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A new method is developed for the determination of the energy band spectrum of
metal electrons. An essential advantage of the method is that it applies plane waves. This
is made possible by the introduction of a ‘‘repulsive’ potential, which takes care of the high
kinetic energy of the eigenfunction oscillating in the neighbourhood of the nuclei. Thus the
valence electrons can be treated as if they filled the Brillouin zones gradually from the lowest
Brillouin zone. This also means that in this model the eigenfunctions of the metal electrons
can be well approximated by the linear combination of a few plane waves. The number of
the rows and columns of the secular equations arising at the degenerate points in the neigh-
bourhood of the boundaries of the Brillouin zones is low. The problems associated with the
repulsive potential in the matrix eomponents of the secular equation are investigated in
detail. It is shown that these matrix components are such that they do not alter the qualitative
structure of the secular equation. The value of the matrix components of the Hamiltonian
varies in the Brillouin zone from place to place. This fact considerably increases the numerical
work as compared to the older free-electron model. As compared to the newer methods, howe--
ver, this disadvantage, is not peculiar to the method presented here as they, although for
other reasons, also involve tedious numerical work.

Introduction

In the electronic theory of solids the quantitative determination of the
energy spectrum presents a very important problem, a satisfactory solution
of which has up to now been obtained only for a few metals. The method
of WieNER and SErTz [1] is simple and yields good results for the lower edge
of the energy band of metal electrons. However, the generalization of this me-
thod given by SLATER [2] can be applied to alkali metals only, because, as was
shown by SHOCKLEY [3], the method involves an error, which makes the quali-
tative results doubtful already for the upper edge of the highest filled band.
Although the recent extension of the method by L.AGE and BETHE [4] increased
the accuracy it also involved a considerable increase in work. Another method
by SLATER [5] is easier to apply to higher energies, but it is very tiresome. The
method described in the present paper is a generalization of GoMBAs’s [6]
method and is based partly on the statistical theory. Thus it can be well used,
particularly for the treatment of heavier metals and can be regarded as a
natural supplement to HERRING’s method [7] which is mainly applicable to.
lighter metals. The chief advantage of the method to be described is that it
proceeds on a mathematically well prepared way and is thus easy to apply.
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1. Electronic structure of solids and the valence electrons

If we want to draw a comparison between the electrons of free atoms and
those of solids (excluding solids, which contain transition elements) we
have to classify them into two main groups, namely 1. the core electrons,
which form a noble gas like (ns)?2 (np)® or a (nd)!® shell and exhibit
to good approximation, an identical distribution in the free atom and in the
solid. 2. the valence electrons, the possible energy values of which in the station-
ary states of the free atom show the characteristic distribution of a discrete
spectrum. In the solids the energy of the same electrons have a band spectrum.
A further essential difference between the two groups is that whereasin solids
for the core electrons the grouping according to the orbital quantum number
can be regarded as a good approximation just as for the core electrons in the
free atom, no definite orbital quantum number can be assigned in solids (in good
approximation) to the valence electrons apart from some exceptional cases.
The physical reason for this is the following. In solids it is a common property
of the electrons that in principle none of them belongs to a definite atom, they
wander from atom to atom. The essential difference between the core electrons
bound in the inner shell and the valence electrons is that the density maximum
of the former is in the neighbourhood of the nucleus and thus the probability
for these electrons to approach a “foreign” atom is small. For the valence
electrons the outer density maximum is in the region midway between the
atoms and thus they cannot be localized around an atom not even for a short
period. One of the consequences of the properties mentioned here is that the
electrons in the inner shel’s keep the quantum numbers assigned to them in
the atom in the solid too and these play an essential role in the description
of their eigenfunctions, while for valence electrons these quantum numbers
may have but symbolic significance if any. The classification cf the core
electrons according to the orbital quantum number plays an important
role in the statistical theory of metallic bond and thusit is absolutely neces-
sary to investigate how the theoretical determination of the energy band
spectrum of valence electrons can be carried out with regard to this fact.

