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With the intermediate coupling theory — using the configuration space methods of
the quantum theory of fields — we determine the state vector characterizing the real nucleon.
We carry out our calculations for the case of interaction of the nucleon field described by the
Dirac equation and the scalar, resp. pseudoscalar meson field. Pair creation is completely
disregarded. Remaining within the frameworks of the configuration space method the recoil
of the nucleon is considered. With the aid of the state vector we also calculate the mean value
of some characteristic physical quantities. The use of the configuration space method —
particularly in connection with the computation of local physical quantities — makes possible
to form a very clear picture about the real nucleon.

Introduction

For the quantum theoretical treatment of the interacting fields the
covariant perturbation method proved to be very succesfulin quantum electro-
dynamics but it cannot be applied in case of strongly coupled fields. The
results calculated with its aid do not agree with the experimental results
owing to the bad convergence. Recently it has been becoming more and more
obvious, that the renormalization method which can be unambiguously
formulated with the aid of the S-matrix is not satisfactory, as after the renor-
malization physically inadmissable results occure. It is for this reason,
that consideration of methods, other than the theory of the S-matrix, is of
considerable importance.

In the following Tomonaga’s intermediate coupling theory [1]—[21]
is dealt with in the case of a nucleon field, described by the Dirac equation,
being in interaction with the scalar resp. symmetrical pseudoscalar meson
field. The state vectors characterizing the real nucleons are determined in
an adequate approximation. Qur calculations are based on configuration
space methods, and throughout the interaction picture is made use of.

The four-momentum of interacting fields is

P,[o] :PQ_CL (H(x)do.(x), )

where P is the sum of the four-momenta of the individual interacting fields
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and thus the operator of the infinetesimal displacement for the interaction
picture operators.
According to (1) the energy-momentum eigenvalue equation is

Pulo]|o> =M,[6>, @)
where in case of a neutral scalar coupling
Hx)=g:%(x)yp(x)P(%):. (3)

In case of the symmetric pseudoscalar field pseudoscalar coupling according
to the Dyson-FoLpy theorem [22], [23]

i _ _ ~ _ _
H (x) = zi 2By V2790, P+ 9y, V2 T 98, DP* + $7.v;5 1,90, Ps| ¢+ +
118 Gp@oor oy, )
2 Mc2

where d-like interaction terms were neglected, 4 serves for the pair suppression
suggested by BRUCKNER and others [24], [25], according to BRUCKNER its
most probable value is 0,2. Here : : denotes, as is usual, a normal
product. It is known that the pseudoscalar coupling is preferred as against
pseudovector coupling owing to its renormalizability. Recently the possi-
bility of the renormalization of pseudovector coupling was also suggested
[26], [27]. Thus the substitution 4 = 0 is justified too.

The state vector of the field according to the configuration space method
[28], [29] applied here (detailed literature in the latter) in case of a nucleon
and neutral scalar meson field is

nn.m

o>= > @ (;—) [J‘\ A . R oA T S
¢ .

m
Iy doy, (&) 1T yPd oy, (x) - 11 doyc () d 05 (¥)
<x1,...x";x’l,...x’"’;yl,...ymya>, (5)

in case of a nucleon and symmetrical pseudoscalar meson field
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Here
« —>
(5]
a3 _
B8 x, d9x,

The state vectors and through them the amplitudes are defined by

xSy Ly s = (nlatml) () (&) L. D) (a7,

P () D () PO (y) L P (y™) [0 > (M
resp
R R L S I T LA L le ST A L
=@ mt I m-Imd3l) T P (A1), .. P (a]) L. PR (L)
LB (Y L DO ()]0
resp.

P () [ 0> =D (=) 0> =P () [0> =0, <0[0>=1 (8)
where l 0 > is the vacuum state:

P ) [0 =/ () [0>> = B{H(x) 0> = D*(x) [0> =0, < 00> =1,

Solving the eigenvalue equation (2) just means the determination of all
the amplitudes < x%, ...|s > occurring in (5) resp. (6). In the following
weshall determine these amplitudes in a suitable approximation, With
the help of these amplitudes we may — since they have a direct probability
meaning in the coordinate space and at the same time determine also-
the number of mesons — form a clear picture about a real nucleon. Qur picture
can be completed by determining the mean value of some physical quantities.
characterizing the system. From this point of view the local quantities are
of particular interest. Thus in the environment of the real nucleon, the mean
values of the meson potential, the electric charge density, as well as the
energy density will be determined.

The intermediate coupling theory

The intermediate coupling theory is the variational method in the
quantum theory of fields. According to this instead of the exact solution
of the eigenvalue equation (2) only the mean value of —ic<(o [P, [G][o‘> is.
minimized, satisfying the condition < ¢ E o> = 1, with the help of suitable
trial functions. In this paper pair creation is disregarded throughout ; thus
in {5) resp. (6) — and everywhere, where this may occur in the course of
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the calculations — zero is written for all amplitudes < &1, ...; 2’1, ... ‘ o>
containing at least one antinucleon.

In the following we examine such states in which a specified number
of real nucleons (say A) is contained. Then owing to the neglect of pair creation
in the state vectors only such amplitudes can occur which characterize (apart
from possible mesons) exactly A4 bare nucleons. We carry out our calculations
first for the case the nucleon and the scalar field.

