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With the intermediate  coupling theory --  using the configuration space methods of 
the quantum theory of fields --  we determine the state vector characterizing the real nucleon. 
We carry out our calculations for the case of interact ion of the nucleon field described by the 
Dirac equation and the scalar, resp. pseudoscalar meson field. Pair creation is completely 
disregarded. Remaining within the frameworks of the configuration space method the recoil 
of the nucleon is considere& With  the aid of the state rec tor  we also calculate the mean value 
of  some characteristic physical quantities. The use of the configuration space method --  
part icularly in eonnection with the computat ion of local physical quantities - -  makes possible 
to f o r m a  very clear picture about the real nucleon. 

Introduction 

For the quantum theoretical treatment of the interacting fields the 
covariant perturbation method proved to be very succesful in quantum electro- 
dynamics but it cannot be applied in case of strongly coupled fields. The 
results calculated with its aid do not agree with the experimental results 
owing to the bad convergence. Recently it has been becoming more and more 
obvious, that  the renormalization method which can be unambiguously 
formulated with the aid of the S-matrix is not satisfactory, as after the renor- 
malization physically inadmissable results occure. I t  is for this reason, 
tha t  consideration of methods, other than the theory of the S-matrix, is of 
considerable importance. 

In the following Tomonaga's intermediate coupling theory [1]--[21] 
is dealt with in the case of a nucleon field, described by the Dirac equation, 
being in interaction with the scalar resp. symmetrical pseudoscalar meson 
field. The state vectors characterizing the real nucleons are determined in 
an adequate approximation. Our calculations are based on configuration 
space methods, and throughout the interaction picture is made use of. 

The four-momentum of interacting fields is 

1 
P .  [0] = po _ .~ H (x) d a~ (x), (1) 

C 

where P~ is the sum of the four-momenta of the individual interacting fields 
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and thus the operator of the infinetesimal displacement for the interaction 
picture operators. 

According to (1) the energy-momentum eigenvalue equation is 

P ,  l a ] l a  > = / 7 , , l o  > ,  (2) 

where in case of a neutral scalar coupling 

H(x)  = g :V(x )~ (x )O(x )  : .  (3) 

In case of the symmetric pseudoscalar field pseudoscalar coupling according 
to the DYSON-FOLDY theorem [22], [23] 

H (x) = 2 

g2 
�91 2 --.. ~ ~v ( 2 0  O* + �9 2~.3,., (4) 

2 M c  2 

where 6-1ike interaction terms were neglected, 2 serves for the pair suppression 
suggested by  BidYCKNER and others [24], [25], according to BR• its 
most probable value is 0,2. H e r e :  : denotes, as is usual, a normal 
product. I t  is known that the pseudoscalar coupling is preferred as against 
pseudovector coupling owing to its renormalizability. Recently the possi- 
bility of the renormalization of pseudovector coupling was also suggested 
[26], [27]. Thus the substitution 2 = 0 is justified too. 

The state vector of the field according to the configuration space method 
[281, [29] applied here (detailed literature in the latter) in case of a nucleon 
and neutral scalar meson field is 

! a >  ~-- ~.~i (i) n -n '  . . .  t xI . . . .  xn; x ' l  . . .  x 'n '  ; Y l  " " Ym > 
n n ' ~ l T l  o 

~ a 

m 

H 7(~i ~ d a~.i (xi) H ~'~~~ d a,q (x' 0 . H do k (yk)  d aok (yk) 

~ x l  . . . .  xO;x,1 . . . .  x , n , ; y l  . . . .  y m l a > ,  (5} 

in case of a nucleon and symmetrical pseudoscalar meson field 

~~i~m~m+m ! j 
la  > =- .~~ (i)n [ ~ c  J " ' "  I x l  . . . .  xn; x ' i '  " " x'n'  ; 

71 ,71  t , . 4 ~  m - l  rrla t7 

�91 . . . .  �91 ; ~1 . . . .  ~m-  ; C1 . . . .  r > 

n n" m + m - m~ 
/7 7~i ) d avi/7 ?,j  d a,j  H dei d aei/ /dek d aek /-/d ee d a ee (6) 

~ X1 . . . .  x n;  X,1 . . . . .  x ,n  t;  �91 . . . . .  �91 ~1 . . . . .  ~ m - ;  ~1 . . . .  ~m'] a > "  
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Here 
4---- 

- ~ 

X v O X v 

The state  vectors and th rough  them the ampli tudes  are defined by  

i x 1, . . x  n . . . x ' n '  . . . y m  m ! ) - � 8 9  ~p(+) . ; x,1, ; y l ,  > = (n! n'! ( x i ) . . .  (x"), 

~'~+> (x '~) . . .  ~<+) (x")  4 < - ) ( y ~ ) . . .  ~~-)  (y~) L 0 > .  

resp. 

i x 1 . . . .  x ~ ; x a . . .  x,~' ; �91 . . . .  �91 ; ~x . . . .  ~~-  ; ~1 . . . .  ~m, > = 

= (n!  n ' !  m + !  m - ! m a ! )  - ~. ~t+)(x 1) . . . .  ~p't+) ( x ' l ) . . .  ~t+)* ( � 9 1  

... ~~_)( , : ) . . .  ~~_) (Cm)1 o > .  

resp. 

