad k_1^2 = \begin{pmatrix} 1.22\\ 5.6 \end{pmatrix}, \quad \omega^2 = \begin{pmatrix} 0.04\\ -0.009 \end{pmatrix} \frac{1}{\epsilon_0^2}$$
(16)

Ввиду двухзначности решения алгебраической системы уравнения для параметров, для решения (1) получим два независимые периодические решения. Одно из них комплексное и без особенности, а второе действительное и с особенностями.

Первое решение комплексное и без особенности дается через :

$$\varphi_{1}(\sigma) = 0.67 \tau_{0}^{2} \{ 1.95 + e_{n}^{2}(\sigma) \}^{2}$$

$$\varrho_{1}(\sigma) = 0.55 (\sigma_{0} \tau_{0}^{3}) \{ 0.73 + e_{n}^{2}(\sigma) \}^{3}$$
(17)

с периодом

где теперь

$$\Omega = 4 K (k_1) = 9,20$$

$$e_n (\sigma) = \operatorname{dn} \sigma + i \, \bar{k_1} \operatorname{sn} \sigma \qquad (18)$$

$$\sigma = \overline{\vec{\omega}} \, \vec{r} + c \,, \quad \overline{\omega}^2 = 0,05 \, 1/a_0^2 \,, \quad \overline{k_1}^2 = 0,82$$

 $K(\bar{k}_1)$ — полный эллиптический интеграл 1-го рода.

Второе периодическое решение, действительное и с особенностью дается через :

$$\begin{aligned} \varphi_2(\sigma) &= 0.67 \, \tau_0^2 \left(-1.95 + e_n^2(\sigma) \right)^2 \\ \varrho_2(\sigma) &= 0.55 \, (\sigma_0 \, \tau_0^3) \left(-0.73 + e_n^2(\tau) \right)^3 \end{aligned} \tag{19}$$

с периодом

$$\Omega = 4 K(\overline{k_1}) = 9,20$$

где теперь

 $e_n(\sigma) = \frac{1 + \operatorname{cn} \sigma}{\operatorname{sn} \sigma}$ $\sigma = \vec{\omega} \vec{r}, \quad \vec{\omega}^2 = 0.05 \, 1/a_0^2, \quad k_1^2 = 0.82$ (20)

Выражение $e_n(\sigma)$ приведенное выше получено из исходного $e_n(\sigma)$ через формулы преобразования эллиптических функций. Фаза решения подобрана так, что особенность находится в начале координат.

Ниже рассмотрим в основном только второе решение.

Для графического представления функции (19) их лучше переписать в виде :

$$\begin{aligned} \varphi/\varphi_0 &= \Psi^2 \,, \quad \Psi = -1.95 \,+ e_n^2 \,(\sigma) \,, \quad \varphi_0 = 0.67 \,\tau_0^2 \\ \varrho/\varrho_0 &= \Phi^3 \,, \quad \Phi = \Psi + 1.22 \qquad \varrho_0 = 0.55 \,(\sigma_0 \,\tau_0^3) \end{aligned} \tag{21}$$

Как видим, оба решения имеют одни и те же $\overline{\omega}$, $\overline{k_1}$ и, следовательно, одни и те же периоды Ω и длина кристаллической решетки, которая в данном случае определяется по формуле :

$$L_{\rm x} = L_{\rm y} = L_{\rm z} = \frac{\Omega}{\sqrt{3}\,\overline{\omega}} \simeq 24\,a_0 \tag{22}$$

Для последовательного решения вопроса о работе выхода следовало бы решить уравнение Шредингера с найденным выше потенциалом. Однако ввиду трудности получения такого решения можно ограничиться приближенным представлением работы выхода по формуле [5] $W \simeq \varphi_{cped}$ или, что удобнее в данном случае, и кроме того ближе к действительности [1] в виде :*

$$W \simeq \varphi_{\min}$$
 (23)

тогда учитывая $e_n^2(\sigma)/_{\min} = 0$ находим :

$$W \simeq \varphi_{\min} = 0.67 \ \tau_0^2 (1.95)^2 \simeq 1.13 \ \text{eV}$$
 (24)

Из графика № 1, где представлены функции (21), видим, что условие $\varrho > 0$ не выполняется везде. Атомы как бы являются изолированными друг от друга. Указанное обстоятельство и подсказывает необходимость дополнения плотности постоянным членом обеспечивающим требование : $\varrho > 0$ везде.

