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A new method is developed for the determination of the energy band spectrum of  
metal electrons. An essential advantage of the method is that ir applies plane waves. This 
is made possible by the introduction of a "repulsive" potential, which takes care of the high 
kinetic energy of the eigenfunction oscillating in the neighbourhood of the nuclei. Thus the 
valence electrons can be treated as if they filled the Brillouin zones gradually from the lowest 
Brillouin zone. This also means that in this model the eigenfunctions of the metal electrons 
can be well approximated by the linear combination of a few plane waves. The number of  
the rows and columns of the secular equations arising at the degenerate points in the neigh- 
bourhood of the boundaries of the Brillouin zones is low. The problems associated with the 
repulsive potential in the matrix components of the secular equation ate investigated in 
detail. I t  is shown that these matrix components ate such that they do not alter the qaalitative 
structure of the secular equation. The value of the matrix components of the Hamiltonian 
varies in the Brillouin zonc from place to place. This fact considerably increases the numerical 
work as compared to the older free-electron model. As compared to the newer methods, howe- 
ver, this disadvantage, is not peculiar to the method presented hereas  they, although for 
other reasons, also involve tedious numerical work. 

Introduction 

I n  t h e  e l e c t r o n i c  t h e o r y  o f  so l ids  t h e  q u a n t i t a t i v e  d e t e r m i n a t i o n  o f  t h e  

e n e r g y  s p e c t r u m  p r e s e n t s  a v e r y  i m p o r t a n t  p r o b l e m ,  a s a t i s f a c t o r y  s o l u t i o n  

o f  w h i c h  has  up  to  n o w  b e e n  o b t a i n e d  o n l y  for  a few m e t a l s .  T h e  m e t h o d  

o f  WICNER a n d  S~,XTZ [1] is s i m p l e  a n d  y i e l d s  g o o d  r e s u l t s  for  t h e  l o w e r  edge  

o f  t h e  e n e r g y  b a n d  o f  m e t a l  e l ec t rons .  H o w e v e r ,  t h e  g e n e r a l i z a t i o n  o f  t h i s  m e -  

t h o d  g i v e n  b y  SLATER [2] can  be  a p p l i e d  to  a l k a l i  m e t a l s  on ly ,  b e c a u s e ,  as was  

s h o w n  b y  SHOCKLEY [3], t h e  m e t h o d  i n v o l v e s  a n  e r ro r ,  w h i c h  m a k e s  t h e  q u a l i -  

t a t i v e  r e su l t s  d o u b t f u l  a l r e a d y  for  t h e  u p p e r  edge  of  t h e  h i g h e s t  f i l l ed  b a n d .  

A h h o u g h  t h e  r e c e n t  e x t e n s i o n  o f  t h e  m e t h o d  b y  L A t E  a n d  BETHE [4] i n c r e a s e d  

t h e  a c c u r a c y  i t  a lso i n v o l v e d  a c o n s i d e r a b l e  i n c r e a s e  in  work .  A n o t h e r  m e t h o d  

b y  SLATER [5] is e a s i e r  to  a p p l y  to  h i g h e r  ene rg i e s ,  b u t  i t  is v e r y  t i r e s o m e ,  T h e  

m e t h o d  d e s c r i b e d  in  t h e  p r e s e n t  p a p e r  is a g e n e r a l i z a t i o n  o f  GOMBXS'S [6]: 

m e t h o d  a n d  is b a s e d  p a r t l y  on t h e  s t a t i s t i c a l  t h e o r y .  T h u s  i t  c a n  b e  wel l  u s e d ,  

p a r t i c u l a r l y  for  t h e  t r e a t m e n t  o f  h e a v i e r  m e t a l s  a n d  can  be  r e g a r d e d  as a 

n a t u r a l  s u p p l e m e n t  t o  HERRING'S m e t h o d  [7] w h i c h  is m a i n l y  a p p l i c a b l e  to, 

l i g h t e r  m e t a l s .  T h e  c h i e f  a d v a n t a g e  of  t h e  m e t h o d  to  be  d e s c r i b e d  is t h a t  i t  

p r o c e e d s  on  a m a t h e m a t i c a l l y  wel l  p r e p a r e d  w a y  a n d  is t h u s  e a s y  to  a p p l y .  
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1. Eiectronic  structure of  solids and the va lence  electrons 

I f  we want  to draw a compar i son  between the electrons of free a toms and 
those of  solids (excluding solids, which contain t rans i t ion elements) we 
have  to classify t h e m  into two main  groups,  n a m e l y  1. the core electrons,  
which fo rm a noble gas like (ns) ~ (np) 6 of a (nd) lo shell and exhibir  
to good app rox ima t ion ,  an ident ical  d is t r ibut ion in the  free a t o m  and in the  
s~lid. 2. the  valence electrons, the  possible ene rgyva lues  of  which in the s ta t ion-  
a ry  s ta tes  of the free a t o m  show the character is t ic  d is t r ibut ion of a disc,-ete 
spec t rum.  I n  the solids the energy  of the  same electrons have  a band  spec t rum.  
A fu r the r  essential  diffcrence be tween  the  two groups is t h a t  whereas  in solids 
fer the core electrons the  grouping  according to the  orbi ta l  q u a n t u m  n u m b e r  
can be regarded  as a good a p p r o x i m a t i o n  j u s t a s  for the  core electrons in the  
free a tom,  no defini te  orbi ta l  q u a n t u m  n u m b e r  can be assigned in solids (in good 
approx ima t ion )  to the valence  electrons apa r t  f rom some except ional  casos. 
The physica l  reason for this is the  following. In  solids ir is a common  p r o p e r t y  
of  the electrons t h a t  in principle none of t h e m  belongs to a def ini te  a tom,  t hey  
wander  f rom a tom to a tom.  The  essential  difference be tween  the  coro electrons 
bound in the  inner shell and the  valence  electrons is t h a t  the densi ty  m a x i m u m  
of the fo rmer  is in the ne ighbourhood  of the nucleus and  thus the p robab i l i t y  
for these  electrons to app roach  a " fo re ign"  a t o m  is small.  For  the valence  
electrons the  outer  dens i ty  m a x i m u m  is in the  region m i d w a y  between the  
a toms  and thus they  cannot  be localized around an a t o m  not  even for a shor t  
period. One of the eonsequences of  the proper t ies  ment ioned  here is t h a t  the  
electrons in the inner  shePs keep the q u a n t u m  number s  assigned to t h e m  in 
the a t o m  in the solid too and  these p lay  an essential  tole in the  descr ipt ion 
of their  eigenfunctions,  while for valence electrons these q u a n t u m  number s  
m a y  have  bu t  symbol ic  s ignif icance if  any~ The classif icat ion Gr the coro 
electrons according to the orb i ta l  q u a n t u m  n u m b e r  plays an i m p o r t a n t  
r61e in the  s tat is t ical  t heo ry  of  metal l ic  bond  and thus  it is absolute ly  neces- 
sary  to inves t iga te  how the theoret ica l  de te rmina t ion  of the energy b a n d  
spec t rum of vatence electrons can be carried out  wi th  regard  to this fact .  