In meost solids, owing to the high constancy of the potential field, the
eigenfunctions of valence electrons can be described by few plane waves in the
7/8 th of the elementary cell. In the 1/8 th of the cell around the nucleus the
eigenfunctions of valence electrons have nodal surfaces and oscillate intensely,
which is due to their orthogonality to the eigenfunctions of the electrons of the
ionic core. This intense oscillation increases the kinetic energy and thus the
total energy (the sum of the kinetic and potential energies) is comparatively
great ensuring that the valence electrons remain in the very high-lying valence
band. Thus itcan be seen that the region around the ionic core, which is
at equilibrium nuclear distance about 1/8 th of the elementary cell is very signi-
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ficant. If the energetical conditions of the valence electrons of solids are to be
treated the above mentioned increase of the kinetic energy must be taken into
account. Here we restrict ourselves to the cases where the initial eigenfunctions
are plane waves. This condition ensures namely that the eigenfunction with
any arbitrary wave number vector can be set up readily and besides in 7/8 th
of the elementary cell already the zeroth approximation yields excellent values.
In this connection we may refer to two methods, that of orthogonalized plane
waves developed by HERRING and the one to be developed here, which is not
orthogonalized, i. e. it works with simple plane waves, but investigates the
motion of electrons in a modified potential field. As in the construction of the
modified potential field the classification of electrons according to their orbital
quantum numbers plays an important role, we shall investigate the behaviour
of an electron represented by a plane wave from the point of view of classifi-
cation according to the orbital quantum number.

Be the eigenfunction of the electronic state in a space of volume 0

1

- 01,2 o'tV (1)
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with the wave number vector f, and the kinetic energy of this electron
1
E=—|1)2, 2
1] @

where t is the radius vector. There exists a close relation between the plane
wave (1) and the spherical harmonics occurring in the classification of electrons
in the centrally symmetrical potential field of the free atom. The plane wave
can thus be expanded in a series

elt) 2 . .
pr= -~ @2+ 1)i j,(kr)P;(cos V) 3)
91/2 T:O
[8];r= i T—1n [, ¢ and @ are polar coordinates around the n-th nucleus as
centre and have an axis parallel to the direction of f- k = [f , Tnis the radius

vector drawn to the n-th nucleus, P, (x) is a Legendre polynomial and
i b2
Jiw)y =1 Ji+L(®); (4)
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Jir3 (%) is a Bessel polynomial. From (3) we obtain after multiplication
by the conjugate complex and averaging over all possible values of the &
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and p the weight of the electrons of orbital quantum number ! at a distance

r from the nucleus

_ A 2L+ 1) j2 (kr). (5)

a;

Or, by introducing the normalized probability a; corresponding to the assump-
tion ¥ a; = 1 we obtain
1

ap = (21 + 1) j2 (kr) . (5")
Fig. 1 shows the probabilities a; plotted as functions of kr. It is clear that a
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Fig. 1. The quantities af occurring in the expansion of the plane wave in terms of
spherical harmonics. The quantities in the figure are given in atomic units

small values of kr the s states prevail, whereas at places near the edge of the
elementary cell, especially at higher values of the wave number vector, the
states of higher orbital quantum numbers predominate.

2. General characteristics of the matrix elements of operators in the valence
electron states in solids

The most important problem of the electronic theory of solids is the
determination of the energy spectrum. With the aid of the latter the other
data can be obtained by direct methods. To determine the energy spectrum the
average values and matrix elements, respectively, of the operators must be
evaluated. We now want to discuss the problems associated with these.

The situation is the simplest in the cases where the operator to be averaged
over is spherically symmetrical a1ound each of the nuclei, i. e. it depends on r
only (the potential energies are mostly of this kind, e. g. the Coulomb interac-
tion with the nucleus, the average field of the other electrons etc.). In such
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a case averaging over the angles can be carried out immediately and the matrix
elements can be obtained by a single integration over r [9].

A more difficult case is where the operator also depends on the angles
and contains just the differential operators with respect to these angles. An
operator of such a type is e. g. that of the kinetic energy and that of the square
of the total angular momentum. Consider a prototype of such operators in
detail. Be our operator, which we denote for brevity by x, defined by the
equation

(M, if r<R,
=
| o, if r>R,

M2=ﬁ2[ L [sinﬁi]+ 1 62]

(6)

where

sind 09 o sin2 9 9¢?

is the operator of the square of the total angular momentum. Thus the operator
essentially is one of the square of the total angular momentum within a sphere
of radius R, whereas outside this sphere it is the operator of the multiplication
by the constant 0. Let us form the average value of the operator » over a
sphere of radius ry (R << ry). [In the theory of solids this sphere is as a rule the
so-called elementary sphere (see later)]. With (6) and (3) we obtain

R= YA+ 1), )
1
where
37 21+ 1 [ R\2
s kr, [’0) {JH-%( ) Jt—%( )J,+%( ). (8

In the detailed examination of the weight factors A, we take into account the
dependence of the wave number factor on ry. As the wave number vectors are
defined in the reciprocal lattice, we may write

k=—, %)

Ty

where b under the normal conditions is a number of the order of 1. With
the aid of (9) (8) may be written in the form

R
J? 1[b£}—.] 1(5—]J 3[b£).