9(+) (x) t0 > = w'(+)(x)L0 > = ~(+)(x)L0 > = 0 ,  

where ! 0 > is the v a c u u m  s ta te  : 

< 0 1 0 > = 1  (8)~ 

~(+)(x) ! 0 >  =~v ' (+)(x)10> = q~(a~)(x)10> = ~( - )* (x)10  > = 0,  < 0 [ 0 >  ~-- 1,~ 

Solving the eigenvalue equat ion  (2) jus t  means the de te rmina t ion  of all 
the ampli tudes < x 1 . . . .  la > occurring in (5) resp. (6). In  the  following 
weshall  determine these ampli tudes  in a suitable approximat ion .  With  
the help of these ampl i tudes  we m a y  - -  since they  have  a direct  probabi l i ty  
meaning in the coordinate  space a n d a t  the  same t ime de te rmine  also 
the  number  of mesons --  forro a clear p ic ture  about  a real  nucleon. Our picture  
can be completed by  determining the mean  value of some physieal  quan t i t i e s  
character izing the systeIn. F rom this point  of view the  local quant i t ies  are 
of par t icular  interest .  Thus  in the env i ronment  of the real nucleon,  the  mean  
values of the meson potent ia l ,  the  electric charge densi ty,  as well as the, 
energy densi ty  will be determined.  

The intermediate coupling theory 

The in te rmedia te  coupling theory  is the  var ia t ional  m e th o d  in the  
q u a n t u m  theory  of fields. According to  this instead of the exact  solution 
of the eigenvalue equa t ion  (2) only the mean  value of - -  i c <  a iP4  [ a ] l a >  is. 
minimized, satisfying the  condit ion < a ! a > = 1, with the help of suitable 
tr ial  funetions.  In  this paper  pair creat ion is disregarded t h ro u g h o u t  ; t h u s  
in (5) resp. (6) - -  and everywhere ,  where this m a y  occur in the  eourse o f  
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the  caleulations --  zero is wr i t t en  for all ampli tudes < x 1 . . . .  ; x '1 . . . .  I (7 > 
.containing at  least one ant inucleon.  

In  the  following we examine such states in which a specified n u m b e r  
o f  real nucleons (say A) is contained.  Then owing to the neglect of pair c rea t ion  
in the s ta te  vectors only such ampli tudes can occur which character ize (apar t  
f rom possible mesons) exac t ly  A bare nucleons. We ca r ry  out  our calculat ions 
s for the  case the nucleon and  the scalar field. 

1. The nucleon and the neutral scalar meson f ie ld  

Our airo is now to de te rmine  the state  r e c to r  describing A real nucleons 
:and to calculate for this s ta te  the  values of  some character is t ic  physical  quan-  
tities. Neglecting pair  ereation,  f rom (1), (3) and (5) using the formulae (7), 
(8) as well as the propert ies of the  functions S and A occurring in the com- 
m u t a t i o n  relations we ob ta in"  

< a i p s [ ( 7 ] i a > = ~ n  i A _ . . .  < f f !  x i  . . . .  x A ; y l  . . . .  y n >  

~vi d (7vi (xi) I~ d a j e  (7/zj (yJ) . 

A(~) A-, f {i )nŸ f g __~~'(n~-l) ~'' d a , ( x )  ~ c  . . .  < ( 7 [ x ,  x2 . . . .  xA;yl . . . .  y n > .  
C R 

o c3 G 

A n 
u 7~? d ~~~ (x i) n d,,j d o. j  ( S )  < x, x~ . . . .  xA ; X, ya . . . .  Y" F ~ > --  

i=2 

A ( i )A-1 n ~/~ f d  a~, [ i i n - ,  C g C ~ (X) [ ~ C )  ,fl " ' "  ~ "'~~(T/x'x2'~ " ' "  x A ;  x 'y2  . . . .  y n >  

ff o r 

A n 
17 7(~}) d a~i (X i) [~  dt, j d (7gj (yJ) < x, •2 . . . .  x A ; y ' ,  . . .  y "  l a > .  (9) 

i=2 j=2 

Similarly 

< ( T Ÿ 1 9 1  o . . .  < (7'f xl ,  . . . xA ; y l  . . . .  y r t >  

A n 

�9 . . . v ' J ( 7 > ,  H 7(i. ) d (Tvi (x i) �9 H dsj d (Tlt j ( y  J) < X 1, . ,  X A ; y l ,  

where M = 

(10) 

i 
J" qs(-) d v q)(+) d(7~ is the opera tor  of the meson number .  Similarly 

)Ic ¡ 
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~-a[~(x)[a>--.. ( i ) A ' . . .  ~CC . . .  ( n + l ) V ~ < a l x  I . . . .  xA;x ,  yX . . . .  y n >  

A n 
�9 H 5r d avi (x i) 17 dt,j d a~,j (y  J) < x 1 . . . .  x A ; yX . . . .  yti ] a > -Ÿ 

.~_ ~,( i )AS. .of f  t _ ] i ~ ) ! ' . . . ! ' n , / . z ~ j a ] x l  . . .  x A ; y 2  . . . .  , n  > 

A ti 

I17(vi)da~i(x~) 17 d~jd a , j (yJ )<x~, . . ,  xA;  x , y  2 . . . .  ytila > .  (11) 
j - - 2  

The normalization condition is now 

(,/~ ! = - - ~ ( i )  A " ' ' "  - S ' ' "  < a i x l '  ; y l ,  . > 

A n 
He~})da~,(x '  ) F l d , j d % j ( y O < x  x . . . .  x A ; y  1, . . .  y t i ] a > .  (12) 