I n  mos t  solids, owing to the  high cons tancy  of the poten t ia l  field, the  
eigenfunct ions of valence electrons can be described b y  few plane waves in the  
7/8 th of  the  e l emen ta ry  cell. In  the 1/8 th  of the cell a round  the nucleus the 
eigenfunct ions of valence electrons have  nodal  surfaces and  oscillate intensely,  
which is due to thei r  o r thogona l i ty  to the eigenfunct ions of  the electrons of  the  
ionic core. This intense oscil lation increases the kinet ic  energy and thus the  
to ta l  ene rgy  (the sum of the kinet ic  and poten t ia l  energies) is c o m p a r a t i v e l y  
great  ensur ing t ha t  the valence electrons r emain  in the  v e r y  high-lying valence 
band.  Thus  it can be seen t h a t  the region a round  the ionic core, which is 
a t  equi l ibr ium nuclear  dis tance abou t  1/8 th of  the e l e m e n t a r y  cell is ve ry  signi- 
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f icant .  I f t h e  energetical  conditions of the valence electrons of solids are to be 
t r ea t ed  the above ment ioned  increase of the kinetic energy must  be t aken  into 
account .  Here we res t r ic t  ourselves to the cases where the initial eigenfunctions 
are plane waves. This condit ion ensures namely  t h a t  the eigenfunct ion with 
any  a rb i t r a ry  wave number  vec tor  can be set up readi ly  and besides in 7/8 th 
of  the e lementa ry  cell a l ready the zeroth approx imat ion  yields excellent  values. 
In  this conn~ction we m a y  refer to two methods ,  tha t  of  orthogona]ized plane 
waves developed by  HERRING and the  one to be developed here, which is not  
orthogonalized,  i. e. i t  works with simple plane waves, but  invest igates the 
mot ion of electrons in a modif ied potent ia l  field. As in the const ruct ion of the 
modif ied potent ia l  field the classification of electrons according to thei r  orbital  
q u a n t u m  numbers  plays an impor t an t  tole, we shall invest igate the  behaviour  
of  ah electron represented  by  a plane wave f rom the point  of view of classifi- 
cat ion according to the  orbital  q u a n t u m  number .  

Be the eigenfunction of the electronic s tate  in a space of  volume E# 

1 
~~ --  eqt r) (1) 

with the wave number  vec tor  t, and the kinet ic  energy of this electron 

E = 1 1  ~ 12, (2) 

where r is the radius vector .  There exists a close relat ion between the  plane 
wave (1) and the spherical harmonics occurring in the classification of  electrons 
in the centra l ly  symmetr ica l  potent ia l  field of  the free atom. The plane wave 
can thus be expanded  in a series 

ei(tr") ~," ( 2 / +  1) i j ,  (k r) PI (cos vq) (3) 
l=O 

[8] ; r = i r - - l :n  [, v~ and ~o are polar coordinates  a round the n-th nucleus as 
centre  and have an axis parallel to the direct ion of t -  k = i ~ l, rn is the radius 
r e c t o r  drawn to the n- th  nucleus, Pt  (x) is a Legendre polynomial  and 

j~ (x) = j~ + (x) ;  (4) 

Jt+$ (x) is a Bessel polynomial .  F rom (3) we obta in  after  mult ipl icat ion 
by  the conjugate  complex  and averaging over  all possible values of  the v ~ 

6 Acta Physica IX/1--2. 
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and V the  weight  of  the electrons of orbi ta l  q u a n t u m  n u m b e r  l a t  a d is tance  
r f rom the nucleus 

4et 
a l = ~ - -  ( 2 / +  1) j2  (kr). (5) 

~ 2  

Or, b y  in t roduc ing  the normal ized  p robab i l i ty  aŸ corresponding  to the a s sump-  

t ion ~~' at = 1 we obta in  
1 

aŸ = ( 2 / +  1)j~ (kr) .  (5') 

Fig. 1 shows the probabi l i t ies  al p lo t ted  as funct ions  of  kr. I t  is c lear  t h a t  a 

1 

k r  �9 

! 2 3 4 5 

Fig. 1. The quantities aŸ occurring in the expansion of the plane wave in terms of 
spherical harmonics. The quantities in the figure ate given in atomic units 

smaU values  of  kr the s s ta tes  prevai l ,  whereas  at  places near  the edge of the  
e l e m e n t a r y  cell, especially a t  higher  values of  the  wave  n u m b e r  r ec to r ,  t he  
s ta tes  of  higher  orbi ta l  q u a n t u m  numbers  p redomina te .  