1. The nucleon and the neutral scalar meson field

Our aim is now to determine the state vector describing 4 real nucleons
and to calculate for this state the values of some characteristic physical quan-
tities. Neglecting pair creation, from (1), (3) and (5) using the formulae (7),
{8) as well as the properties of the functions S and A occurring in the com-
mutation relations we obtain :

<0|Pﬂ[a]ja>—_—ZiA(—i--»n[...J’<og 21, x Ayl Ly

hel

[

A . n .
My,do, («) 11 dﬂjd Opj ().

RS 9 n“ 8 1 A 1 n
~i— 2%7—{_2 Syf <Al ..xds L, iyt o> —
"
NA—1
—gﬂ%-—z'(n+1) jda,,(x)( ) J<a’xx2 yhoooyt >
n
A n } .
g Odo, (x)1d do, (y) <x,x%...x% x5y, ...y 0> —
(AOT S ' s :
—g— —>n%|do,(x) [ — J j/a[x,x cexts Yt Loyt >
4 n
A n . )
172 S,’,)dov,(x)szﬂjdoﬂj(yf)<x,x2,...xA;y2,...y”[cr>. 9)
i= -
Similarly
<ajMfa>=z'n(i)Atf...j(ﬁL) ‘f...‘f<0[x1,...xA;y1,...y">
n g (2 c (2 o

Y9 do, () - Md,yd o, (y) < &, ... 545 9% ...y o>, (10)

where M = ﬁL g D d, & do, is the operator of the meson number. Similarly
cn
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[L) f . f (n+1)%< ol ... x4 %,y .y

hcl s 5

<o|P@)|0> =N @A

A n
- yPdo,(x) Nd do(y) <aby...x89, ...y o> +

+%'(iy\j...j

o

it -
(_ﬁ—J j...fn‘r‘2<0\x1,...xA;yz,...y”>
c ¢

A n
HyPdo, () 1 dydo(y) <<al,...x% x,y% .. .9 0>, (11)
j=2

The normalization condition is now

<olo>=1=Y@"]... j[.i—

n [ g hc

n U
j...j‘<0}xl,...xA;yl,...y”>

A n
HyPdo, (x) Ndydoy,(y) <ab,...x4% 9%, ... y" o> (12)

In the above expression ¢ is not affected by the differentiation. Later when
going over to the plane ¢ — t = const., the substitutions

d,—2(—A4+ p?)*
—ih8,—>ihy,y; 8, +ihy,x
—1hB,—>ih(—A4 4 u?)” (13)

may therefore be introduced to advantage. According to (7) and (8), because
w and @ are operators in the interaction picture, these are permissible.

a) The intermediate coupling theory without considering the nucleon recoil

Disrecarding the pair creation our equations are yet exact. In the fol-
g g P Yy
lowing a single real nucleon is investigated and we assume

<m0 =G (o) 9 (@) TTF(y) . (14)

The functions ¢ and f may also depend on o, which can be chosen arbitrarily,
however, we do not especially denote this dependence. Substituting (14) into
(9) we obtain

<o|Pu[a]|o > = YC[a]C, [a]{Pu+ nku}"{“
+ X (n+ 1)%C[6]Criq[0] au +

+ X% CR[0] €, [0]Bus (15)
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where

pu=1i ¢y (—ik)dgpdo, if¢r,edo,=1
ko= [ frd,(—iR)8,fd,, - [f*d,fdo, =1
he 5 he 5

w=—"5 Jdo,pef, b= —5 [dopgfr.  (16)

C g
The normalization condition < o 1 g > =1 is fulfilled if
NMC¥C,=1. 17y

We now go over to the plane t = const. and change denotation, so that x,
¥ ... etc. are now the vectors of the threedimensional space; dxv = dx,dx,dx;.
Besides, the mean values of operators at an arbitrarily chosen time will be
denoted instead of by <C ti Q|t> frequently by < Q2>. Neither will the
dependence on time following from the transition ¢ — ¢t in (14) be denoted.

Taking into account the condition (17) and varying — ic¢ <P,> with
respect to C, we obtain

CAE+ne—W}+Coy(n+1)2a+C,_ n¥a*=0, (18)

where
E:’C‘Ih:j‘@ (hecyd,+ Mc)pdx,

3
£ Z%h =2(f* (=44 u)fdy,
«=u=g[gofdz. (19)

Transforming equation (18) according to the method of GLAUBER and Lut-
TINGER [3] to the problem of the harmonical oscillator, it can be easily solved.
The solution is

aa*

WO =E+4 ve — , (20)

€

n—v+i

04}

(0% —e*n?ci; v ()% (nl)(—1)"vH (a*
n 1=0 l!(’l!——-l)!(n__y_’_l)!

With the aid of the solution thus obtained the mean value of the meson
aumber operator (10) can be calculated in the »-th state. From (14), (16) and
(21) we obtain
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(M) = ﬁ“;i 4. (22)
&€

Now we determine the meson amplitude in the ground state (» = 0).

For this we vary W'® with respect to f. The condition (16) need not be taken

into consideration when varying, because f is determined by (20) except for
an indefinite constant. Varying (20) we obtain

_ [opfrdx

PP — S (=A +ut)f =0, (23)

[ (—A+p)fdx

the solution of which 1is
F@) =a(—=4+ )" o) g @). (24)

From here we can already calculate the mean value of the meson potential
in the ground state. Substituting into (11) and (16) the quantities deter-
mined above, we finally obtain

(D))= —g(—A-+up) '§(x)¢ () (25)

as expected. Using (24) the mean value of the meson number operator in the
ground state according to (22) is

2 Y
M>= 8 (Go(—4+ud)i . 2
(M 2ﬁchﬂio( +u) i pedx (26)

The energy of the fields from (20) and (24) is thus

2
W<°>=E‘g?.8¢¢(—d + ) Podx. @7

Finally minimizing this with respect to ¢ and taking into account the norma-
lization condition (16) referring to ¢ we obtain that the energy of the fields
is minimal, assuming

(Reyyyd+y, M2 —g?y, (— A+ ' pp)p=121¢. (28)

According to (7) here and further on for similar equations only solutions
giving positive frequency are to be taken into consideration.