In  the above expression a is not affected by  the differentiation. Later  when 
going over to the p l a n e a - +  t = const., the substi tutions 

d 4 ~ 2 ( - - A  --~/-te) 14 

- - i ]~Oa-- . , . ihy4yiO i q-- i h74u  

~ i ti ~4---~ i t~ ( - -A  A-/z2) ~'~ (13) 

m a y  therefore be int rodueed to advantage.  According to (7) and (8), because 
~p and q) are operators in the interact ion picture, these are permissible. 

a) The intermediate coupling theory without considering the nucleon recoil 

Disregarding the pair creation our equations are yet  exact.  In the fol- 
lowing a single real nueleon is investigated and we assume 

ti 

< x ; z  1 . . . .  y t i t a  > = cn (a) ~ (x) 1 7 f ( y i ) .  (14) 

The functions ~ and f m a y  also depend on a, which can be chosen arbitrarily,  
however, we do not especially denote this dependence. Subst i tut ing (14) into 
(9) we obtain 

< a [P .  [.1 la > = s' C* [a l C n [a l {p ,  q- n k,,} q- 
/1 

+ 2: (n + 1)~'~ c.* [al cn+l [al ~,, + 
ti 

-4- 2 '  n~C* [a] Cn_ I [a]f l , ,  (15) 
n 
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where 

p~ = i j" qJ ?~ ( - -  i li ) �91 da,,, 

k . =  ~ c  i ! " f * d v ( - i / i ) O ~ f d v '  

a 

i . 
~ c  ! f * d v f d a v  = 1 

% -- g f d%,~qDf, fil,-- g j" d a . ~ q ~ f * .  (16) 
C a C a 

The normal iza t ion  condit ion < a i a  > = 1 is fulfilled if  

2 : c * c ~  = 1 .  (17) 

We now go over to the plane t = const, and change denota t ion ,  so t h a t  x, 
y . . .  etc.  are now the vectors of  the threedimensional  space; dx = dxldxgdx a. 
Besides, the  mean  values of operators  at  an a rb i t ra r i ly  chosen t ime will be 
denoted instead of by  < t i 12 I t > f requent ly  b y  < 1 2 > .  Nei ther  will t h e  
dependence on t ime following f rom the t ransi t ion a - +  t in (14) be denoted .  

Taking  into account  the  condit ion (17) and va ry ing  --  i c < i04 > wi th  
respect to Cn we obtain 

where 

Cn {E + n e - -  W} + Cn+ 1 (n + 1)~ a ~- Cn_ 1 n ~ a* = 0 ,  (18) 

/, 

C 
= -__ k 4 = 2 J ' f *  ( - -A -~ ~ 2 ) f d y ,  

C 
a ~ - - - a  4 = g  S ~ q ~ f d x .  (19) 

�91 

Transforming equat ion (18) according to the me thod  of GLAUBER and LUT- 
TINGEa [3] to the problem of the harmonical  oscillator, it  can be easily solved. 
The solut ion is 

W ( v ) = E + v e - - ,  (20) 

t=0 li (v - -  l)! (n - -  v -4- l)! 

Wi th  the aid of the solut ion thus  obta ined the mean  value of the meson 
number  opera tor  (10) can be calculated in the v-th s tate .  F rom (14), (16) and  
(21) we obta in  
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aa* 
( M >(v) _ -]- v. (22) 

8 2 

Now we determine the meson ampli tude in the ground state  (v = 0). 
Fo r  this we vary  IV (~ with respect to f .  The condition (16) need not  be taken 
into consideration when varying,  because f is determined by (20) except for 
an indefinite constant .  Varying (20) we obtain 

(or _ J '~~ f*dx  (--A + # 2 ) f =  0,  (23) 
S f* (--A -4- tt2) f d x 

the solution of which is 

f ( x ) : a ( - - 5 ~ - q  2) ~ ~(x)~0(x). (24) 

F rom here we can a l ready calculate the mean  value of the meson potential  
in  the ground state.  Subst i tu t ing into (11) and (16) the quanti t ies deter- 
mined above, we f inal ly  obtain 

( ~b (x) > = --g (--A +/~2) 1 ~ (x) ~v (x) (25) 

as expected. Using (24) the mean value of the meson number  operator  in the 
ground state according to (22) is 

g2 y~vcp(--A + #2)-~ ~r (26) 
( M > - -  2 ~ c  

The energy of the fields from (20) and (24) is thus 

g~ 
w(0) = E - -  - -  .[ ~ ~ ( - -  3 + ~~) -  ' ~ ~ d x .  

2 
(27) 

F ina l ly  minimizing this with respect to ~ and taking into account the norma- 
lization condition (16) referring to ~ we obta in  tha t  the energy of the fields 
is minimal,  assuming 

(Acg,47~Oi-4-~,Mc2--g2?,4(--A q- #z)-I ~q)  ~o = 2 q .  (28) 

According to (7) here and fur ther  on for similar equations only solutions 
giving positive frequency are to be taken  into consideration. 