2. General  characteris t ics  o f  the matrix elements of  operators  in the valence 
eleetron states in solids 

The  mos t  i m p o r t a n t  p rob l em  of the electronic t heo ry  of solids is the  
de t e rmina t ion  of the energy  spec t rum.  Wi th  the aid of  the l a t t e r  the o the r  
da ta  can be ob ta ined  b y  direct  methods .  To de te rmine  the energy  spec t rum the  
average  values  and  m a t r i x  e lements ,  respect ively,  of  the opera tors  mus t  be  
evaluated .  We now want  to discuss the  problems associa ted  with these. 

The  s i tua t ion  is the s implest  in the cases where the  opera to r  to be ave raged  
over  is spherical ly  symmet r i ca l  a lound  each of the nuclei,  i. e. it depends on r 
only (the po ten t ia l  energies are mos t ly  of  this kind, e. g. the  Coulomb in terac-  
t ion wi th  the nucleus, the  average  field of the o ther  electrons etc.). In  such 
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a case averaging  over  the  angles can be carr ied out immed ia t e ly  and  the  m a t r i x  
e lements  can be ob ta ined  b y  a single in tegra t ion  over  r [9]. 

A more difficult  case is where the ope ra to r  also depends on the  angles 
and  contains  jus t  the  differential  opera tors  wi th  respect  to these  angles. An 
opera to r  of  such a t y p e  is e. g. t h a t  of  the  kinet ic  energy  and t h a t  of  the  square  
of  the to ta l  angular  m o m e n t u m .  Consider a p r o t o t y p e  of such opera tors  in 

def ined  b y  the detail.  Be our opera tor ,  which we denote for b r ev i t y  b y  u, 
equa t ion  

/ M  2 , i f r < R ,  

[ 0 ,  if r > R ,  
where 

L sin va Ova sin va -4- Ova sin 2 v a O~o 2 

(6) 

is the  opera to r  of  the  square  of the  to ta l  angu la r  m o m e n t u m .  Thus  the  opera to r  
essential ly is one of the  square  of  the to ta l  angula r  m o m e n t u m  with in  a sphere  
of  radius  R, whereas  outside this sphere ir is the  opera to l  of the mul t ip l ica t ion  
b y  the cons tan t  0. Le t  us forro the  average  value of  the opera to r  u over  a 
sphere of  radius  r o (R < ro). [ In  the  theo ry  ofsol ids  this sphere is as a rule the 
so-called e l emen ta ry  sphere (see later)] .  W i t h  (6) and  (3) we ob ta in  

w h c r c  

= ~ '  Az ~21 (l + 1),  (7) 
l 

~ 3~ ~,+1(~0)~ { i - -  4 kr o J2l + 21 (kR) - -  J l -  1~2 (kR) Jl + 2z (kR) . ( 8 )  

I n  the  detai led examina t i on  of the  weight  fac tors  A t we take  into account  the  
dependence  of the  wave  n u m b e r  fac tor  on r 0. As the wave  n u m b e r  vec tors  are 
def ined in the  rec iprocal  la t t ice,  we m a y  wri te  

b 
k = - - ,  (9) 

r 0 

where b under  the no rma l  condit ions is a n u m b e r  of  the order  of  1. Wi th  
the  aid of  (9) (8) m a y  be wr i t ten  in the fo rm 

- - - -  i b - -  b Jz 3 b . (10)  
4 b J~l+ ~ - -  +-2 

b~ 
r o 

6* 

I t i s  obvious t h a t  (10) can be regarded  a s a  funct ion of the  quant i t ies  

= y  and b, where  b solely depends on the  t ype  of lat t ice and  the place 
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oeeupied by  the valenee eleetrons in the band  bu t  does no t  depend on the la t t iee  
constant .  The  dependenee of A t on the lat t iee eonstant  as well as on the radius  
R in the defini t ion of the opera tor  z is involved in y.  In  Fig. 2 the so-ealled nor- 
malized AŸ are exhibi ted in aeeordanee with the representa t ion  of Fig. 1. 
The normal iza t ion  was earried out  in sueh a way t h a t  

,a• T A t I (Y) = 1. 
l 

Thus we only  want  to know how the ratios of the s, p ,  d, f ,  g . . . .  -states va ry ,  

kR 

l~ 
oA. 
o~- 
#e- 
~~l 

B=! 
roz  

2 

i l i  -B.lt ~ 
I 2 341"o I 2 3 

3 4 Y r O  

Fig .  2. The auxiliary quantities At'neeessary for the determination of the matrix 
element for the operator ~. The quantities in the figure ate given in atomic units 

for the t ime being the var ia t ion  of  the absolute va lue  of the weight factors  
not  invest igated.  Accordingly 

A l ' =  3zc4 2 /+1y  [tJ21+~l ( Y ) - - J  ~l (Y) J'+-~(Y)t'  (11) 

whieh is a l ready  a funet ion of  y only. 
Under  the Figure there  ate several  seales with arroves showing the places 

eorresponding to various values of  b at  various values  of  R/r o. The arrows 
marked  1, 2, 3 etc. indieate the  radi i  of the Fermi  sphere at  1, 2, 3 ete. eleetrons 
per a tom.  Ir  is elear t ha t  at  lower values of R/r  0 the  weight of the states of  
lower orbi ta l  quan tum numbers  (mainly  tha t  of the s-state) are great.  This is 
ve ry  i m p o r t a n t  f rom the point  of  view of the repulsive potent ials  beeause 
(see later)  these take values different  f rom zero only  within the  ionie core, 
whieh is a region of small radius near  the nueleus. R, whieh ean be def ined 
in eonneet ion with the repulsive potentials ,  is smaller t han  r0/2 , whieh 
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makes it plausible tha t  the weight of these s tates  great ly increases. This was 
confirmed in the case of  the Al metal  [10] tha t  carrying out  the calculation 
associated with the metallic bond,  even with the aid of an s t ype  repulsive 
potential ,  results not  ve ry  different f rom the experimental  data  were obtained.  