As regards the interpretation of the above formulae the following
idea is due to G. Hemer [12], [13], [20], [21]. It seems to be clear at
once from (27) — at least qualitatively — that for some suitable g,
W has a minimum in case of a concentrated ¢ packet. This has of course
to be determined from (28). Thus the following idea may be formed about
the real nucleon : each real nucleon consists of a core concentrated into a



30 K. L. NAGY

small volume which is swarmed around by mesons. When the nucleons are
treated in other calculations as plane waves, then these plane waves have
nothing to do with the present ¢ — this is always concentrated into a small
volume — but it describes simply the centre of mass of the ¢ packet.

The working out of the qualitative picture requires naturally detailed
calculations. The result of such calculations does not seem very convincing.
Ensurance of the nucleon concentration requires an unusually high value of
g and on the other hand as was shown later by HEBER the recoil of the nucleon
also counteracts concentration (see further below).

The other more common possibility is the renormalization. Indeed, the
interaction Hamiltonian [3] completed by the term —dJMc%py can be easily
checked to give back formulae (24)—(26) unchanged, expression (27),
however, is modified

2 ~ —
Wo —F— % (pp(—d+p) 'podx —oMe (gpdx,  (27)
where now in E the experimentally observed mass occurs. Assuming
2 v — G
OM=—E_ (op(~d+u) ' ppds|[Gpds (29)

the energy of the fields is just £, which has a minimum if ¢ satisfies the energy
eigenvalue equation

(heyyyid;+y, Mc)g=12¢ (28)

containing now already the real mass.

The mass correction M, however, depends strongly on the form of the
bare nucleon, showing that our solution is not exact, the trial function (14)
is too simple, Nevertheless accepting the normalization as an approximation,
according to the foregoing we may form the following picture about the real
nucleon in a coordinate system moving with the nucleon. According to (20)
and (27) the total energy of the field is Mc?, where M is the real mass of the
nucleon. According to (26) if the state function ¢ of the bare nucleon is nor-
malized to the volume }'the mean value of the meson number is g2/2 Ac u3V. (25)
gives the mean value of the meson potential as —g/u? V. The mean value of the
energy of the mesons surrounding the bare nucleon is from (16), (19) and (24)
me?, their momenta are zero. From (15) follows that the mean value of the
momentum of the field is also zero and from (29) that the mass correction
is OM = —g%2c2V p2.

® k%

Our method may be applied without encountering difficulties to the case
of many nucleons as well. For the amplitudes, similarly to (14) we now assume:
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(aty o ooxfsyl, ooyt ey =CLp(al, ... x“‘)ﬁf(y"). (30)

Owing to (7) ¢ must be antisymmetric. Repeating our calculations with the
trial function (30) instead of (24) we obtain

f@ =a(—=44 )" 49 (=) e ),
o (x)p(x) = fAAIJ P(x,x% ... x8)yPda?. . yPVdaxdg(x, a2, ... x%) (31)

from which the mean value of the meson number operator becomes
2 42 .
(My=8" (Go(—A+p) i ppds (32)
2%h¢
and the mean value of the energy of the field
g2A4% _
IV(O)ZAE_A2 j(p(p(-A +u) loppdx. (33)

For atomic nuclei in zeroth approximation gp = 1/V = 3jdrg mw A.
In this case W7 is indeed proportional to 4 and the avarage meson number
(32) becomes.
2 42 pe

g .
M = R A ]f = U, .
M 2he V ud dmhe p=n

b) The intermediate coupling theory considering the nucleon recoil
Now the recoil of the nuclon will be considered. This may be done

remaining within the framework of the method, by the modification of the
trial function (14). Considering the recoil be now

a3y ey |t = Cog () I f(y' — ). (34)

Taking into account the normalization conditions
. 2 .
NexC, =1, jcpy4(pdx=1,»ﬁ—;jf*(—d—}—,uz)%fdx:l (35)

[compare equ. {16)] and calculating the mean value of the momentum of the
fields from (9) we obtain

<Pi>:§¢y4(_iﬁ)ai¢dx' (36)
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i.e. while according to (15) the total momentum of the field depends also on
the momenta of the mesons, here the mean value of the total momentum of
the field is determined only by the bare nucleon. Hence we may say that
when a meson is emitted the momentum of the bare nucleon decreases to just
the necessary extent (see Appendix).

Let us calculate the mean value of the energy. Using (9), (34) and (35)
we obtain

(P = X CIC,(B+n(e— B) + X CiCpm (n+ Dba+ Y CEC,ynéa,
i 0 7 m -
‘where [compare (19)]

E={g(hey8,+Mc*)pdx,

e =2[f*(—~4+u)fdx,

a=gfO0) {ppdx,

f=he[p@)yp@)ds [ f*(y)8,f(y)dy=—ihi[f* Vfdy.