A, (10)

_sm 41 (R
s o ln)
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It is obvious that (10) can be regarded as a function of the quantities

R

b—— =y and b, where b solely depends on the type of lattice and the place
To
6*
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occupied by the valence electronsin the band but does not depend on the lattice
constant. The dependence of 4;0n the lattice constant as well as on the radius
R in the definition of the operator x isinvolved in y. In Fig. 2 the so-called nor-
malized A’-s are exhibited in accordance with the representation of Fig. 1.
The normalization was carried out in such a way that

Y 4i()=1.

Thus we only want to know how the ratios of the s, p, d, f, g, . . . -states vary,
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Fig. 2. The auxiliary quantities 4 necessary for the determination of the matrix
element for the operator ». The quantities in the figure are given in atomic units

for the time being the variation of the absolute value of the weight factors
not investigated. Accordingly
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which is already a function of y only.

Under the Figure there are several scales with arrows showing the places
corresponding to various values of b at various values of R/r,. The arrows
marked 1, 2, 3 etc. indicate the radii of the Fermi sphere at 1, 2, 3 ete. electrons
per atom. It is clear that at lower values of R/ry the weight of the states of
lower orbital quantum numbers (mainly that of the s-state) are great. This is
very important from the point of view of the repulsive potentials because
(see later) these take values different from zero only within the ionic core,
which is a region of small radius near the nucleus. R, which can be defined
in connection with the repulsive potentials, is smaller than ry /2, which
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makes it plausible that the weight of these states greatly increases. This was
confirmed in the case of the Al metal [10] that carrying out the calculation
associated with the metallic bond, even with the aid of an s type repulsive
potential, results not very different from the experimental data were obtained.

3. The free electron method and the difficulties involved

In principle the theory of the electronic structure of solids [11] can be
developed simplest by building up the total eigenfunctions of metal electrons
of plane waves of the form

P = el 12)
where ¥is the wave number vector of a free electron. In the periodic potential
field

4+ ]
V= Y Vb 13)

hy, By, By
=—00

the eigenfunction of an electron can be written in the form

+ o

p= > ay ol [(£+ 2=B),t] | (14)
hA, h2y h3
In (13) and (14)
f)=h1 f’1 + hz f’2 + hs 53 (15)

is the lattice vector of the reciprocal lattice and b;, b,, b are the basic vectors
determining the axes of this lattice. The eigenfunction y satisfies the Schrg-
dinger equation

2
Ay + " E—V)p=0, (16)

if the a -coefficients satisfy the homogeneous linear equations

#2 ’
[E"Vooo - ﬁ’ f+27z952J“g =%’ag_b Vy . (17)

(17) has a solution only if the determinant which can be formed from the
coefficients vanishes. The determinantal equation thus provides a defining
equation for E which so far is unknown; the solution of this equation thus
immediately gives the energy of the electron belonging to the wave number
vector f. Inserting the value of E into (17) and solving this equation for the
ay, coefficients we obtain the unknown coefficients of the eigenfunction. In
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the course of the actual determination of the energy eigenvalue we cannot
of course take all Fourier coefficients V' into account but have to select
those the order of magnitude of which is relevant for the secular equation.
According to (17) those Fourier coefficients for which the condition

Eyg —Ey> |V (18)

is fulfilled can be neglected. In (18)
Lol 2
Egng = 2708 2+ Voo - (19)
2m

For metals occuring in nature E, —F; ~ 20eV, when for g its smallest
possible value is taken into account. If the potential is the potential of the
ionic core and that of the valence electrons without any repulsive potential then
there are many Fourier coefficients V the order of magnitude of which agrees
with that of E,,; — E; and thus the free electron method in this form is not
suitable for the determination of either the energy or the eigenfunction.