Рассмотрим теперь случай $\lambda_3 \neq 0$ ($s \neq 1$), тогда, ограничиваясь значениями $\lambda_1 > 0$, $\lambda_2 > 0$, условие $\rho_{\min} > 0$ дает :

$$4 \pi \varphi_{\min} = \bar{a} s (\alpha \gamma)^3 = \bar{a} \bar{\tau}_0^3 \left(\frac{s^{1/3}}{1 - 5 s \gamma^2} \right)^3 > 0$$
 (25)

значение s < 0 отпадает (т. к. $\gamma^2 > 0$) и, учитывая (15), находим :

$$0 \leq s \leq 0$$
, 60 (26)

Значения параметров решения уравнения (1) соответствующих изменению *s* в интервале (26) приведены в таблице № 1.

Как видно из таблицы решения имеют тот же вид, что и в случае $\lambda_3 = 0$ $\lambda_2 = \lambda_1 = 1$ но для других значений параметров \overline{k}_1 , $\overline{\omega}$, α , β

Особо следует указать на то обстоятельство, что свободные параметры λ_1, λ_2 входят только в масштаб для L_x, φ , ϱ и, следовательно, простым изменением масштаба можем согласовать их значения с экспериментом.

Действительно, зависимость L_x , φ , ϱ от λ_1 , λ_2 имеет вид :

$$L_x = L_x^* \frac{1}{\sqrt{\lambda_1 \lambda_2}}, \ \varphi = \varphi^* \lambda_2^2, \ \varrho = \varrho^* s \cdot \lambda_1 \lambda_2 \cdot \lambda_2^2$$
 (27)

где теперь $L_x^*, \varphi^*, \varrho^*$ уже не содержат λ_1, λ_2, s . Если заданы экспериментальные значения $L_x^{\operatorname{экп}}, \varphi_{\min}^{\operatorname{эксп}}, \varrho_{\min}^{\operatorname{эксп}}$ то λ_1, λ_2, s можем определить из уравнении :

^{*} Указанное приближение относится к приближенному заданию экспериментального значения φ_{min} , а не математическую сторону вопроса.

$$L_{x}^{*}\frac{1}{\sqrt{\lambda_{1} \ \lambda_{2}}} = L_{x}^{\mathfrak{s}\mathfrak{K}\mathfrak{C}\mathfrak{n}}, \ \varphi_{\min}^{*} \ \lambda_{2}^{2} = \varphi_{\min}^{\mathfrak{s}\mathfrak{K}\mathfrak{C}\mathfrak{n}}$$
(27)

$$\varrho_{\min}^* \cdot s \cdot \lambda_1 \lambda_2 \cdot \lambda_2^2 = \varrho_{\min}^{\mathfrak{sKCR}}$$
(28)

Действительно, исключая λ_1 , λ_2 из первых двух уравнений (28) находим

$$\left(\frac{L_x^2 \, \varrho_{\min}^*}{\varphi_{\min}^*}\right)_{\text{эксп}} = \left[\left(\frac{L_x \, \varrho_{\min}^*}{\varphi_{\min}^*}\right)s\right]_{\text{Таблиц.}} \tag{29}$$

Уравнение (29) определяет значение *s* (см. таблицу № 1) и, следовательно, L_x^* , φ_{\min}^* , \mathcal{Q}_{\min}^* . Далее, используя полученные значения L_x^* , φ_{\min}^* из первых двух уравнений (28), находим λ_1 , λ_2

В качестве примера рассмотрим натрий Na и калий K. Как известно Na и K имеют гранецентрированные кубические решетки, и они ближе всех к простой кубической решетке (так же как и другие щелочные металлы).