(38)

Repeating the calculations carried out in the first part we obtain successively

WO —E4»(—f— 22, (39)
e—f
aa* v ! 1 —p n-v+1{
W — ey N (PDARDE(=DT ( a* ,
G e X o=l =TT s = (40)
(MY — 2% (41)

(e —B)*

Varying (39) with respect to f we obtain in the ground state

f(x)=a 1 8 (x). (42)

—A + p* 4 %i.v)

In the following only nucleons at rest will be dealt with (i = 0). From (39)
and (42) the total energy of the field is obtained as

WO —E— £ ([Godap o) (—4+m) d(@dx.  (43)

Completing the interaction Hamiltonian (3) for the sake of mass re-
normalization the second term of (43) can again be made to vanish if
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oM = —

2
S Jorda [0 (—A+m)7 s (x)dx. (44)
c
Because 0M is yet weakly depending on the form of the bare nucleon, the
solution is exact only for particles of infinite masses, in other cases it is an
approximation.
The mean value of the meson potential from (11) and (42) is thus

(P()>=—g [ ppdx(—4+ ) ¢ (x) 7,0 (45)

and the mean value of the meson number
2 3
<M>=—2%(j§>¢dx)2f5(x)(—4 +u) P d(x)dx. (46)

Summarizing the results : after renormalization in case of a real nucleon in a
coordinate system moving with the nucleon the total energy of the field is
Mc? and its momentum zero. The mean value of the meson potential is —g/u?V
and that of the meson number infinite.

For the determination of the meson-mode belonging to the »-th excited
state of the nucleon we obtain from (39) (i = 0):

s = |2+ 25 a ey 22 (s +,u2>%]‘l 5(),

cag
where 1 is the Lagrange factor belonging to the normalization condition
referring to f. In case of strong coupling the present f agrees with (42), namely
then only the second term of the bracket remains (a ~ g).
Let us finally examine the energy distribution in the environment of a
real nucleon in the ground state. Let us thus determine the mean value of
the energy density: '

1 , _ _
e==§[V¢V¢—84¢34¢+#2¢21+ﬁcw(7.-6,-+%)w+gww‘1’—

—O0Mcpy:

Similarly to the preceding methods we obtain with the aid of the state vector
determined before

o> =%(ywdx)zja(xl)n«p(xl){v<~A )8 (x— A1)V (—4 +
)8 (a— ) (— A+ )6 (5 — &) (— A+ )1 (x — )}t +
+hep(x) (0, + %) p(x) — §j¢¢dx—¢(x)¢(x)(-A’+M2)" 0 (%) |y =0 —

— g?zﬁwdxti(x)qﬂ(x) (—4"+ )7 '8 (x) |xr—g — S M c2p(x) @ (x). (47)

3 Acta Physica IX/1—2
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According to (44) the last two terms just cancel each other. It can be
similarly seen, that forming f@d x, the first and third terms also become
zero. Compensation of these terms, however, does not takes place locally, thus
finally

<e@»>=ﬁc@@)w@i+»o¢@o+€;5¢¢dx{§¢¢dxj¢cﬂnuwu»

Hu+7;§;Tr+m]«—A+mrww—ﬂﬂ—ﬁ+mrwu~fo—

— P (®) @ (%) (— A" + p) 716 (%) o} -

Hence the energy density depends — with the exception of g — only on the
form of the bare nucleon. If this is prescribed, then from the above equation
the energy density can be determined.

Earlier BaaBna [30] carried out calculations concerning the theory of
cosmic showers assuming, that the energy of the nucleon is concentrated into
two regions, in an internal region of the order of a nucleon Compton wave
lenght and an external meson region of the order of a meson Compton wave
length in the proportion of (1—¢&)Mc? resp. eMc2. Let us examine now how
much energy falls — according to our calculations — in the case of our present
model into the individual regions. Let us suppose as an approximation that
the bare nucleon is pointlike : p(x)y,p(x) = é(x) and f(?)(pdk: 1. We then obtain
a lower limit for the energy falling into the external region. Thus (m is the
7 meson mass, g = 5e, M = 6,8 m):

2
g2 e'ﬁm g
f <o(®)>dx =—2>— (m4+M)ctr~-—=—043Mc*=
. A2 4abhe 2 dnhc
== (37:)
= 0,08 M 2.
* % X

Let us deal now with the many-nucleon problem. As a generalization
of (34) let us take the trial function in the following form :

A
<x1,...xA;yl,...y"]t>=Cn<p(x1,...xA)[nI%:‘f(y"——xf) . (48)

j=1

Here according to (7) ¢ is antisymmetric. The normalization condition (12)
is now
3CCIm =1,
I(ny={...[ B(a,... x4 @(al,... x4 flqyfl")dx(")tp(xl, v x4),
10)=1, (49)
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where
B(,... x4) = ;2 : [A (1 () (=4 + u)% f(3)dy +

+i2,.ff*(y—x‘)(~4' +u)‘/’f(y—xf)dy]=1)+b(xl,...xA). (50)

i#j

According to (9) the mean value of the total momentum of the field is

(Py=XCC, (... B(at, ... x?)" g (a1, ... x?)

n

A A A B
H yg')dx(')—; 2’ g(p (xl, e xA) . (51)

Let us determine the mean value of the energy. From (10) we obtain

(P> = NCEC,{4E(n) + ne(n)) + 3 ChCpiy (n + 1) a(n) +
13 n n
+ NMC¥C,_,n%a* (n— 1)

A
Emy={... (B, ... s ¢(x,.. .24 [TyP d 2D
(heyP ¥ 8 + 9P M) g (al,...5%)
A
em=2(... (B, ... 28" 1p(x, ... xA) 1y dxD g (a1, ... x4)
F);ff* (y =) (=4 + ) f(y —&)dy