Let us consider the real reason for the inapplicability of the method in some
more detail. Retaining in the system of equations (17) but a few coefficients,
(the largest of them), the smallest root of the secular equation gives a rough
approximate value for the energy of the valence electrons. Taking more and
more coefficients into account the lowest root of the secular equation does
not approximate the energy of a valence electron but that of a core electron of
smaller energy, while the energy of valence electrons is approximated by alarger
root of the seculax equation. Thus the above formulation of the problem is
too general, demanding, that the method yield the energy and eigenfunctions
of the core electrons too. This is, however, not necessary at all, since we
already know these to an accuracy satisfactory for our purpose. The excessive
generality of the method becomes still more obvious if the situation is examined
from the standpoint of eigenfunctions. The assumption of the eigenfunction
in the form (14) is based on the assumption that the approximate eigenfunction
can be well approximated at least partly by plane waves. This is the case for
electrons in the valence band and in the conduction bands. For the core
electrons, however, the case is essentially different. The eigenfunction of the
core electron keeps its atomic character and is no plane wave, it is expo-
nential far from the nucleus and oscillates inside near him. To approximate
such an eigenfunction by plane waves is of course very difficult and most
of the difficulties associated with the method treated above are due to this
fact. The solution is obvious: the method has to be modified so as to be
applicable to valence electrons and conduction electrons only, which are inte-
resting for us in any case.
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Let us now proceed to investigate the eigenfunctions of valence and condue-
tion electrons in some more detail. As has been mentioned above the eigenfunc-
tion of these electrons can be well approximated by a plane wave in the greater
part (about 859%) of the elementary cell, as there the potential is constant.
Significant deviation from the plane wave eigenfunction can only be experienced
in the immediate neighbourhood of the nucleus where the eigenfunction begins
to oscillate just like the atomic eigenfunctions. What is the immediate reason
for this? In this region the potential changes very rapidly and near the nucleus
tends to infinity as Ze/r. Owing to the smallness of the average value taken
over this region the potential energy of the electron is very small (its absolute
value is very large). The valence electron is in a state of higher energy; this
is made possible by the average value of the operator of the kinetic energy
taken in the inner region for the oscillating part of the eigenfunction. The
situation can be described in this way if the energy relations are considered
only in a formal manner.

It is due to the Pauli principle that the electrons in the atom occupy
states of higher and higher energies. It has to be considered in detail how the
difficulties associated with the eigenfunction can be overcome, if the kinetic
energy increase due to the Pauli principle is taken explicitly into account.

4. Reduction of the problem to the treatment of valence and conduction electrons

As has been shown above the most obvious solution of the problems would
be to eliminate the core electrons from our treatment and to simplify our method
to such an extent that it becomes suitable but for the treatment of valence and
conduction electrons only. As the eigenfunctions of the core electrons are
practically the same for the free atom and the solid, these could, if necessary,
be used for the above simplification.

For this simplification several methods present themselves. Among these
we mention those which aim at the correction of the plane wave. HERRING
orthogonalized the plane waves to the eigenfunctions of the core elec-
trons and achieved thus the appropriate behaviour of the eigenfunctions
in the neighbourhood of the nucleus; further the orthogonality secures
the necessary smallness of the matrix components of the potential energy.
The second possible method was suggested by SLATER [13]. The essence
of the method is to retain the plane wave far from the ionic core and to replace
it inside a sphere of radius R around the nucleus by the linear combination of core
electron solutions having the energy of the plane wave. Whereas HERRING’s
method has already been tried out in the theoretical treatment of several metal
and semiconductor SLATER’s method has not been applied yet.
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Both these methods require an essential modification of the plane wave
eigenfunction in order that the matrix components satisfy relation (18). This
results in the loss of the most desirable property of the older methods, their
comparatively simple structure and easiness to handle. We shall attempt to
modify the free electron method in such a manner which makes possible to
start from the plane wave eigenfunctions of the free electrons when treating
the valence and conduction electrons,

The solution of the problem is made possible by the fact that for the
valence and conduction electrons a modified potential field can be given

V=V 4@, (20)

which possesses several important properties. _

1. The operator @ in (20)is such that if the density and the wave function
of the core electrons of the free atom are given, the operator can immediately
be determined with their aid.

2. The average value of the potential field taken over not too small
regions does not, in the regions near the nucleus, significantly decrease below
the average value over the regions far from the nucleus. In this connection we
may refer to our investigations into the binding and electronic structure of the
K metal [9].