As regards the  interpretat ion of the above formulae the  following 
idea is due to G. HrBER [12], [13], [20], [21]. I t  seems to be clear at 
once from (27) -- at  least qual i ta t ively -- tha t  for some suitable g, 
W has a min imum in case of a concentra ted q0 packet.  This has of course 
to be determined from (28). Thus the following idea m a y  be formed about  
the real nucleon : each real nucleon consists of a core concentrated into a 
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small vo lume which is swarmed around b y  mesons. When the nucleons are  
t r ea ted  in o ther  calculations as plane waves, then  these plane waves have  
nothing to  do with the present  ~o --  this is always concen t ra ted  into a small  
volume - -  bu t  ir describes s imply  the centre of  mass of  the q~ packet .  

The  working out of the qual i ta t ive  picture requires na tura l ly  detai led 
calculations. The result of such calculations does not  seem very  convŸ 
Ensurance  of the nucleon concent ra t ion  requires an unusual ly  high value o f  
g and on the  other  hand as was shown later  by  HEBER the recoil of  the nucleon 
also counteracts  concent ra t ion  (see fur ther  below). 

The other  more common possibili ty is the renormalizat ion.  Indeed,  the  
in terac t ion  t Iami l tonian  [3] completed by the t e rm --~Mc2~~ can be easily 
eheeked to gire baek formulae  (24)--(26) unehanged,  expression (27), 
however,  is modified 

g2 
W ( ~  2) ' i ~ q d x - - 6 M & ~ ~ c p d x ,  (27') 

2 

where now in E the exper imenta l ly  observed mass occurs. Assuming 

g2 
6 M . . . .  .l" [Pq~(-A + tz 2) ' qg~vdx/ S~qJdx (29) 

2c 2 

the energy of  the fields is just/77, which has a min imum if  ~v satisfies the ene rgy  
eigenvalue equat ion 

(~ c Y4 Yi 0i -f- Y4 M c 2) ~ = ~ ~ (28') 

containing now al ready the real mass. 
The mass correction ~M, however,  depends s t rongly  on the form of  the  

bare nucleon,  showing tha t  our  solution is not  exact ,  the  trial  funct ion (14) 
is too simple. Nevertheless accept ing the normal izat ion as ah approximat ion ,  
according to the foregoing we m a y  form the following picture  about  the real  
nucleon in a coordinate sys tem moving with the nucleon.  According to (20) 
and (27) the  to ta l  energy of  the field is M&, where M is the real mass of the 
nucleon. According to (26) if the  s ta te  funct ion ~v of  the  bare nucleon is nor-  
malized to the volume V the mean  value of the meson n u m b er  is g~/2]ic #aV. (25) 
gives the mean  value of the meson potent ia l  a s - -g /#2  V. The mean value of the  
energy of the  mesons surrounding the  bare nueleon is f rom (16), (19) and (24) 
mc 2, their  mom en ta  are zero. F rom (15) follows tha t  the mean value of t h e  
m o m e n t u m  of the field is also zero and from (29) tha t  the mass correct ion 
is ~ M = - - g 2 / 2 c 2 V # 2 .  

Our me thod  m a y  be applied wi thout  encounter ing difficulties to the case 
o f  m a n y  nucleons as well. For  the ampli tudes,  similarly to (14) we now assume : 
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n 

< x 1 . . . .  x A ; y l  . . . .  yla i t > = Cia q~ (x 1 . . . .  x A) l l f  (y~). (30) 

Owing to  (7) ~ must  be ant isymmetr ic ,  Repea t ing  our  calculations with the  
tr ial  funct ion (30) ins tead of (24) we obta in  

f ( x )  = a ( - -  A +/z~) -1 A ~ (x) ~ (x) ,  

A - 1  

~(x)v(x) = S . . . J  ~(x,~~ . . . .  x~)~(~~)ax~... ~i~)a~~v(x,x, . . . .  x~) (31) 

f rom whieh the mean value of the  meson number  opera tor  becomes 

g2 A 2 
< M >  - -  2 ~ c  '~ ~ q ( - - A  +/~2)-~ ~ 9 d x  (32) 

and the mean value of  the energy of the field 

IV (~ = A E g2 A 2 2 ,f q0~(--A + # 2 ) - , ~ q d x .  (33) 

For  atomic nuclei in zeroth approx imat ion  ~q = l / V =  3/4r~ ~ A .  
In  this case W ~ is indeed proport ional  to A and the avarage meson n u m b e r  
(32) becomes.  

g2 A 2 g2 
< M > - -  ~ . . . . .  A if # = / ~ ~ .  

2 ) i c  V/x a 4zr)i c 

b) The intermediate coupling theory considering the nucleon recoil 

Now the recoil of  the nuclon will be considere& This m a y  be done 
remaining within the f ramework  of the method ,  by  the modif ica t ion of the  
tr ial  funct ion (14). Considering the recoil be now 

n 

( x ;ya . . . .  yla ] t > = Cia q~ (x) H f ( y  ~ - -  x ) .  

Taking into account  the  normalizat ion condit ions 

2 #2)~/~fd x x ' c * c  = 1  J ' ~ ~ 4 ~ v d x = l  ~ c  J ' f * ( - - A  + 

(34) 

= 1 (35) 

[compare  equ. (16)] and calculat ing the mean  value of  the m o m e n t u m  of  the 
fields from (9) we obta in  

< P i >  = .f~~~ ( - - i ~ ) 0 ~ ~ ~ x .  (3~~ 
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i.e. while according to (15) the  to ta l  m o m e n t u m  of  the field depends also on 
the m o m e n t a  of the mesons, here the mean value of the to ta l  m o m e n t u m  of 
the field is determined only  b y  the bare nucleon. Hence we m a y  say t h a t  
when a meson is emi t ted  the  m o m e n t u m  of the bare  nucleon decreases to jus t  
the necessary ex ten t  (see Appendix) .  