3. The free electron method and the difficuhies involved 

In principle the theory  of the electronic s t ructure  of solids [11] can be 
developed simplest b y  building up the total  eigenfunctions of metal  electrons 
of plane waves of the form 

~v = ei(~r), (12) 

where ~ is the wave  number  rec to r  of a free electron. In the periodic potential  
field 

+o:  
V =  _~x' Voe2~i(Ÿ (13) 

h~, h2, ha 
= - - o o  

the eigenfunetion of an eleetron can be wr i t ten  in the forro 

+oo 
yj = x, a~e i[(~+2~0),~1. (14) 

h ,  h2, h3 

In  (13) and (14) 
1)=hx hi + h2 b2 -4- ha ha (15) 

is the lattice rec tor  of  the reciprocal latt ice and fil, ~2, ~3 are the  basic vectors 
determining the axes of  this lattice. The eigenfunction ~ satisfies the Schr6- 
dinger equat ion 

A~o q- ~-2m (E --  V) ~o = 0 , (16) 

ir the a0-coefficients satisfy the homogeneous linear equations 

l E _ v 0 0  ~ /~2 1 f + 2 ~ r $ { 2 ] a  ~ ~ 'a~_0  V a (17) - -  - -  = . 

2m 

(17) has a solution only ir the de te rminant  which can be formed from the 
coefficients vanishes.  The de terminanta l  equat ion thus provides a defining 
equat ion  for E which so far is unknown ; the  solution of this equat ion  thus 
immedia te ly  gives the  energy of  the  electron belonging to the wave  number  
rec to r  L Insert ing the value of E into (17) and solving this equat ion for the 
% coefficients we obta in  the unknown coefficients of  the e igenfunct ion.  In 



86 R. G�93 

the  course of the actual  de te rmina t ion  of the energy eigenvalue we cannot  
of course take all Fourier  coefficients Vginto  account  bu t  have to select 
those the  order  of magni tude  of  which is re levant  for  the secular equat ion.  
Aceording to  (17) those Fourier  coefficients for which the condit ion 

E2~g --  E o � 8 7  [ (18) 

is fulfilled can be neglected. In (18) 

/~2 ]2 
E2~,~ - -  2 m  [2:r~ -4- Voo o. (19) 

For  metals occuring in na tu re  E2~g--E o ~ 20eV, when for ~ its smallest 
possible value  is t aken  into account .  I f  the potent ia l  is the potent ia l  of the  
ionic core and tha t  of the valence electrons without  any  repulsive potent ia l  t hen  
there  are m a n y  Fourier  coefficients V~ the order of magni tude  of which agrees 
wi th  t ha t  o f  E2~ ~ - -  E 0 and thus  the free electron m e th o d  in this form is no t  
suitable for the de te rmina t ion  of ei ther the energy or the eigenfunction. 

Le t  us consider the real reason for the inapplicabi l i ty  of the method in some 
more detail .  Retaining in the sys tem of equations (17) bu t  a few coefficients, 
( the largest  of  them),  the smallest  root  of the secular equat ion gives a rough 
approx ima te  value for the energy of  the valence electrons.  Taking more and 
more coefficients into account  the  lowest root  of the  secular equat ion does 
not  approximate  the energy o f a  valence electron bu t  t h a t  of a core electron of  
smaller energy,  while the energy of valence electrons is approx imated  by  a larger  
root  of the  secula~ equation.  Thus  the above formula t ion  of the problem is 
too general,  demanding,  t ha t  the  method  yield the energy and eigenfunctions 
of  the core electrons too. This is, llowever, not  necessary at  all, since we 
a l ready know these to an accuracy  sat isfactory for our  purpose.  The excessive 
general i ty  of  the method  becomes still more obvious i f t h e  s i tuat ion is examined  
f rom the  s tandpoin t  of eigenfunctions.  The assumption of the eigenfunct ion 
in the fo rm (14) is based on the assumption tha t  the approx imate  eigenfunct ion 
can be well approx imated  at  least  pa r t ly  by  plane waves. This is the case for 
electrons in the valence band  and in the conduct ion bands.  For  the core 
electrons,  however,  the case is essentially different.  The  eigenfunction of the  
core electron keeps its a tomic charac ter  and is no plane wave,  it  is expo- 
nential  far  f rom the nucleus and oscillates inside near  him. To approx imate  
sueh an eigenfunction by  plane waves is of course v e r y  difficult  and most  
of  the difficulties associated wi th  the method  t r ea t ed  above are due to this 
fact.  The  solut ion is obvious :  the method  has to be modif ied so as to be 
applicable to valence electrons and conduct ion electrons only, which are inte-  
rest ing for us in any  case. 
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Let  us now proceed to invest igate the eigenfunctions of valence and conduc- 
t ion electrons in some more detail. As has been ment ioned above the  eigenfunc- 
t ion  of these electrons can be well approx ima ted  by  a plane wave in the greater  
pa r t  (about  85~o) of the  e lementary  cell, as there the potent ia l  is constant .  
Significant  deviat ion f rom the plane wave eigenfunction can only be experienced 
in  the immedia te  ne ighbourhood of the nucleus where the eigenfunct ion begins 
to  oscillate jus t  like the  atomic eigenfunctions.  W h a t  is the immedia te  reason 
for this ? In this region the potent ia l  changes ve ry  rapidly and near  the nucleus 
tends  to inf ini ty  as Ze/r. Owing to the smallness of the average value taken  
over  this region the potent ia l  energy of the electron is ve ry  small (its absolute 
value is ve ry  large). The  valence electron is in a s ta te  of  higher  energy ; this 
is made possible by  the  average value of the operator  of the kinet ic  energy 
t a ke n  in the inner region for the oscillating par t  of the eigenfunction.  The 
s i tua t ion can be described in this way if the energy relations are considered 
~nly in a formal  manner .  