Имеем в случае** Na

$$L_x^{\mathfrak{skcn}} = 8,36 \ a_0, \quad \varphi_{\min}^{\mathfrak{skcn}} \simeq W = 1,80 \ \mathrm{eV}, \ \varrho_{\min}^{\mathfrak{skcn}} \simeq \varrho_{\mathsf{cpeg}}^{\mathfrak{skcn}} = 2,4 \cdot 10^{22*}) \quad (30)$$

Тогда

$$\left(\frac{L_x^2 \,\varrho_{\min}}{\varphi_{\min}}\right)_{_{\mathfrak{SKCnep}}} = 0.94 \cdot 10^{24} \tag{31}$$

из таблицы № 1 находим:

$$x = 0.55, \quad L_x^* = 7.184 \ a_0, \quad \varphi_{\min}^* = 2.53 \text{ eV}$$
(32
$$s = 0.41 \qquad \varphi_0^* = s \ \varrho_{\min}^* = 4.56 \cdot 10^{22}$$

Из уравнений

$$8,36 = 7,184 \frac{1}{\sqrt[]{\lambda_1} \lambda_2}, \quad 1,80 = 2,53 \cdot \lambda_2^2$$
(33)

получаем:

$$\lambda_1 = 0.95, \quad \lambda_2 = 0.85$$
 (34)

 λ_3 и ϱ' определяются из управления (13)

$$\lambda_{3} = \bar{a}' \left[(s-1) \tau_{0}^{3} \lambda_{2}^{3} (a' \gamma)^{3} \right] = \frac{s-1}{s} \lambda_{1} \lambda_{2}^{3} 4 \pi \cdot \varrho_{0}^{*} = -3.96 \ (a' \tau_{0})^{3}$$
(35)

* Задание $\varrho_{\min}^{\operatorname{эксп}}$ эквивалентно нормировке искомой функции. В данном случае $\varrho_{\min}^{\operatorname{эксп}} \simeq \varrho_{\operatorname{сред}}^{\operatorname{эксп}}$ равносильно приближенной нормировке решения.

** Численные данные взяты из [1]; они расходятся с более поздними данными. Поэтому примеры носят только иллюстративный характер.

192

Таб. № 1.