A
a(ny=Ag{...(dxB(x,2% ... x4)" ¢ (x, 2%, ...xA)iZyg")dx(")q)(x,xz,...x“)

A

| Zf =)+ (0)], (52)

j=2

where the terms corresponding to f of the expression (37) were omitted. Con-
sidering the normalization condition (49) and varying we obtain

Cofa E) 4 g o€ (ni = W]+ G 4 1) 2 g, e dln=D)
n

L(n) A L(n) L(n)

(53)

Now the coefficients of the C,-s depend yet on n. The coefficients will all be
independent of n, if it is assumed that when substituting (50) into any integral
of (52) b may be neglected against D. Further be f normalized: D =1. Thus

3*
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A
ot E={.{p@h. ) [T yDdx® FcyPyV8,; + yP M c?) @ (x1,...x4) ,
£(n) A [T ot '
—>e=2{...{@@, ... x) 1 yPdxD g (x, ... x4
2y — ) (=443 fly —x)dy,
J

a(n) A .
L >a=Ag{...fdxtp(x, ... x4) [ yDdaD g (a1, ... x4)
i-2
a*(n —1)
L(n)

Using these expressions the solution of equation (53) is as before

;;f(xl — ) +f(O)J , Sat. (54)

aa*
WW=AE — —— +ve,
&
aa* v (,,!)Vz(n!)%(_l)n—vﬂ (¥ PVt

C») = ¢ 22 (55)

m Uy —D(n—v4+ D)

f can be again determined by the variation of W. Thus the solution is for the
ground state

J@) =a(—4+p) 1),
if only gy, ~@
Using this the total energy of the field becomes

2 A
W("):AE—%A foo.fdxp(x, a2, ... xA)'H 50 d 2D @ (x, 22, . . . x4)

S (—4+ )t (x—2),  (56)

[\/>

]:

here the self-energies were left out. Finally varying W'” with respect to ¢
we obtain, that the total energy of the field is minimal, if

2 [h cyP yiDai + ?f,f) M2 — g (—AD 4= p2)= 2‘ 0 (xf — x'))] p(xl,...x4)=
J ‘ﬁ
=}.<p(x1, e xA), (57)

where 4 is the Lagrangian factor belonging to the normalization condition
(49) [I(0) = 1]. In the equation resulting from iterating (57) as it has been
shown by G. MARX and G. Szamos1 [32], [33] relativistical repulsive and many-
body forces occur which might result the saturation.
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The mean value of the meson number from (11), (48), (49) and (55) is

a* 2A s
(M>= - ZL 6(y)(—A—+—[u,2) /zé(y)dyﬁ\—’A<M>one nucleon »
g2 24¢

hence our approximation used in this part means essentially the omission of
the mesons giving rise to the interaction between the individual nucleons,
against those belonging to the self-fields of the nucleons.

According to the foregoing the divergent self-energies can be approxi-
mately eliminated by mass renormalization, other quantities, however, remain
divergent. For the elimination of these the usual method is the cutting-off
method. This can be explained according to the considerations of part a) by
attributing to the bare nucleon a finite extension. As against this from the
calculations performed taking into consideration the recoil, it is evident that
if the cut-off is to be justified, (3) cannot be of general validity.

Thus we obtain from (46) for a nucleon at rest if the cutting-off is carried
out at a value du = % A~ 6,8 u with g = 5e

{(M>=10,09.

2. The nucleon and the symmetrical pseudoscalar meson field
In our calculations here we consider only the recoil of the nucleon,
simplest calculations not taking into account the recoil can be carried out

similarly. Let us first of all consider the mean value of (¢ ] P,[o] l ).
We obtain from (1), (4) and (6) similarly to (9)

. (g \nt+nTene _ N
<a|P,,[a]|a>=Lf2[»Zc—) J...j(olx;él..f” sl LLL L LD

. Hdvi dgvi (El) n dvid Oyi (77i) Hdvk dovk (Ck) yvdav (x) .

i 3] nt g n— 3 n il . £l nt. a1 A= 1 - B

{ax“+2655+2377L+28§ﬁ;<x’5’5 sl ey 0 L1,...¢ ]0->

_ ig — A_i“n++n“+m . . o L X
2xc Jdaﬂ(x)z[ﬁc J...J<G‘x’§’°"§ /LN T S AN

g

3t
dx,

n* n- o —
11 dvid Oy; (51) nn dvidavj (n])ﬂdvkdavk (Zk) Yo Vs { V2 T (n+ - 1)1/2 )



38 K. L. NAGY

clxy B, Tl L P e F V2 Ty (nm— 1)
Ky 8, s, o L L L o) Ty (e — 1)
»-(x;&l,... il ot x, 0 L Loy b 4o —

(x) > ( : nwnwm_l‘[. ) .af{m

<0|x;x,§2,.-- /L RN

Hdvidgvi(f)ndv dO' (nJ)HdvkdO'vk(C)
i2
Kxyw, £, ET L, LT L L ey (58)

-+ analoguous terms for n— and n® + 2 mesons more -2 mesons less. Here
the exclamation mark over -—— indicates, that the succeeding amplitude
x

should be differentiated with re:pect of the meson coordinate only. Further
on the last two terms of (58) which are there not given explicitly are
everywhere omitted, because they contribute nothing to the approximation
to be dealt with below. In (58) x, &, , { etc. are again four-dimensional
vectors.