3. Consequently, the eigenfunctions of the valence and conduction elec-
trons can be well approximated by plane waves all over the sphere (including
the 1/8 th part of the volume around the nucleus).

5. Introduction of the repulsive potential and the total potential

For the calculation of atomic term values and for the treatment of
monovalent metals a certain form of the repulsive potential has been used
for a long time, the kinetic energy increase due to the Pauli principle having
been taken into account in the form of a potential energy [6]. The potential
of this energy is

D= — 7y (0*° — 0}®) @D

In (21) g is the total electron density of the ionic core and g, the density of the
electrons which occupy states of energy lower than that of the lowest possible
energy of the electron to be treated, ! is the orbital quantum number

1
of this electron and Yp= -2~ (372)%3eayis a constant. As has been shown

by some recent investigations [14] the modified potential field obtained with
the aid of (21) yields good approximation only if the outermost closed shell of
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the ionic core is an (ns)? (np), a so-called noble gas like shell. According to.
GomBAs the repulsive potential

2
@] — “__py % (22)

is correct not only for noble gas like ionic cores, but it is correct for other ones,
e. g. for a closed (nd)!® core. In (22) D,is the radial density of the electrons
with the orbital quantum number [ of theion and e is the charge of the proton.
a, is the first Bohr hydrogen radius.

The above repulsive potentials (21) and (22) were introduced with the
aid of statistical methods. Several authors have dealt with their wave-mechan-
ical foundations [15].

To a good approximation the atomic electrons move in a central symmet-
rical potential field and as aresult the states of these electrons can be characte-
rized by the magnitude of the total angular momentum and one of its compo-
nents, i. e. by the orbital and magnetic quantum numbers. Accordingly the
repulsive potentials :vary:with these quantum numbers of the electrons. In
solids the central field remains for the electrons of the ionic cores a good
approximation i. e. it remains practically the same as in the free atom and
thus the form of the repulsive potentials remains as given by the expressions
(21) and (22). However, we want to characterize the metal electrons by plane
waves and for these the momentum and not the angular momentum is well defi-
ned. It is thus necessary to replace the repulsive potential by an operator which
can be applied to an arbitrary eigenfunction and leads in the special case of’
atoms to the former well proved form. Be the operator @ diagonal in the system
of spherical harmonics and its eigenvalues the repulsive potentials (21) and (22)
respectively, i. e.

DY =0, (1) YT, (23)

where Y[" is the spherical harmonic with indices I and m. It is certain that
operator @ is hermitic as its eigenvalues are real. Assuming that it is linear
too, it can be written in the form

@ (r.0.9) = B, (1) M2, 24)

¢t

where M? is the operator of the square of the total angular momentum and.
¢t = #2I(I + 1) is its eigenvalue. Thus in the case of atoms operator @ leads
to the same repulsive potentials as the selection according to orbital quantum
numbers. For a valence electron, as will be shown later, it can be well applied
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too. The author has already used the operator @ for investigations on the
binding of the Al metal [10] and the results obtained were in good agreement
with experiment.

To set up the total potential is a very delicate task, as the first term of
expression (20) is composed of several parts

V — V(i:on + 'Vie(;n + Vif(:;r + Vslectron _l_ V:;ectron + V;lfa;::rorx (25)

The first three terms of (25) are the Coulomb, the exchange and correlation
potentials due to the ion with closed shell. The second three terms denote the
corresponding terms due to the valence electrons except the one in question.
Here we do not deal with the individual terms in detail, but will refer to them
in connection with their practical application further below. In any case it is
evident that the modified potential which is the sum of (25) and (24) is a very
intricate function consisting of many terms and thus we will describe a simpler
semj-empirical method by which it is easier to determine the potential of the
ionic core.

For the treatment of alkali metals HELLMANN [16] succeeded in apply-
ing a semi-empirical method which essentially consists of the following :
The part due to the ions of the periodic potential can also be determined by
using the term values of the atom or ion (ionic core and one electron). Hell-
mann’s method will be generalized for the determination of the resultant of
the ionic potentials.