Le t  us calculate the mean  value of the energy.  Using (9), (34) and (35) 
we obta in  

_c ( p , >  2 : C * C . ( E + n ( e  t i ) ) +  ~ _ C * C , + I ( n + I ) ~ ~ a §  ': * = _ _  C n _ l  n z a  

n n n 

(37) 

where  [compare (19)] 

E = , ~ ~  (l~cyi3 i q- Mc2) q d x ,  

e ---- 2 , ( f*  ( - -A  -4- bt2)fd x ,  

a = g  f (0) . /"  ~ c f d x ,  

fi =- l~c .( ~p(x)y jq : (x )dx  S f *  ( y ) ~ y f ( y ) d y  ~-- --  i t~iJ ' f*  V f d y .  

(38) 

Repeat ing the calculations carr ied out  in the first  pa r t  we obtain successively 

a a*  
w(~)  = E + ,, (~ - t~) 

2(~-~: ~" t v : ) ' t n d  t - -~)  ' a* 
C (v) = e , .Ÿ243 l ! ( ~ - - f f ) ! ~ ¡  ~ ~ - ~  

(2 a*  
( M >(~) --  q- v.  

(~ - / ~ ) ~  

Varying (39) with respect  to  f we obtain in the  ground s ta te  

{ i~ . ) -1 
f ( x ) = a  - - A - ~ , u  2 + ~ ~ . V  ~(x) .  

(39) 

(40) 

(41) 

(42) 

In  the  following only nucleons at  rest will be d eah  with (i = 0). F rom (39) 
and (42) the  to ta l  energy of the  field is obta ined as 

g2 
w(o) = e -  - -  (J ~ ~ d x ) 2 J  ~ ( x ) ( - Z  + :,3) , ,~ ( ~ ) d x .  

2 
(43) 

Complet ing the in te rac t ion  Hamihon i an  (3) for  the sake of  mass re- 
normaIiza t ion the second t e rm of  (43) can again be made  to vanish i f  
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g 2  
J M - -  S ~qDdx~ ~(x) (--Li +q (44) 

2 c 2 

Because ~M is yet weakly depending on the form of the bare nucleon, the 
solution is exact only for particles of infinite masses, in other cases ir is an 
approximation. 

The mean value of the meson potential from (11) and (42) is thus 

< q~ (x) > = -- g S ~ q d x (--A ~- #2)-, q0 (x) 74 ~ (x) (45) 

and the mean value of the meson number 

g2 (~ ~q9dx)2.~ (~(x)(_Z_~_ft2)_~ ~ (x )dx .  (46) 
< M > - -  2 ~ c  

Summarizing the results : after renormalization iR case of a real nucleon in a 
coordinate system moving with the nucleon the total energy of the field is 
Mc 2 and its momentum zero. The mean value of the meson potential is --g/~u2V 
and that of the meson number infinite. 

For the determination of the meson-mode belonging to the v-th excited 
state of the nueleon we obtain from (39) (~ = 0) : 

f(x)=[{2~Vag + 2a*/(--Zl~g + / ~ 2 ) + ~ 2 ~ ~  (--A+q ~(x),  

where ~ is the Lagrange factor belonging to the normalization eondition 
referring to f .  In case of strong coupling the p r e s e n t f  agrees with (42), namely 
then only the second term of the bracket remains (a N g). 

Let us finally examine the energy distribution in the environment of a 
real nucleon in the ground state. Let us thus determine the mean value of 
the energy density: 

1 

-- (~ M c2 Ct) ~o : 

Similarly to the preceding methods we obtain with the aid of the state vector 
determined before 

g2 
<Q> = y ( S ~ ~ d x ) ~ S ~ ( x ~ )  r,~(x~){ v ( _ ~  +~~)- ,  ~ ( x _  x i ) v  ( - ~  + 

+ ~~)-' ~ ( ~ -  x~) + ~~ ( - ~  + ~~)-' ~ (~ - x~) ( - ~  + ~~)-~ ~ (~ - ~~)}d ~~ + 

g~ f -  
+ ~ c ~ (x) (~', O, + ~) q~ (x) -- -2- q~ q~ dx. ~ (x)~(x) (--~ '+~~)-~ 0 (x')J~'=0 -- 

g2 
2 ~ ~ q d x ~ (x) ~ (x) (-- A' + p2)-, ~ (x') lx'=0 -- ~ M c~ ~ (x) q (x). (47) 

3 Acta Physiea IX/I--2 
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According to (44) the  last  two te rms  jus t  cancel  each other .  I t  can be  
s imilar ly  seen, t h a t  forming f Q d x ,  the  f irst  and  t h i rd  t e rms  also b e c o m e  
zero. Compensa t ion  of these t e rms ,  however ,  does not  t akes  place locally, t h u s  
f inal ly  

2 

[( i)' 1 *' + I* - ,~:1 + *'~ ( - ~  + *'~)-' ~ (* - x:) ( - ~  + / ,~ ) -~  ,~ ( ~ - , , : )  d . :  - -  

- ~ (x) ~ (x) ( - • '  + ~ = ) '  ~ (*3 [x,~0}. 

Hence the  energy densi ty  depends  - -  wi th  the  excep t ion  of g - -  only on t h e  
fo rm of the  bare nucleon. I f  this  is prescr ibed,  t hen  f rom the above  equa t ion  
the ene rgy  densi ty  can be de te rmined .  