Ir  is due to the Pauli  principle tha t  the electrons in the a tom occupy 
s ta tes  of higher  and higher  encrgies. I t  has to be considered in detai l  how the 
difficulties associated with the eigenfunction can be overcome, if  the kinetic 
energy  increase due to the Pauli  principle is t aken  explicit ly into account.  

4. Reduction of the problem to the treatment of valence and conduction electrons 

As has been shown above the most obvious solution of the problems would 
be  to eliminate the core electrons from our t r e a t m e n t  and to simplify our method  
to  such ah ex ten t  t ha t  it becomes suitable b u t  for the t r ea tmen t  o fva lence  and 
conduct ion  electrons only. As the eigenfunctions of the core electrons ate 
prac t ica l ly  the same for the free a tom and the solid, these could, if  necessary, 
be  used for the above simplification. 

For  this simplif icat ion several methods  present  themselves.  Among these 
we ment ion  those which aim at  the  correct ion of the plane w a v e .  I-~ERRII'gG 

orthogonal ized the plane waves to the eigenfunctions of the core elec- 
t rons and achieved thus  the appropr ia te  behaviour  of the eigenfunctions 
in  the ne ighbourhood of the nuc leus ;  fu r ther  the or thogonal i ty  secures 
the necessary smallness of the mat r ix  components  of the potent ia l  energy. 
T he  second possible me thod  was suggested by  SLATrR [13]. The essence 
o f  the me thod  is to re ta in  the plane wave far  f rom the ionic core and to replace 
it inside a sphere of radius R around the nucleus b y  the l inear combinat ion  of core 
e lect ron solutions having  the energy of the  plane wave. Whereas  HERm~G'S 
me thod  has a l ready been tr ied out  in the theoret ical  t r ea tmen t  of several metal  
and  semiconductor  SLATER'S method  has not  been applied yet .  
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Both these methods require an essential modification of the plane wave 
eigenfunction in order that  the matrix components satisfy relation (18). This 
results in the loss of the most desirable property of the older methods, their  
comparatively simple structure and easiness to handle. We shall a t tempt  to  
modify the free electron method in such a manner which makes possible to 
start from the plane wave eigenfunctions of the free electrons when treat ing 
the valence and conduction electrons. 

The solution of the problem is made possible by the fact that  for the 
va]ence and conduction electrons a modified potential field can be given 

V" = V d- (/), (20) 

which possesses several important  properties. 
1. The operator �9 in (20) is such that  ir the density and the wave function 

of the core electrons of the free atom are given, the operator can immediately 
be determined with their aid. 

2. The average value of the potential field taken over not too small 
regions does not, in the regions near the nucleus, significantly decrease below 
the average value over the regions lar from the nucleus. In this connection we 
may refer to our investigations into the binding and electronic structure of the 
K metal [9]. 

3. Consequently, the eigenfunctions of the valence and conduction elec- 
trons can be well approximated by plane waves all over the sphere (including 
the 1/8 th part  of the volume around the nucleus). 

5. Introduction of the repulsive potential and the total potential 

For the calculation of atomic term values and for the t reatment  of  
monovalent metals a certain form of the repulsive potential  has been used 
f o r a  long time, the kinetic energy increase due to the Pauli principle having 
been taken into account in the form of a potential energy [6]. The potential  
of this energy is 

C t  = - ~o @ , 3  _ e~/3) (21) 

In (21) Q is the total electron density of the ionic core and ~t the density of the 
electrons which occupy states of energy lower than tha t  of the lowest possible 
energy of the electron to be treated,  l i s  the orbital quantum number  

1 
of this electron and 7 0 = ~ -  (3~2)2/3ea0is a constant.  Ashas been shown 

by some recent investigations [14] the modified potential  field obtained with 
the aid of (21) yields good approximation only if the outermost closed shell of 
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the  ionic core is ah (ns) 2 (np) 6, a so-called noble gas like shell. According t o  
GoMnXs the repulsive potent ia l  

i :T~ 2 e a  o 1 e a  o 
~bl - -  D~ (22) 

8 (2 /A-1)2  4 r 2 

is correct  not  only for noble gas like ionic cores, b u t  ir is correct  for o ther  ones, 
e. g. for a closed (nd)  lo core. In (22) Dt is the radial  densi ty  of the electrons 
wi th  the orbital  q u a n t u m  number  l of the ion and e is the  charge of the  proton.  
a 0 is the first  Bohr  hydrogen  radius. 

The above repulsive potent ials  (21) and (22) were in t roduced  with the 
aid of statist ical  methods .  Several authors  have  dealt  with their  wave-mechan-  
ical foundat ions  [15]. 