× =	s ==	γ = ±	$eta = \pm$	a' = ±	k ₁ ² = +	$k_2^2 = +$	$\overline{k}_1^2 =$ $= \overline{k}_2^2 =$	$\overline{\omega}_1 = \overline{\omega}_2 = \overline{\omega}$ $\frac{a_{\tilde{\upsilon}}}{\lambda_1 \lambda_2} \overline{\omega}^2 =$	$\omega_1^2 \frac{a_0^2}{\lambda, \lambda_2} = -$	$\omega_2^2 \frac{a_0^2}{\lambda_1 \lambda_2} = +$	$a_0 L_x^*$	$\psi_{\min}^{*} = (\alpha' \beta)^{2}$ $x 1.7 \text{ eV}$	$ \begin{array}{c} \varphi_{0}^{*} = s \ (\alpha' \gamma)^{3} \\ x(10^{22} \ \mathrm{cm}^{-3}) \end{array} $	$\left(\frac{L_{z}^{*2}\varrho_{0}^{*}}{\psi_{\min}}\right) \cdot \frac{10}{Ta6}$	(a' γ) ³	x
1	0,600	0,5773	0,5763	974,8	1,108	14,96	0,066	59,0	54,583	3,909	0,476	53650,46			1782178188,9	1
0,98	0,5939	0,5745	0,5616	77,49	1,108	14,98	0,066	4,70	4,399	0,310	1,167	3218,97	52372,187	2,16	88180,541	1,98
0,95	0,5845	0,5699	0,5375	34,25	1,108	15,04	0,066	2,05	1,928	0,136	2,545	576,203	4346,608	4,96	7436,583	0,95
0,90	0,5679	0,5630	0,5069	17,52	1,108	14,87	0,066	1,06	0,980	0,070	3,590	134,045	544,389	5,23	958,6	0,90
0,85	0,5502	0,5559	0,4731	12,11	1,108	14,79	0,066	0,73	0,677	0,049	4,273	55,8076	167,414	5,44	304,3	0,85
0,80	0,5312	0,5486	0,4396	9,135	1,108	14,73	0,066	0,55	0,511	0,037	4,933	27,404	66,506	5,92	125,20	0,80
0,75	0,5109	0,5418	0,4067	7,403	1,108	14,89	0,066	0,46	0,414	0,031	5,442	15,402	32,725	6,24	64,05	0,75
0,70	0,4893	0,5343	0,3726	6,184	1,108	$14,\!52$	0,066	0,37	0,335	0,025	6,065	9,027	17,585	7,04	35,14	0,70
0,65	0,4662	0,5280	0,3431	5,405	1,108	14,51	0,066	0,33	0,309	0,022	6,38	5,450	10,965	7,60	23,25	0,65
0,60	0,4416	0,5215	0,3113	4,776		13,77	0,070	0,29	0,266	0,021	6,852	3,751	6,8183	8,53	15,44	0,60
0,55	0,4154	0,5148	0,2825	4,317		14,22	0,070	0,26	0,241	0,018	7,184	2,530	4,565	9,36	10,94	0,55
0,50	0,3875	0,5119	0,2800	3,968		14,52	0,070	0,24	0,222	0,0164	7,475	1,802	3,243	10,08	8,37	0,50
0,40	0,3264	0,4960	0,1991	3,367	1,109	13,83	0,072	0,20	0,187	0,0150	8,132	0,770	1,518	13,04	4,65	0,40
0,30	0,2577	0,4817	0,1443	2,971	1,109	13,25	0,075	0,18	0,165	0,0134	8,809	0,311	0,755	18,80	2,93	0,30
0,20	0,1808	0,4701	0,0938	2,663	1,109	13,01	0,077	0,16	0,147	0,0123	9,250	0,106	0,354	28,48	1,956	0,20
0,10	0,0951	0,4583	0,0457	2,430	1,109	12,67	0,079	0,145	0,134	0,0115	9,737	0,00187	0,130	66,4		0,10
0,01	—					-	_		-	-	_	—			1,37	0,01
0	0	0,4472	0	2,236	1,109	12,46	0,081	0,135	0,123	0,0108	10	0	0		1	0
	ļ		}]	l					

 $a = \bar{\tau}^0 \, a' \,, \ \tau_0^2 = 1/4 \; (e/a_0) \simeq 1.7 \; {
m eV} \,, \ \varrho_0^* = \varrho_{\min} \, (\lambda_1 = \lambda_2 = 1)$

Формулы преобразованя.

1)
$$\omega^2 = \omega_2^2 > 0$$
, $k^2 = k_2^2 > 1$ $e_n(\omega_2, k_2) = cn(w_2, k_2) + i sn(\omega_2, k_2) = dn(\overline{\omega}_2, \overline{k_2}) + i \overline{k_5} sn(\omega_2, \overline{k_2})$ $\overline{\omega}_2 = k_2 \omega_2$, $\overline{k_2} = 1/k_2$
2) $\omega^2 = \omega_1^2 < 0$, $k^2 = k_1^2 > 1$

$$e_{n}(\omega_{1}, k_{1}) = \operatorname{cn}(\omega_{2}, k_{1}) + i \operatorname{sn}(\omega_{2}, k_{1}) = \operatorname{cn}(i \omega_{1}', k_{1}) + i \operatorname{sn}(i \omega_{1}', k_{1}) = \operatorname{dn}(i \omega_{1}' k_{1}, 1/k_{1}) + i 1/k_{1} \operatorname{sn}(i \omega_{1}' k_{1}, 1/k_{1}) = \frac{\operatorname{d}(k_{1} \omega_{1}', \sqrt{1 - 1/k_{1}^{2}}) + i (1/k_{1}) \operatorname{sn}(k_{1} \omega_{2}', \sqrt{1 - 1/k_{1}^{2}})}{\operatorname{cn}(k_{2} \omega_{2}', \sqrt{1 - 1/k_{1}^{2}})} = \frac{\operatorname{dn}(\overline{\omega}_{1}, k_{1}) - k_{1}^{\overline{i}} \operatorname{sn}(\overline{\omega}_{2}, \overline{k_{1}})}{\operatorname{cn}(\overline{\omega}_{1}, \overline{k_{1}})}, \ \overline{\omega}_{1} = \overline{\omega} = k_{1} \omega_{2}', \ \overline{k_{1}} = \sqrt{1 - 1/k_{1}^{2}}, \ \overline{k_{2}'} = 1/k_{1}, \omega_{1}, = i\omega_{1}'$$