Before making an assumption concerning the trial functions, it is worth
while to consider the following. A bare nucleon can be characterized by its
parity, isotope spin and spin and these values remain the same for the real
nucleon.

Earlier for a scalar field these requirements were fulfilled automatically,
here in the choice of the trial function special attention has to be paid to these
considerations. The only possibility to avoid the difficulties encountered in
the calculation owing to this fact is not to allow around the real nucleon an
arbitrary number of mesons.

Calculations were also carried out by taking into account several
mesons [17]. To illustrate the configurational method we go only as far
as the one-meson states, however, the recoil as well as the term of the form
pypD? of the interaction energy are taken into account. Accordingly, only the
following amplitudes can be chosen as differing from zero (again in the case
of a t = const plane and by changing notation) :

(x|t) = Copu, 4 (%, o /o)
s8> =G ) 2L fiu w10 g (et +
+ V% fl,l (‘f —x,1, 1) P, — % (x’ 1/29 _1/2)
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Cxs Lty =G, V% ngm(c—x, 1,0) g3 15 (6 3/g0 Va) +

2
+ )5 AR e e
for a proton and

(x [ty =Copy, —n (%, 5 Ys)
2 {1/ 1
{x37 {t> =(, V? H/'gfl,—l (n—x«,1, 0) gy, 4 (=, 1/2» 1/2) +
2
+)3 f w1 e e —1/2)}

{x;C]ty=0C, V% H//"Eflo (£ — 2, 1,0) @y, s (Y5, Yo) +

12
| a0 =2 L0) g (e

(60)

for a neutron. Here the outher indices of p and f mean the isotope spin and
its third component for the nucleon resp. the meson. By our choice the
problems related to the isotope spin have been solved. The inner indices of ¢
refer to the angular momentum and its projection, and have in the usual
representation of the y-s the following form

@ 0

0 —%

q72 ] 0

1y 1y 10 1 1y | —9®
P, % (%, sy o) = 0 %, % (%, Yy —1o) = 02
0 0

0 0

0 0

Py v, (Y, %) and ¢y, o, (Y5, — %) are the same, but their elements
differ from zero at the lower 4 places. ¢, and ¢, are arbitrary spherical sym-
metric functions. Each ¢ is normalized to 1, and they are orthogonal to each
other. For given ¢;, the values gp, py, ¢ and f@ (hAey: 8; - Mc? ¢ dx
are independent of the indices of the ¢-s. This will be made use of later on.
It is to be expected that the inner indices of the functions f will refer also to
the angular momentum and its projection. For the moment let us consider
them simply as distinguishing indices. Be the f-s normalized and the functions
with different inver indices orthogonal to each other:

he
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[f¥e (2, 1,0) (=4 4 u2)% fo(x,1,1)dx =0 ete. (61)
In this case the normalization condition {t|¢)> =1 is the following :
CiCy+CEC =1. (62)
Substituting (59) into (58) and making use of what has been said about the
¢-s and f-s we obtain

C (P> =CrC,E+CEC (E +¢) +CECra+ CFCya* +-CHCyy, (63)
i

where

E=f¢(ﬁcy,6,-+Mcz) pdx.
11 2 12 o At
= 2| 0 (A fia (1.0 Ao (A0 (1,D) +

2 2
I A+ ) i (L) L D) (A 4 ) i (LD d

¢ =i{/—g /%“1,1(1,0):‘ §fia(%1,008,0(x) dx +

+ /% /%al,l(lel)iffl,l(x’l’l)aia(x)dx+

+ /%— /%‘al,o(l,o)ijfl,o(x, 1,0)8; 6 (x)d x +

/1] 2
+ /—3~ /*3_“1,0(1,1):' jfl,o(x’ L,1) 8, 0(x)dx} ,

a4 (1,0, ={0,0,}2},

a1 (L, 1), = {Vi’ —i st 0} )
a0 (1,0); = {0,0,1},

a0 (1,1), = {1, —i,0},

2
y=4i-8 2b[

S (il DfaE L)o@ dx +

2
3
1
+ i
3

w| b W

in’h (., 1,0) fi1 (x,1,0) 6 (x) dx +
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11
+§~§jﬁﬁmLMAﬂ%Lm6de+

tg g [ e DA 115 (5],

b= (podx. (64)

Here it has been used that [ §y,7;¢9dx~-0, and also the term correspond-
ing to the f of equation (37) has been omitted.
Varying (63) with respect to C*, and considering (62) we obtain

Co(E—W)+Ca=0,
Cpa* +C,(E+e+y—W)=0. (65)

This system of equations has a nontrivial solution if Det 7~ 0. From this the
lower energy value is

4aa*
8+7_(8+7)V1+7Ta-2 o
W—E+ N CE--2 (ee)
2 ety
and the amplitudes belonging to this state
*
Ce — 1 ¢=-—-" g, (67)
l/ aa* ety
14+ —
(7 +¢)

From here it may be seen, that the approximation used in (66) for the ex-
traction of the root does not make use of the small value of g, but of the fact,
that the probability of single-meson states is small, compared with the bare-
nucleon state. On the basis of the conclusions to be drawn from the preceding
paragraph we may, however, hope that by permitting arbitrarily many mesons
we would obtain essentially the same energy.

The determination of the f-s remains to be carried out. We determine
the f-s also here from (66) by variation. The auxiliary conditions (61) should
also be taken into account for the variation. However in our present approxim-
ation they are disregarded, although the f-s obtained as solution are to satisfy
the conditions.