To a good approx imat ion  the atomic electrons m o r e  in a central  sy m m et -  
rical potent ia l  field and a sa  result  the states o f these  electrons c a n b e  characte-  
r ized by  the magni tude  of the to ta l  angular  m o m e n t u m  and one o f i t s  compo-  
nents,  i. e. by  the orbi ta l  and magnet ic  q u a n t u m  numbers .  Accordingly  the 
repulsive potent ia ls~vary~with  these q u a n t u m  numbers  of the electrons.  In 
solids the central  field remains for the electrons of the ionic cores a good 
approximat ion  i. e. ir remains pract ical ly the  same as in the free a tom and 
thus  the forro of  the repulsive potent ials  remains  as given by  the  expressions 
(21) and (22). However ,  we want  to character ize  the meta l  electrons b y  plane 
waves and for these the m o m e n t u m  and not  the  angular  m o m e n t u m  is well def i -  
ned. I t  is thus necessary to replace the repulsive potent ia l  by  an opera tor  which 
can be applied to an a rb i t r a ry  eigenfunct ion and leads in the special case o f  
a toms to the former  well p roved  form. Be the opera tor  q~ diagonal in the system 
of  spherical harmonics  and its eigenvalues the  repulsive potent ials  (21) and (22) 
respectively,  i. e. 

c Y ~  = ~, (r) Y~,  (23) 

where yŸ is the spherieal  harmonic  with indices l and m. I t  is cer ta in  tha t  
opera tor  q} is hermit ic  as its eigenvalues a te  real. Assuming t h a t  i t  is l inear  
too, it  can be wri t ten  in the form 

1 !  
(24) 

where M 2 is the opera tor  of the square of the  to ta l  angular  m o m e n t u m  a n d  
c~ = ]~2 l(l  -4- 1) is its eigenvalue.  Thus in the case of  atoms opera tor  ~ leads 
to the same repulsive potent ials  as the selection according to orbi ta l  q u a n t u m  
numbers .  For  a valence electron,  as will be shown later ,  it  can be well applied 
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too. The  author  has a l ready used the opera tor  q5 for investigations on the  
binding of  the Al metal  [10] and the results obta ined were in good agrcement  
with exper iment .  

To set up the total  po ten t ia l  is a ve ry  delicate task,  as the first  t e rm  of  
express ion (20) is composed of several parts  

V Vir ~_ Vie(x n + ion _7[_ eleetron _[_ Ve  x _~_ elect .... = Vkor r Vc  electron V k r r  (25) 

The  f irs t  three terms of (25) are the Coulomb, the exchange and correlat ion 
potcnt ia ls  due to the ion with closed shell. The second three terms denote the  
corresponding terms due to the  valence electrons except  the one in question. 
Here we do not  deal with the individual  terms in detail ,  bu t  will refer to t h em  
in connect ion with their  pract ical  application fu r the r  below. In any  case ir is 
ev iden t  t h a t  the modified poten t ia l  which is the sum of  (25) and (24) is a v e r y  
int r icate  funct ion consisting of m a n y  terms and thus we will describe a simpler 
semi-empirical  method  by  which ir is easier to de termine  the potent ia l  of  the  
ionic core. 

For  the t r ea tmen t  of alkali metals ItELLMANN [16] succeeded in apply-  
ing a semi-empirical  me thod  which essentially consists of the fol lowing:  
The  pa r t  due to the ions of  the periodic potential  can also be de termined b y  
using the  t e r m  values of the  a tom or ion (ionic core and one electron). Hell-  
mann ' s  me thod  will be generalized for the  de te rmina t ion  of  the resul tant  of  
the  Ÿ potentials .  

In  the  invest igat ion of the strv.cture of solids ions of its a toms with closed 
electron shells play a great  tole.  Supplement ing each shell with one valence 
electron ir forros an a tom of ion the t e rm values of which ate known f rom the  
s t udy  of  arc and spark sFectra.  Knowing the t e rm  values we can always 
cons t ruc t  a potent ia l  funct ion with the aid of which, in the case of ah adequa te  
forro of  the  eigenfunction we can reproduce the t e rm  values. In  practice,  
however ,  the method  set up in this way is too general,  because the few t e rm  
values do not  uniquely  de te rmine  the potent ia l  funct ion  owing to the great  
va r i e t y  of possible forms of the  eigenfunction.  Taking however,  the experience 
gained f rom the calculations of  a tomic and ionic eigenfunctions into acount ,  
in the rogion far  f rom the nucleus the forro of the eigenfunct ion can quali ta-  
t ive ly  be well given as an exponent ia l ly  decreasing funct ion,  provided however,  
t h a t  the  eigenfunctions of the  electrons of the ionic core are known. Then the 
r equ i remen t  tha t  the eigenfunct ion of the valence electron should be or thogonal  
to  those of  the same orbi tal  q u a n t u m  number  of the ionic core, determines 
the forro of  the  eigenfunction compara t ive ly  well. Natura l ly ,  the eigenfunctions 
o f  the  electrons of  the ionic core are generally not  available. Then  we m a y  
proceed in such a manner  t ha t  we neglect the in ternal  oscillation of the eigen- 
funct ion  of  the valence electron and take the kinetic energy thus neglected in 
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t h e  forro of a potent ia l  energy into aecount .  F rom aU this follows t h a t  thc 
poten t ia l  set up in this way for states of various orbi tal  q u a n t u m  numbers  
will differ f rom state to state.  Again be r the distanee f rom the nucleus and ze 

t he  eharge of the ion, t hen  the simplest forro of  the potent ia l  is 

z e  
V , - -  A , r " , e  -~zr (n, ~ - - 1 ) .  (26) 

T he  first  t e rm of (26) represents  the Coulomb-like potent ia l  outside the ionic 
core, and the second te rm,  the deviat ion f rom the former  inside the ionic 
core, the non-Coulomb-like par t .  Al and al are constants  the values of which 
must  be de termined with the aid of the exper imenta l  a tomic terms of the  orbital  
q u a n t u m  number  l - n  z is ah integer,  which will be de termined  in advance  in 
concrete  cases on the basis of tr ivial  considerations.  The second t e rm  in (26) 
ae tual ly  involves all the  non-Coulomb-like electrostat ic  terms as well as the 
repulsive potentials  t ak ing  account  of the missing kinetic energy. Wri t ing (24) 
in  the form 

V l = Vcoulom b - t -  o J t ~  (27) 

the  formalism of the t heo ry  set up on the basis of the former  repulsive potentials  
can be applied with the  difference t ha t  the tole of the q~l-s in it is formal ly  
p layed  by  the coi-s. Of course, we want  to emphasize tha t  the r  and the 
eors differ great ly f rom each other.  The q~ rs  occur bu t  in the opera tor  represent-  
ing the repulsive poten t ia l  while the al-s include the non-Coulomb-like interac- 
t ion  with the ionic core, the exchange in te rae t ion  with the core electrons,  the 
corre la t ion in terac t ion  due to the electrostat ic  forces and still o ther  possible 
in terac t ions  which would otherwise be ve ry  difficult  to take  into account .  