Ear l ie r  BHXBHA [30] carr ied out  calculat ions concerning the  t heo ry  of  
cosmic showers assuming,  t h a t  the  energy  of  the  nucleon is concent ra ted  in to  
two regions,  in an in ternal  region of the  order  of  a nucleon Compton  w a v e  
lenght  and  an ex te rna l  meson  region of the  order of  a meson  Compton  w a v e  
length  in the  propor t ion  of (1 - - e )Mc  2 resp. e M c  ~. Let  us examine  now how 

much  ene rgy  falls - -  aceording to our  calculat ions - -  in the  case of  our p resen t  
model  in to  the  individual  regions.  Le t  us suppose as an  app rox ima t ion  t h a t  
the  bare  nucleon is point l ike : ~(x)74q~(x ) = 6(x) and  S~cpdx = 1. We then  ob ta in  
a lower l imi t  for the  energy  fall ing into the  ex te rna l  region. Thus  ( m i s  t he  
~r meson  mass ,  g =- 5e, M =- 6,8 m) : 

2m 

~ <  g2 e M ( m §  M ) c 2 ~  g2 e (x) > d x . . . .  

= 0,08 M c~. 

0,43 M c 2 = 

Le t  us deal now wi th  the  many-nuc leon  p rob lem.  As a genera l iza t ion  
of (34) let  us t ake  the  t r ia l  func t ion  in the  following fo rm : 

<x, x~,y, ~~ t> ~~~~x, x~>hl~ i 1 . . . . .  . f ( y '  - -  x i )  . (48) 
j= 

Here  according to (7) ~ is an t i symmet r i c .  The normal i za t ion  condi t ion (12) 
is n o w  

Z c * c ~ l ( . )  = 1 ,  
A 

l (n) = S" " " S B (x: . . . .  xA)n ~ (xX, . . .  x a) 11 7(40 d x(i) c? (x 1 . . . .  x a ) ,  

l (0)  ---- 1 ,  (49) 
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where 

2[ 
B (s . . . .  xA) = A c  .4 y f*  ( y ) ( - - A  + #2)~/~f(y)dy q- 

-4- ~Sf*,,, (y --  x i) ( - -A A- #)'/~f(y -- xi) dy]  
i#j 

= D + b (xi . . . .  ~'~) .  (50)  

According to  (9) the mean  value of the to ta l  m o m e n t u m  of the  field is 

( Pi ) = " C* Cn S " "  J" B (x 1 . . . .  xA)" ~ (x 1 . . . .  x A) 
n 

A ~ A ~ 
/-/  ~(4 i) d % (i) - -  (]9 ( x  I . . . .  x A ) .  ( 5 1 )  

i -- 8 x  i 

Let  us determine the mean  v a h e  of the energy.  F rom (10) we obta in  

C~(P4). = 2?C*Cn�8 + ne(n) )  + ~"CSnCn+l (n "-~ ly/2a (n) -~ 
rt rt 

+ 2'C*~C~_~n'/"~* (n-  1) 
A 

E (n) = S " "  .f B (x 1 . . . .  xA) n ~ (x 1 . . . .  x A) 1-I 7(4 0 d x (i) 

(~�91 C r(41) ~}1) Oi _t_ r Ÿ  M c e) qD (x 1 . . . .  x A) 
A 

e (n) = 2 j ' . . .  j" B (x I . . . .  xA) n-x ~ (X I . . . .  X A) 17 7~0 d x (i) q~ (x 1 . . . .  x A) 

"~' f / '* ( - -  A xi) d y i~ j j  (y  - -  x') q - / z z ) f ( y  --  

A 
a (n) = A g f . . .  f d x B (x ,  x 2 . . . .  X A )n ~9 (X, X 2 . . . .  X A) 17 ~](i) dx(i) 99 (x ,  x 2 , . . ,  x A) 

i -2  

A i~:~/x x,,+~~o,) /52, 
where the terms corresponding to fl of  the  expression (37) were omi t ted .  Con- 
sidering the normal izat ion condit ion (49) and  varying we obtain 

{ _ _  _ I a* (n - -  1) Cn A E(n)  + n ~(n ) ~r _~_Cn+l(n_~.l),~ a(n) _~_Cn_lnl/~ - - 0 .  
l (n) l (n) ~ l (n) l (n) 

(53) 

Now the coefficients of  the Cn-s depend yet  on n. The coefficients will all be 
independent  of n, if  it is assumed tha t  when subs t i tu t ing  (50) into any  integral  
of  (52) b m a y  be neglected against D. Fur the r  b e  f normalized:  D = 1. Thus 

3* 
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A 
E (n) + E  = ~[...~ ~p (x: , . . .x  a) 17 ?Ÿ d x (i) (f~ '~" :4~'('):i"+:> Oi -4- 7~i) M c 2) of (xS , . . . xA) ,  
l(n) 

A 
e (n)_ - +  e = 2 S ' "  Y ~ ( x i , ' ' "  xA) 17 y~i> d x (i> cp (x 1 . . . .  x a) 
t ('0 

v f *  (y  _ x i) ( - - A  -4- t s z ) f ( y  _ xi)  d y ,  
t,J 

A 
a (n) ~. a = A g ~ . . . f d x l  ~ (x  1 . . . .  xA)i~= 2 ~• d x(i) ~v (x l  . . . .  x A) 
l ( n )  