In the investigation of the structure of solids ions of its atoms with closed
electron shells play a great role. Supplementing each shell with one valence
electron it forms an atom or ion the term values of which are known from the
study of arc and spark spectra. Knowing the term values we can always
construct a potential function with the aid of which, in the case of an adequate
form of the eigenfunction we can reproduce the term values. In practice,
however, the method set up in this way is too general, because the few term
values do not uniquely determine the potential function owing to the great
variety of possible forms of the eigenfunction. Taking however, the experience
gained from the calculations of atomic and ionic eigenfunctions into acount,
in the region far from the nucleus the form of the eigenfunction can qualita-
tively be well given as an exponentially decreasing function, provided however,
that the eigenfunctions of the electrons of the ionic core are known. Then the
requirement that the eigenfunction of the valence electron should be orthogonal
to those of the same orbital quantum number of the ionic core, determines
the form of the eigenfunction comparatively well. Naturally, the eigenfunctions
of the electrons of the ionic core are generally not available. Then we may
proceed in such a manner that we neglect the internal oscillation of the eigen-
function of the valence electron and take the kinetic energy thus neglected in
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the form of a potential energy into account. From all this follows that the
potential set up in this way for states of various orbital quantum numbers
will differ from state to state. Again be r the distance from the nucleus and ze
the charge of the ion, then the simplest form of the potential is

V,= % — A;rue~ar (n; >—1). (26)

The first term of (26) represents the Coulomb-like potential outside the ionic
core, and the second term, the deviation from the former inside the ionic
core, the non-Coulomb-like part. 4, and a, are constants the values of which
must be determined with the aid of the experimental atomic terms of the orbital
quantum number I-n,;is an integer, which will be determined in advance in
concrete cases on the basis of trivial considerations. The second term in (26)
actually involves all the non-Coulomb-like electrostatic terms as well as the
repulsive potentials taking account of the missing kinetic energy. Writing (24)
in the form

Vl - Vcoulomb + wl . (27)

the formalism of the theory set up on the basis of the former repulsive potentials
can be applied with the difference that the role of the @ s in it is formally
played by the w;-s. Of course, we want to emphasize that the @;s and the
 -s differ greatly from each other. The @ ;-s occur but in the operator represent-
ing the repulsive potential while the a;-s include the non-Coulomb-like interac-
tion with the jonic core, the exchange interaction with the core electrons, the
correlation interaction due to the electrostatic forces and still other possible
interactions which would otherwise be very difficult to take into account,

6. The matrix elements of the Hamiltonian

The one-electron Hamiltonian occurring in the determination of the
energy of the electrons is now

/2
He—"A_Ve_oe (28)

2m

and its matrix element which can be most generally defined is

Htyy = %Je"i[(ﬂz’ﬁ”’] Hel [@+2720)1] g7 (29)
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where the integration is to be carried out over the total volume £.In the
following we assume that £2 is a so-called basie region of the solid i. e. £ repre-
sents the period of the wave function occurring in the averaging and the pos-
sible values of f form a quasi-continuous discrete set. Taking this into account
the matrix element of the operator of the kinetic energy is

(30)

£2
Agg, =
99 om

where 5%,, is the Weierstrass symbol. The matrix element of the electrostatic
type potentials can be very easily determined

Vi — %J Ve2illy -0 g — 7, (31)

as §'—Y = g is a lattice vector of the reciprocal lattice and thus (31) is a coef-

ficient of the Fourier expansion of the potential V. (31) is in general indepen-

dent of f and thus it need be determined only once, regardless of the value of f.
The matrix element of the operator of the repulsive potential is

@Eb, = —%Je- i[(E+2nh) 1] @i [(E+ 2202l dp . (32)

Taking (23) and (24) into account and using relations

+ ) 37 .
ﬁzi_l_Pn (COS [ ) = 21” P,T (COS 19') P;;”(COS 00) elm(qz—(pn) (33)
m=-—n
and
P"‘n“l/an o= e (34)
2 (n +m)!

and by integrating over the angles we obtain
dn 2 . . 1y,
=5 = @+ Py (eos0) J O, (1) ji (k) ji (k) r2dr (35)

In (35) & = ]f—}—Z?tf)l, kK = , fF+ 27y i and @ is the angle formed by the
vectors f + 27 f) and £ + 2 % §)’. For sake of clearness the quantities in integ-
ral (32) are shown in Fig. 3.
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On the boundary surfaces of the Brillouin zones the eigenvalues obtained
in the free electron approximation are degenerate. The degeneracy vanishes
under the influence of the periodic potential field (at least partly). The complete
solution of the corresponding approximation of the perturbation theory
requires the solution of a secular equation. The matrix elements of the secular
equation are just those of the Hamiltonian. As is immediately evident from

z

x S~

Fig. 3. Quantities and coordinate system for the calculation of the matrix element @h!f)'

expressions (31) and (32) g is also a lattice vector if in the relation j’—f) =g
)’ and §) are lattice vectors, thus apart from the diagonal terms the secular
equation only involves the Fourier coefficients of index g of the potential.
In addition to these the diagonal elements contain only the unknown energy
and the average value of the operator of the kinetic energy.