$$e_{n}(\sigma + c)/c_{-K} + e_{n}(\sigma + K) = \frac{\operatorname{dn}(\sigma + K) - \overline{k_{1}'} \operatorname{sn}(\sigma + K)}{\operatorname{cn}(\sigma + K)} = \frac{\overline{k_{1}'} 1/\operatorname{dn} \sigma - \overline{k_{1}'} \operatorname{en} \sigma/\operatorname{dn} \sigma}{- \overline{k_{1}'} \operatorname{sn} \sigma/\operatorname{dn} \sigma} = -\frac{1 - \operatorname{cn} \sigma}{\operatorname{dn} \sigma}$$

$$arrho'=\lambda_{3}/4~\pi=-~3.96~(\sigma_{0}^{1}\, au_{0}^{3})\simeq-~3.96\cdot10^{22}$$

Обобщенное уравнение (ТФД) примет вид :

$$\Delta \varphi = a' \left\{ 0.95 \left[\varphi^{1/2} + 0.85 \tau \right]^3 - 3.96 \tau_3^0 \right\}$$
(36)

а периодическое решение данного уравнения будет :

$$\varphi = \alpha^{2} \left(\beta + e_{n}^{2}(\sigma)\right)^{2} = 13,55 \tau_{0}^{2} \left[0, 2,83 + \left(\frac{1 + \operatorname{cn} \sigma}{\operatorname{sn} \sigma}\right)^{2}\right]^{2} \quad (37)$$

$$\varrho/\varrho_{0} = \left(\gamma + \epsilon_{n}^{2}(\sigma)\right)^{3} + (s - 1) \gamma^{3} = (0,51 + e_{n}^{2}(\sigma))^{3} - 0,08$$

$$\varrho_{0} = \left(\sigma_{0} \tau_{0}^{3}\right) \lambda_{1} \lambda_{2}^{3} \cdot \alpha^{\prime 3} = 49,8 \cdot 10^{22}$$

где

$$\sigma = \vec{\bar{\omega}} \vec{r}, \quad \bar{\omega}^2 = 0.26 \cdot 0.808 \cdot 1/\iota_0^2 = 0.021 \frac{1}{\iota_0^2}$$
(38)
$$\vec{k_1^2} = 0.066$$

Решение имеет период $\Omega = 4K = 6,40$ длина периода $L_x = 8,3a_0$ минимальный потенциал Ферми и минимальная плотность $\varphi_{\min} = 1,8$ eV, $\varrho_{\min} = 2,4 \cdot 10^{22}$ соответственно.

Аналогично в случае К имеем

$$L_x^{\mathfrak{skcn}} = 10,3 \sigma_0, \quad \varphi_{\min}^{\mathfrak{skcn}} \simeq W = 1,60 \text{ eV}, \quad \varrho_{\min}^{\mathfrak{skcn}} = 1,3 \cdot 10^{22} \qquad (39)$$
$$\left(\frac{L_x^2 \varrho_{\min}}{\varphi^{\min}}\right)_{\mathfrak{skcn}} = 0,85 \cdot 10^{24}$$

из таблицы № 1 находим:

$$x = 0,60, \quad s = 0,44, \quad L_x^1 = 6,85 \, a_0, \quad \varphi_{\min}^* = 3,75 \, \text{eV}$$
(40)
$$\varrho_0^* = s \, \varrho_{\min}^* = 6,82 \cdot 10^{22} \, \text{cm}^{-3}$$