The solution of the set of equations obtained by variation is

fun @10 =2 =4+ w A b0 e (1000,
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2 —1
fuae L) = (At H Ao b 686 et (1,18, 00,

|

2 -1
fio(®1,0)=a (_-A o Ebo (x)) 0¥y (1,0),8, 8 (),

—1

Sro(x 1L, 1) = (_A + p2 42 £ 2 b4 (x) ato(1,1);8; d(x).
c

2M

e

(68)

‘The normalization factor @ can be determined from any f and we obtain always
the same value. Similarly we may satisfy ourselves about the fact that the f-s
of different inner indices are orthogonal.
Using (68) finally the energy of the field is in case of one proton
W=E— (—g——Jzif 8, & (x)
2% ) 2

2 —1
A2+ i—8 po@x)| 8 6()dx.
+ u? 4 M o2 (%) (x)d x

(69)

For a neutron the calculations can be carried out in the same way. Finally
we receive back the functions (68) (f;, — f; _,) and the energy (69).

Formulating the state vector of the total system from (6), (59), (60)
and (68) it may be seen, that the determined state is the eigenstate of the total
angular momentum and its projection, further on because the mesons are
created in the p state also of the parity with correct eigenvalues.

In the present approximation the state vector characterizing the real
nucleon has already been determined, so that now the value of an arbitrary
operator characterizing the field can be determined. Below the magnetic mo-
mentum of the nucleon is calculated. The operator of the magnetic momen-
tum is

eh — 1471

ame) ¥ g

M=: awdx+§£—f(¢[x,V]¢*~@*[x,V]@)dx:
c
(70)

From the obtained state functions we obtain the relation found by Sacus [45]

eh 4
= 11 — Z=C*C,| . 71
(M Sp 4 (DM oy ch[ e ) (11)

The numerical values of the magnetic momentum with a cutting off at du

=15

become in case of
dnhe
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(M>p= 0,98 (MHy=—0,40  C*C, =032 if 6=4
= 1,04 = 0,29 =0,19 =3
= 1,04 — 0,14 —0,08 —2

In case of A = 0,2, :
(M>p=1,02 (PM>y = —0,20 C¥C, =014, 6=3.

These are in accordance with the earlier statements of SACHS: permitting
only single meson states we obtain for the anomalous magnetic momentum
of the nucleon wrong results. Taking into account the term of theinteraction
energy proportional to 1 does not alter this fact either.

Let us determine now the electron charge distribution of the nucleon.
Let us form with the determined state vector the mean value of the charge
density-operator

1417,
2

o(x) =zepy, w+{j¢*d4¢:

Similarly to our other methods we obtain by considering what has been
said about ¢

_ 1 _ 2
(0 ))p = CCoeh () 729 (3) +  CLCiF () o) + = CE Gy ;j{
';_ff,l (x—xl, 1,0) 2 (—A + ,u2)1/2f1,1 (x—xl, 1, 0) +%f¥,1 (x—xl, 1, 1) .

2 (A + )% fi(x— 2L, 1L,1) g (a1) y, 9 (21) d 2T,

2 _ 2 1
Co@)>n=—C¥Ciep(x) 7,9 (x) —_Cikcl—e f "ff,—l(x“xl,lso) :
3 3 ke 3

22(—A+ )% i, (e — 21, 1,0) + %f,lk,—l (x—at1,1) - 2(—4 4 p2)*-

Si-1(@— 2L L1 ety e () dat (72)

From here making use of the fact that the g-s with the same inner indices are
identical functions, it can be read that the mesonic charge cloud of the real
proton and neutron, — disregarding the sign — are the same.

Co®)op+<e(®)>n=ep(®)y,0 (x).
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Finally from (72) in case of A = 0 with the determined quantities the mesonic
charge cloud becomes

2 —nr|x—x!] — al
eCtC,—8 p J 5 e 8 K, (u|x—a|)

9x; |x— x| Bu; |2 — 23|

dnkc 8n2 x2 pa) v, @ (1) dx?.

Let us finally calculate the mean value of the energy density of the field.
With the aid of the determined state vector and in the approximation used
in equation (66) we obtain that the energy density of the meson field is in the
environment of the real nucleon

231 (-
@@ =] Sy [P e {80, (—a 4w s

8,8, (A + ) 18 — =) + VAT # 8, (— A+ )t
S—a) =4+ p29; (—4 + %) 7' (x—2) +
+u28; (—A44p2)~18 (x—xY) 8, (—A+u2)~16 (x—=«') Jdxl. (73)

Indeed its integral over the whole volume agrees apart from the sign to the
self-energy term of expression (69). In analogy with (47) it may however be
assumed that taking into account the many-meson states the energy density
of the field can be better approximated by the expression

@ @>=(E] 5 [ rr @ (0,0, (At s =2 0,5,
(A4 (o) 0 (~A-+p) 10 (e B (A b (x- s
(74)

the integral of which taken over the total volume agrees also with the
second term of (69). From (74) in case of a point-like nucleon with
g4 7 h ¢ = 15 we obtain

[ Co(x)ddx=—8 099Me=148Mc,

B2 dmhe
x'Z(m)
namely only the energy of the meson field extends to the considered part of
the space. Since the total energy of the field is (neglecting the kinetic energy
of the Dirac field) Mc?, thusin such cases the energy present in the internal
region is — 13,8 Mc2 It might be of interest to repeat the calculations of
BuaBHA by considering our present results.