If the one-electron Hamiltonian also contains a repulsive potential the
above assertion is not true as @gﬁ, is not only a function of g but also of other
reciprocal lattice vectors and of f.It can be proved, however, that the structure
of the secular equation will be such as if @, were a function of the reciprocal
lattice vector g only. It is very important to prove this fact as it is only this
way that it can be ascertained that our theory provides the same results in
its qualitative aspects as the other theories.

The general condition of degeneracy can be written in the form

[t+ 2792 =42l 2P=... =|F4 2 }}|2 (36)
and with our notations

k=K =...=k®. (37)
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With regard to (36) it is evident that the integrals in (35) are the same for all
the &, matrix elements in the secular equation. Thus the @, matrix ele-
ments differ from each other only owing to the different values of w. The
value of w, however, as is shown in Fig. 3, depends on the g only as the sides
of the angles are, owing to {37) all equal and the third side of the triangle is
27 g. Thus we have proved that @, owing to (36) and (37) as well as to the
relation (k +2#z§) —(f+2n ) =2z ()—0h) = 27 g, does not change the
structure of the secular equation although it is a function of the three quan-
tities indicated by the indices.

Discussion

In the preceding sections it was shown how to determine the eigenfunc-
tions and energy eigenvalues of the valence and conduction electrons by our
method. Of course, the practical applicability of the method depends on
whether the simplification introduced decreases the number of rows and
columns of the secular equations by a sufficient order of magnitude.

In this respect valence electrons can be classified into two groups: a)
Valence electrons for which the overlap of atomic eigenfunctions on neighbouring
atoms is great, such as the s and p electrons of the outermost shell. The eigen-
function of these can be well approximated in the whole elementary cell by
a plane wave, if the end point of the wave number vector is not in the neigh-
bourhood of any of the boundary surfaces of the Brillouin zone. However,
even in the latter case the linear combination of a few plane waves will yield a
satisfactory result, as even in the most intricate case, when the planes bounding
the zone cut each other, there are at most four Brillouin zones and not many
more reciprocal lattice vectors determining the former. b) As belonging to the
second group we may classify the d and f electrons of transition metals. In
our approximation these can of course also be described by an eigenfunction
which is free of internal nodal surfaces and here our method also provides for
a significant simplification. In the case of these electrons a greater difficulty
lies in that the eigenfunctions of d and f electrons keep their atomic character
and form, rather than do those of the other electrons. This is due to the
fact that the spatial dimensions of the d and f atomic eigenfunctions are smaller
than that of the outermost s and p electrons. The difficulty here lies in the
fact that for the description of these states such a linear combination of plane
waves must be selected, which is similar to the eigenfunctions of the atomic d
electrons in the greater part of the elementary cell (particularly in most part of
the neighbourhood of the nuclei). To this end, of course, several plane waves
must be superimposed. Further investigations would be necessary to decide
whether the difficulties encountered here are significant.



PLANE WAVE METHOD WITH A MODIFIED POTENTIAL FIELD 95

LITERATURE

1. E. WieNER and F. SEirz, Phys. Rev., 43, 804, 1933.
For the more recent literature cf. e. g. F. SEITZ: The Modern Theory of Solids, Me:
Graw-Hill Book Company, London, 1940.

2. J. C. Slater, Phys. Rev., 45, 794, 1934.

3. W. SHOCKLEY, Phys. Rev., 52, 866, 1937.

4. F. G. von DER LaGE and H. A, BETHE, Phys. Rev., 71, 612, 1947.

5. J. C. SLATER, Phys. Rev., 51, 846, 1937.

6. See e. g. P. GomBAs, Statistische Theorie des Atoms und ihre Anwendungen, Wien,
Springer, 1949, p. 299, where the older literature can be found.