Из уравнения

$$10,30 = \frac{6,85}{\sqrt[]{\lambda_1 \ \lambda_2}}, \ 1,60 = 3,75 \cdot \lambda_2^2 \tag{41}$$

получаем:

$$\lambda_1 = 0.65 \quad \lambda_2 = 0.65$$
 (42)

Следовательно

$$\lambda_{3} = \frac{s-1}{s} \lambda_{1} \ \lambda_{2}^{3} 4 \pi \cdot \varrho_{0}^{*} = -1,49 \ (a' \ \tau_{0}^{3})$$
(43)

$$\varrho = \lambda_{3}/4 \ \pi = -1,49 \ (\sigma_{0} \ \tau_{0}^{3}) = -1,49 \cdot 10^{22} \ \mathrm{cm}^{-3}$$

а обобщенное уравнение примет вид :

$$\Delta \varphi = a' \left\{ 0,65 \left[\varphi^{1/2} + 0,65 \tau_0 \right]^3 - 1,49 \tau_0^3 \right\}$$
(44)

и периодическое решение данного уравнения будег:

13 Acta Physica IX/1-2

$$\varphi = 9,79 \tau_0^2 \left\{ 0,31 + \left(\frac{1 + \operatorname{cn} \sigma}{\operatorname{sn} \sigma} \right)^2 \right\}^2$$
(45)

$$\varrho/\varrho_{0} = (0.52 + e_{n}^{2}(\sigma))^{3} - 0.07$$

$$\varrho_{0} = 19.4 \cdot 10^{22}$$

$$\sigma = \vec{\omega} \vec{r}, \quad \vec{\omega}^{2} = 0.124. \ \frac{1}{a_{0}^{2}}, \quad \vec{k}_{1}^{2} = 0.07$$

$$L_{x} \approx 10.3 a_{0}, \quad \varphi_{\min} \approx 1.6 \text{ eV}, \quad \varrho_{\min} \approx 1.3 \cdot 10^{22} \text{ cm}^{-3}$$

$$\Omega = 6.40$$
(46)

Достоен внимания и тот не тривиальный результат, что согласно таблицы № 1 при увеличении длины крисаллической решетки работа выхода (точнее φ_{\min}) уменьшается. Указанная закономерность действительно наблюлается у шелочных металлов.

Тот факт, что уравнение (ТФД) имеет два независимых периодических решения при одних и тех же значениях параметров, один из которых с особенностью, а второе без особенности на наш взгляд заслуживает особого внимания. '

Для большей наглядности характера полученных решений, можно использовать малость главного модуля эллиптических функций $\bar{k}_1^2 = 0.07$ и в решениях заменить эллиптические функции тригонометрическими, при этом погрешности будут порядка k_1^2 и следовательно, малы.

ЛИТЕРАТУРА

1. Бете и Зомерфельд, «Электронная теория металлов.» 2. І. Е. LENARD-JONES, Н. І. Woods Proc. Roy. Soc. Lond. 120 727. 1928. 3. П. Гомбаш «Статистическая теория атома».

4. R. D. COWAN, I. ASHKIN Phys. Pev. 1957. 105 144.

5. I. TAMM, D. BLOCHINZEV, Zs. f. Phys. 77 774. 1932.

PHENOMENOLOGICAL GENERALIZATION OF THE THOMAS-FERMI-DIRAC T FD) EQUATION IN CASE OF THE THEORY OF METALS AND ITS PERIODIC SOLUTIONS

Bv

D. F. KURDGELAIDZE

Summary

The exchange interaction between metal atoms is taken into account phenomenologically by writing the TFD equation in the form : $\Delta \varphi = \bar{a} (\varphi'_2 + \bar{\tau}_0)^3 + \lambda_3$. Here $\bar{a}\varrho\bar{\tau}_{\theta}$ and λ_3 are treated as *free parameters* to be adjusted to the following properties of the metal: lattice constant, work function or minimal Fermi-potential and average or boundary density of conducting electrons. The equation possesses periodic solutions and the properties of the latter are discussed. As an illustrative example, the case of sodium is investigated in detail.