6. The matrix elements of the Hamiltonian 

The one-electron Hami l ton ian  occurring in the de te rmina t ion  of  the 
energy  of the electrons is now 

]t 2 
H . . . .  3 - -  V e  - -  r (28) 

2m 

and its ma t r ix  e lement  which can be most  generally defined is 

(29) 

= A ~ ~ , . -  e V~~.  - -  ~ ~ ~ ~ . .  
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where the  integrat ion is to be carried out  over the total  volume F2. In the  
following we assume tha t  ~2 is a so-called basic region of the solid i. e. ~ repre- 
sents the  period of  the wave  fnnct ion occurring in the  averaging and the pos- 
sible values of ~ f o r m a  quasi-continuous discrete set. Taking this into account  
the mat r ix  element of the operator  of the kinetic energy is 

~2 
A0~, --  [ f ~- 2:r~) 126£ ' (30) 

2m 

where ~~~,, is the Weierstrass symbol .  The matr ix  element of the electrostat ic  
type  potent ials  can be very  easily determined 

= 1 ~  ['Ve 2~i[(~)'-6)r] dr = V a , (31) 
V~~, ~2 J 

as ~ ' - -~  = ~ is a lattice r ec to r  of  the reciprocal lat t ice and thus (31) is a coef- 
ficient of  the Fourier  expansion of  the potential  V. (31) is in general indepen- 
dent  o f f  and thus ir need be determined only once, regardless of  the value of  f. 

The matr ix  element of  the  operator  of the repulsive potential  is 

(32) 

Taking (23) and (24) into account  and using relations 

and 

2n + 1  Pn (cos 09 ) = , +f Pr ¡ (cos v ~) P-¡ v~0) e ~m(~ -~o) (33) 
2 m ~ - - n  

p ¡  2 n + 1  ( n - - m ) •  
2 ( n + m ) !  pro(x) (34) 