7. C. C. HErrING, Phys. Rev., 57, 1169, 1940.

8. See e. g. N. F. MorT and I. N. SxeppoN, Wave Mechanics and Its Applications, Oxford
Clarendon Press, 1948, p. 235.

9. See e. g. R. GAspAr, Acta Debreceniensis, 2, 151, 1955.

10. R. GAspAR, Acta Phys. Hung., 2, 31, 1952.

11. See e. g. GEIcER—ScHEELS, Handbuch der Physik, XXIV/2, 2. Aufl., Springer, Berlin,
1933, p. 370.

12. For the definition of the reciprocal lattice see e. g. 1. ¢. [11] and other books on the
theory of solids, e. g. 1. c. [1].

13. J. C. SLATER, Phys. Rev., 92, 603, 1953.

14. P. GomBaAs, Acta Phys. Hung., 1, 285, 1952.

15. S. FLUGGE, Encyclopaedia of Physics, XXXVI, Springer Verlag, Berlin, 1956. p. 109.
P. GomBAs’s article on ¢‘Statistische Behandlung des Atoms”.

16. H. HELLMANN, Acta Physicochimica URSS, 1, 913, 1935.

OIMPEAEJIEHHUE 30HHOI0 3HEPTETHYECKOI'O CIIEKTPA 3JIEKTPOHOB
B METAJIJIAX

P, FTAUINIAP

Peswome

B paGore BeipaboTaH HOBLIH METOA A/IsT ONpENENEHHST 30HHOTO CHEKTPA 3JEKTPOHOB B:
merannax. CyuIeCTBEHHOE TNPEUMYLHECTBO METORA, YTO OH IMO0JIb3YeTCd YHCTHIMH TJIOCKUMH
BOJIHAMH, 3TO DOCTMUTAETCSI TEM, 4TO B CJy4yae IUIOCKUX BOJIH BBOAUTCS JONOJIHUTEbHBIH MO~
TEHUHAJ JJIT BO3MEIeHHsT GONbIIoi KMHETHYeCKo# sHepruM coGcTBeHHbIX GyHKUMH, ocuuu-
pylmuX B GM30CTH ATOMHBIX sifep. Takum 06pasom 3JeKTPOHBI MPOBOAMMOCTH MOYKHO TpPaK-
TOBATh TaK, KAK OyATO OBl OHY 3ANOMHSUTH 30HB BPHIITIIO3HA MOCTENEHHO, HAYHHAS OT HU3IIEH,
310 3HAYMT, YTO COOCTBEHHBIE (QYHKLUM METAIIMYECKHX 3JIEKTPOHOB XOPOIIO ANMPOKCHMH-
pyloTcst KoMOUHALKeH HECKOJILKUX TUIOCKUX BOJIH, CTeneHb CeKyJIsIPHbIX YPABHEHHH Ha BBIPO K-
JEHHBIX MecTax BOIM3M TPAaHHULB! 30H Bpuiumiosna siBisteTcs: HU3KOH. JleTanbHo MCCIEA0BAHbE
B pafoTe NMPoGJIeMbI CEKYJISIPHOT'0 YDABHEHUS B CBS3H C [ONOJHUTESbHBIM IoTenuuanom. IMo-
KA43daHO, YTO MATPUYHBIE MIEMEHTHl TONMOJHUTEIBHOTO NMOTEHLHANA TAKOBbI, YTO OHM HE H3Me-
HSIOT KaYeCTBEHHYI0 CTPYKTYDPY CEKYJSIPHOIO YpaBHEHHsl. 3HA4eHHE MATPUYHBIX SJIEMEHTOB
TFAMMIITOHHAHA MEHs1eTCsl B 30He BpuiiioanHa ¢ Mecta Ha mMecTo. OToT GAKT 3HAYUTENBLHO YBETH-
4YMBaeT 06beM UCYNCIUTENLHOM PaboThl MO OTHOWIEHHI0 K CTapiuiell Mogend co CBOOOIHBIMU
3nekTpoHamu. Ilo oTHOmEHUIO K 60yIee HOBBIM METOJJAM, 3TO HE SIBJIAETCS HEAOCTATKOM, TAK KaK
— XOTS1 10 3TOH NMPHYMHE — TaM BCTPEUALTCS NOAOO0HOE e MOJIOYKEHUE,