My thanks are due to Dr. G. MArX for his advices given during the
preparation of this work and for his continuous interest. Similarly I am in-
debted to Prof. Dr. G. HEBER (Jena) for his valuable remarks.
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Appendix

Earlier the recoil of the nucleon was taken into consideration. Here the
calculations taking into account the recoil are carried out in the momentum
space. The present discussion shows clearly why the choice of trial function
(34) means just the consideration of the recoil of the nucleon. Let us write
(34) in the following form

{2y, .0yt =

]. 1 B i n ..ﬁzcz ) i ‘s )
=C TPdp I || 222 riiyen ™ dki, (1
n (291}:,)3/2 (27:5)3'1,'2J¢n(p)e pi:IVZwi f( )e ( )

where the recoil has to be taken into consideration by

: -

7. ()= Sau[p+ SK)u.(p). @
s i=1

u; (p) is owing to (7) an unit spinor characterizing a nucleon with mo-

mentum p, polarisation s (spin, isotope spin) and positive frequency, its

explicit form is in the usual representation of the y-s

615

615
_C*(EP)ls#
- E -+ M s=1,2
__c_((iP)ZS_
E+Me

0 at the lower 4 places.

0 3)

0

0

2 fet(p)a(p)dp=1,
o = |k + m2ct

ffrfEdk=1. (4)
From (2) and (3) it can be seen, that neglecting the small components of the

u-s (1) just agrees with (34). From the normalization condition ¢ t{ t) =1
it again follows that

in case of s = 3,4, elements == 0 are

c? p?
1 _
{ + (E + M c?)?

YCrc,=1. 5)

Let us first calculate the mean value of the momentum of the field.
From (10) on the basis of the above we obtain
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(P> =2 [piat(p)o;(p)dp. (6)

Similarly the mean value of the energy of the field is

Py =3CC3 ... at(p) dpr @) (V@ (p = SEEF IS +
1 n s

L SVARE T miet) - ay(p)IIf () dpTd ki +

g (A NACECy N .. Jar (o) I ) f (R dRI -
n 5,8

1

7'_5 "'ﬂjkj s’ - _Svkj s’
us (p—2'F)uy (P—9 ) ay (p) TR

Vzw f@dqdp+C-C.
@

Here the terms under the integral are still depending on n,thus GLAUBER
and LurriNGER’s method cannot be applied to the solution of the equation
obtained after the variation, therefore further approximations are used.
By expansion we obtain

, 1 . 1 .
t(p— SWRETFMict A VEpt M2t 4+ ——— (N ki) — ——p NEki.
Vet (p — X Ki)2 + M2ct ~Ve2p? + M2c 2M( ) a4

Assuming further that a(p) and f are spherical symmetric, then the first
term is

.
vere, |E £,
% [ +"[B+2MH

of course here

E=Y {a¥(p))e2pt+ M2c* a,(p)dp,

e ={f*®) Vel +mt f(k)dk,
k= [ f* (k) k2f (k) dk .

In the second term using the approximation (compare [5])

is (P - 2“ kj) Us (P —q— 2‘ kj) "*T‘s (P) Us’ (P) =

E + M ¢?)2
= —-—(hzgig—)__ 5, =g (p) 65,5'
1+ p
(E+ M c%e
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we obtain from (7) in such an approximation
E-+n

_C_<P4>:2vc;';cn 8+£\]+2(n+1)’/20’50n+1a+
i 2M | .

+ X ECE Gy a®

1 R 32o2
a=g WE(P)JV‘;E; fledg, (8)

QOur method is from here already the usual one, thus in the ground state we
obtain
aa*
k2
*taom

WO =F — 9)
This also minimizing with respect to f we obtain the solution for f

fl)=a-—1. lkz. (10).

2M

From here the energy of the field is

2 2 o2
W(O)ZE__.g—_g(P)z Al 1 e dk. 1y
2 @=hE) (w +
T oM
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METOJI CPEOHEN CBSI3U TOMOHATA, MPHU MCIOJIb3OBAHUU KOH®UI'YPA-
LIMOHHO-MMPOCTPAHCTBEHHLIX METOHOB

K. JI. HAb

Peswme

OnpenensioTcsi BEKTOPH COCTOSAHUS, XapaKTepH3YIOlHe PeabHble HYKIIOHB, METONOM
-CpeNHeil CBA3U, MCTIONL3YS METOAB! KOHQUI'YPALMOHHOIO NMPOCTPAHCTBA B KBAHTOBOW TeOpHH
noJeif. Pacmarpusaercst B3auMOIeHCTBHE MEXKAY HYKIIOHHBIM [10J1eM, OMMCHBAEMBIM YpaBHe-
Huem JlMpaka, W CKaNsIPHEIM MIIM MCEBJOCKANSIDHBIM Me30HHMM mnosiem. OOpasoBanue map
npenebGperaerca. B pamkax KOH(HUIypaLMOHHOIO METOAA YYMTHIBAETCSI M 0T[A4a HYKJIOHOB.
C TOMOLBIO BEKTOPA COCTOSIHHSI OMPENENsIOTCS CPefHHe 3HAYEHHs] HEKOTOPHIX (UBNUECKHX
BEeJIMUHH B COCTOSIHMH peanbHOro HyKJIOHA. U3-32 KoHMIypaumoHHoro meroma, — ocobeH-
HO NMPH pacyeTe JIOKAJBHBIX (H3UYECKHUX BeTMYMH — MOJIY4aeTcsl 04eHb HArAsAHAs KapTHHA
PeanbHOro HYyKJIOHA.