(j_-~2 / a* ( n - - l ) a *  (54) f (x 1 - -  xi) -4- f (O) , l (n) + " 

Using these expressions the solution of equation (53) is as before 

a Gr* 
W (v) = A E -- - - - -  -4- v e, 

C(n v) = e+'2+--~~ +~' ( v ' ) ~ ( n t ) ~ ( - - 1 ) n - v + t  i--a*-ln-v++ 
, : 0  ++=+~¡ (55) 

f can be again determined by the variation of W. Thus the solution is for the  
ground state 

f ( x )  = a ( - -A A- ,u2)-i <~ (x), 

if  only ~ y 4 ~  

Using this the total  energy of the field becomes 

g2 A 
w<o> = +4 E - -  - -  A S. . . S d x ~ (x, x~ . . . .  xA) 17 ~,i') d ~<0 ~ (X, X~, . . . xA) 

2 i=2 
A 

(--A d-/+2) -1 ~ (x -- xi),  (56) 
j = 2  

here the  self-energies were left out.  Finally varying W (~ with respect to  
we obtain, that  the total  energy of the field is minimal,  if 

r t g 2  �9 
Z:++'+"++"  + + : + :  - - -  (-+"' + :>-' ~+ ~ 

2 i,j J i .  

= ~ ~ ( x i , . . .  xA), (57) 

where 2 is the Lagrangian factor belonging to tire normalization condition 
(49) [/(0) = 1]. In  the equation resulting from iterating (57) as it has been 
shown by G. MxRx and G. SZAMOSI [32], [33] relativistical repulsive and many- 
body forces occur which might result the saturation. 
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The mean value of the meson number  from (11), (48), (49) and (55) is 

a* a _ g2 A I6  (y) ( - -A  + #~)- "/'6 (y) a y  ~ A < M >one n u c l e o n ,  
< M ) - -  e S 2 ~ c ~  

hence our approximat ion used in this part  means essentially the omission of 
the mesons giving rise to the interact ion between the individual  nucleons, 
against those belonging to the self-fields of the nucleons. 

According to the foregoing the divergent self-energies can be approxi- 
ma te ly  eliminated by  mass renormalization,  other quantit ies,  however,  remain 
divergent.  For  the elimination of these the  usual  method  is the cut t ing-off  
method.  This can be explained according to the considerations of par t  a) by 
a t t r ibut ing  to the bare nucleon a finite extension. As against this from the 
calculations performed taking into consideration the recoil, it is evident  tha t  
i f  the cut-off is to be justif ied,  (3) cannot be of general validity.  

Thus we obtain from (46) for a nucleon at  rest if  the cut t ing-off  is carried 
out  at  a value 6 # = ~ ~ 6 , 8  # w i t h g = 5 e  

< M )  = 0,09. 

2. The nucleon and the symmetrical pseudoscalar meson f ie ld  

In  our ealculations here we eonsider only  the reeoil of the nucleon, 
simplest calculations not  taking into account  the recoil can be carried out 
similarly. Let  us first  of all eonsider the mean  value of ( a ]P~ [al i a ) .  

We obtain from (1), (4) and (6) similarly to (9) 

:-,Ÿ i ~ n++n-+n' F F <~ i , ,  [~]t~>-- , j  ~ /~ - ; }  j . . . )  4~ 1 ~;�91191 r  1 . . . .  r  

a 

/q /'1-- n I 

�9 H d h d avi (�91 I1 dvi d avi (~i) I I  dvk d avk (r 7v d a v (x). 

_ f  / i/"++n-+n~...C . . . . . .  ig  d c r  ! J j<~71 ac ; �91 ~n* ; ~]1 . . . .  ~n-; r en'> 
2~r 

a 

n § n - n ~ 0r 
Hd~q Hd~'da"./(rl i) l ldvk da~k(r TQys Ox ~ { V~T-(n+ 1 ) ~  



38 K . L .  NAGY 

�9 < x ;  x , � 9 1  �91 ;~1 . . . .  7n- ;  r . . . .  $~3!a > + V2v+  ( n - - -  1)~.  

�9 < X ; �91 . . . .  � 9 1  ; X,  7 1  . . . .  7r l - -  ,~ $1 . . . .  ~'ri' I O" > --]- 3 3 ( n  a - -  1)'/2. 
�9 < x ;  �91 . . . .  �91 71 . . . .  7 " - ;  x ,~ l  . . . .  ~n~[~> } + e . c . -  

g2 ( f, ~ d  ~.  . .  - -  2 2 (x) .Ÿ j t n +  
2 M c  2 _ [~ccf ) "  

a �91 

< ~ l x ;  x , � 91  2 . . . .  �91 ; 71 . . . .  7"- ;  ~1 . . . .  e , ,> 

n + ti-- ti a 
17 d~~ d ,~~, ( � 9 1  vi d ,% ( 7 0 / 7  d~k d %k (r 

i = 2  

�9 < x ;  x, �91 . . . .  �91247 ; ~1, . . .  7~ - ;  r . . . .  r ~ > + (58) 

+ analoguous terms for n -  and  n 3 + 2 mesons more  + 2  mesons less. Here  
0 

the  exc lamat ion  mark  over  indicates,  t ha t  the  succeeding ampl i tude  
xQ 

s hou ld  be different ia ted with respect  of the meson coordinate  only. F u r t h e r  
on the last  two terms of (58) which are there  no t  given explici t ly are 
everywhere  omit ted ,  because t h e y  cont r ibute  no th ing  to the  approx imat ion  
to be deal t  with below. In  (58) x, �91 7, ~ etc. are again four-dimensional  
vectors .  