and b y  integrat ing over the angles we obtain 

rq~ 

~~~, _ _ _4~ , ~  ~ (2/A- 1) Pi (cos co)t'q~ ~ ( r ) j  z ( k r ) j ,  (k'r) r 2 dr 

O 

(35) 

In (35) k - - I ~ q - 2 ~ D I ,  k ' = l ~ §  and Ÿ the angle formed b y t h e  
veetors ~ -~ 2z~ ~ and f -f- 2 :r ~9'. For  sake of clearness the quanti t ies in integ- 
ral (32) are shown in Fig. 3. 
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On the boundary surfaces of the Brillouin zones the eigenvalues obtained 
in the free electron approximation are degenerate. The degeneracy vanishes 
under the influence of the periodic potential field (at least partly). The complete 
solution of the corresponding approximation of the perturbation theory 
requires the solution of a secular equation. The matrix elements of the secular 
equation are just those of the Hamiltonian. As is immediately evident from 

r 

"y 

3. Q u a n t i t i e s  a n d  c o o r d i n a t e  s y s t e m  for t h e  c a l c u l a t i o n  o f  t h e  m a t r i x  e l e m e n t  ~~~,  Fig. 

expressions (31) and (32) $ is also a lattice rector  if in the relation ~'--~ : g 
1~' and I~ ate lattice vectors, thus apart from the diagonal terms the secular 
equation only involves the Fourier coefficients of index ~ of the potential. 
In  addition to these the diagonal elements contain only the unknown energy 
and the average value of the operator of the kinetic energy. 

I f  the one-electron Hamiltonian also contains a repulsive potential the 
above assertion is not true as ~~~, is not only a funetion of $ but also of other 
reciproeal lattice vectors and of ~. I t  can be proved, however, that  the structure 
of the secular equation will be such as if q~~~, were a function of the reciprocal 
lattice rector ~ only. I t  is very important to prove this fact as it is only this 
way that  it can be ascertained that  our theory provides the same results in 
its qualitative aspects as the other theories. 

The general eondition of degeneracy can be written in the form 

1~ + 2er~ [2 = I~ + 2era' [~ . . . . .  I~ A- 2:r ~~~)] 2 (36) 

and with our notations 

k = k' = . . . .  k~~~. (37)  
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With  regard  to (36) it  is ev ident  t ha t  the integrals in (35) are the same for all 
the ~~~, mat r ix  elements in the  secular equation.  Thus  the q~~~, mat r ix  ele- 
ments  differ f rom each other  only  owing to the different  values of o~. The  
value of  o~, however,  as is shown in Fig. 3, depends on the ~ only as the sides 
of the angles are, owing to (37) all equal and the  th i rd  side of the t r iangle is 
2~ g. Thus  we have proved t h a t  q~~~, o,~ing to (36) and (37) as well as to  the  
relat ion (k + 2~ ~)') - -  (~ -f- 2 ~r ~)) = 2 ~ (~)'--~)) = 2~ B, does not  ehange the  
s t ruc ture  of  the secular equa t ion  al though ir is a funct ion  of the three quan-  
tities indicated  by  the indices. 

Diseussion 

In  the  preceding sections ir was shown how to determine the eigenfunc- 
tions and energy eigenvalues of  the valence and conduct ion electrons b y  our  
method.  Of course, the pract ica l  applicabil i ty of the  me thod  depends on  
whether  the  simplif icat ion in t roduced  decreases the  number  of rows and  
columns of the secular equat ions  by  a sufficient order  of magni tude.  

In  this respect  valence electrons can be classified into two groups:  a) 
Valence electrons for which the overlap of atomie eigenfunctions on neighbouring 
atoms is great ,  sueh as the s and p electrons of the ou te rmos t  shell. The eigen- 
funct ion of  these can be well app rox ima ted  in the  whole e lementa ry  cell b y  
a plane wave,  i f  the  end poin t  of  the wave number  r e c t o r  is not  in the neigh- 
bourhood  of  any  of  the b o u n d a r y  surfaces of the  Bril louin zone. However ,  
even in the  la t ter  case the l inear  combinat ion  of  a few plane waves will yield a 
sa t i s fac tory  result,  as even in the most  intr icate  case, when the planes bounding  
the zone cut  each other,  there  are at most  four Bril louin zones and not  m a n y  
more reciprocal  lat t ice vectors  de termining the former,  b) As belonging to the  
second group we m a y  classify the d and f electrons of  t rans i t ion metals.  In  
our  approx imat ion  these can of  course also be described by  an e igenfunct ion 
which is free of in ternal  nodal  surfaces and here our  me thod  also provides for  
a s ignif icant  simplification. In  the  case of  these electrons a greater  diff icul ty  
lies in t h a t  the eigenfunctions of  d and f electrons keep their  a tomic charac te r  
and forro, r a the r  t han  do those of  the other  electrons.  This is due to the  
fact t ha t  the spatial  dimensions of  the d and f a tomic eigenfunctions ate smaller  
t han  t ha t  of the outermost  s and p electrons. The dif f icul ty  here lies in the  
fact  t ha t  for the description of these states such a l inear  combinat ion  of plane 
waves must  be selected, which is similar to the eigenfunctions of the a tomic  d 
electrons in the greater  pa r t  of  the  e lementary  cell (par t icular ly  in most  pa r t  of  
the ne ighbourhood of the nuclei). To this end, of course, several  plane waves 
must  be superimposed.  Fu r the r  invest igat ions would be necessary to decide 
whether  the difficulties encountered  here are significant.  
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o r I P E ~ E J I E H H E  3 0 H H O F 0  3 H E P F E T H q E C I Z 0 F O  CHEKTPA 
B METAJIJIAX 

P. FALUHAP 

371EKTPOHOB 

P e 3 ~ M e  

B pa60Te Bblpa‰ HOBbI~ MeT0~ ~n~ onpeneneHHn 30HHOF0 cneKTpa 3JIeKTpOHOB B- 
MeTaJiJlax. CylUeCTBeHH0e IIpeHMyII[eCTB0 MeT0~a, LIT0 OH II0~b3yeTC~I qHCTbIMH FIJIOCKMMH 
BOJIHflMH. ~TO ~0CTHFaeTC~I TeM~ qT0 B c21yqae II~OCKHX BOJ'IH BB0~HTCff ~0HOJ'IHHTeJIbHblH II0- 
TeHIxHaJI ~JI~ B03MelIIeHHSI ‰ KHHeTHqeCK0fi 3HepFHH CO‰ ~byHKIIH~~ 0CIXHJIH- 
pytoIUHX B ‰ aTOMHbIX ~~ep. TaKHM 0‰ 3SleKTp0Hb~ HpOB0~HMOCTH MO>KH0 TpaK- 
TOBaTb TaK~ KaK ‰ ~hi 0HH 3aIIOJIH~JIH 30HbI BpHYlYlIO3Hfl II0CTeHeHH0, HaqHHa~l 0T HH3me~. 
�91 3HaqHT, qT0 CO‰ qbyHKl[HH MeTa3IJIHqeCKHX 3JIeKTp0HOB x0p0III0 alIFIp0KCHMH- 
py~OTC~i KOM‰ HecKo.IIbKHX HJIOCKHX B0YlH. CTeHetib ceKyn~pHbIX ypaBHeHHfi Ha Bblp0>K- 
~eHHblX MeCTaX B~.IIH3H FpaHHl~bl 30H BpH3I~IO3Ha ~IBJI~IeTC~I HH3KOH. ,~eTaJIbHO HCCJIe~OBaHBI 
B pa60Te npo6neMbi ceKyJl~ipHoro ypaBHeHH~ B CBSl3H C ~0IIOJIHHTeJIbHbIM IIOTeHILHa~0M. Ho- 
Ka3aHo, qT0 MaTpVlqHble 3JIeMeHThl ~0n0JIHHTeJ'IbHOF0 HOTeHILHa:Ia TaKOBbl, qT00HH He H3Me- 
Hs KaqecTBeHHyVO cTpyKTypy ceKyn~pHoro ypaBHeHH~. 3HaqeHile MaTpHqHbIX 3JIeMeHTOB 
rflMHJITOHHaHa MeH~eTC~ B 30He I3pHJUIiO3Ha C MecTa Ha MeCT0. ~TOT ~flKT 3HaqHTeJlbH0 yBenH- 
qHBaeT 0£ HCqHCJIHTeJIbHO~ pa£ I~O 0THOILIeHHIO K cTapmefi M0~enH CO CBO‰ 
9YleKTp0HaMH. ['[0 0THOILIeHHIO K 6onee HOBbIM M(~TO~aM, 9TO He ~IBYI~IeTC~I He~0CTaTKOM, TflK Kfllr 
- -  XOTYl rio 3TOH HpHqHHe - -  Taivi BCTpeqaeTc.~ noAo6Hoe >Ke nono~eHrle. 