Before  making an assumpt ion  coneerning the  t r ia l  funetions,  i t  is wor th  
while to  eonsider the following. A bare  nueleon can be eharaeter ized b y  its 
par i ty ,  isotope spin and spin and these values remain  the  same for the  real  
nueleon.  

Ear l ie r  for a scalar f ield these requirements  were fulfilled automat ica l ly ,  
here in the  choice of the tr ial  funct ion speeial a t t en t ion  has to be paid to these 
considerat ions.  The only possibil i ty to avoid the  difficulties encountered  in 
the  ealculat ion owing to  this fac t  is not  to allow a round  the  real nueleon an 
a rb i t r a r y  number  of mesons. 

Calculations were also carr ied out  b y  taking  into account  several  
mesons [17]. To i l lustrate the  eonfigurat ional  m e t h o d  we go only as l a r  
as the  one-meson states,  however ,  the  reeoil as well as the  t e rm of the form 
~ # 2  of  the  interact ion energy  ate t aken  into account .  Aceordingly,  only  the  
following ampl i tudes  can be chosen as differing f rom zero (again in the  case 
of  a t = const plane and b y  changing notat ion)  : 

< x  I t> = Co ~0~, 'A (x, 1/2,11~) 

<xi ~t,> = c ~ ] / ~ l l l T _ f ~ ~ ~ ~ -  ~, ~, 0) ~~,_~ Cx,,/~,~/~)+ 
} 3 tV 3 ' 

V ~- I + ~f~,l(�91 1)~~-~,(x,%-l/2) 



TOMONAGA'S INTERMEDIATE COUPLING THEORY USING CONFIGURATIOBI SPACE METHODS 39 

<x; glt> : C  1 V ~  l ~ ~  fl,O(~-- X, 1, 0) ~0~, �89 (X, 1/2,1/2) "-~ 

"~-V~fl,0(~--X,I,'I)~y,�89 
f o r a  proton and 

(59) 

2 f f ,  (--A q- #2)�89 : 1, 
lzc 

p-tV~- < X ; ~  [ t > = C 1 ~ -  ~ f l , - l ( Ÿ  - -  x, 1,0) ~~,�89 (x, 1/2, 1/2) -}- 

T 
--t- V ~  fl,-l (~-- x,l, 1) qO�89189 (X, 1/2,--1/2) 1 

-< X ; r  > = C 1 ~- 5 A , O  (~ - -  x,  1,0) ~o�89 _�89 (x, *h, 1/2) ~- 

" / 2 -  1/2, --112)} -k ' ~ f , , o  (r - - x ,  1,1) ~0~,_�89 (x, (60) 
/ 

f o r a  neutron. Here the outher Ÿ of q0 and f mean the isotope spin and 
its third component for the nueleon resp. the meson. By our ehoiee the 
problems related to the isotope spin have been solved. The inner indices of ~o 
refer to the angular momentum and its projeetion, and have in the usual 
representation of the ?-s the following forro 

[~1' 0 
0 --~01 
~~. , 0 

~0�89 �89 (X, 1/2' V*) = 0 ~~,  �89 (X,'/, ,  --1/2 ) = ~2 
0 0 
0 0 
0 0 
0 0 

~v~,_ �89 (%, ~ )  and-~v~,_ �89 ( % , -  %) are the same, but their elements 
differ from zero at the lower 4 places, q01 and ~v= are arbitrary spherical sym- 
metric functions. Each ~ is normalized to 1, and they are orthogonal to each 
other. For given ~0i, the values ~~, ~y4~v and f ~  (ttcyi 8i 4- Mc 2) cpdx 
are independent of the indices of the ~0-s. This will be made use of later on. 
I t  is to be expected tha t  the inner indices of the functions f will refer also to 
the angular momentum and its projection. For the moment let us consider 
them simply as distinguishing indices. Be the f-s normalized and the functions 
with different inuer Ÿ orthogonal to each other : 
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Yf*.o (x, 1, 0) (--A q- bt2) �89 (x, 1, 1) dx = 0 

In this case the normalization condition ( t l t  > = 1 is 

C£ Co + C* C1 = 1. 

etc. (61) 

the following : 

(62) 

Substituting (59) into (58) and mak4ng use of what has been said about the 
~0-s and f-s we obtain 

~- < P4 > : C* Ca E q- C* C I (E q- e) q- C* C1 a q- C* Co a* q- C1" C1 Y, (63) 

where 

E = S~(~cyiOi + Mc~) q~dx. 

c~1 1 . 1,0 1 2 . (X,1) (__~ A_#2)fl,0 (1,1) + ~ = 2 J t ~ - ~ - f l , o (  )(--A+#2)fl,o(X,O)q-~~fl,o 

2 1 , 2 2 , 1,1 } +-~~f~ , l ( - -A  +/x2)fla (1 ,0 )+~- -3- f l a (  )(--A +#2)f1,1(1,1 ) dx, 

t ~ ~ - V  l a  a---- g ~- 1.1(1,0), [fla(x,l,O)S,6(x)dx-~- 
2 g  

~ 32~-- ~ 2 - a  q- ~ 1,1(l'l)iSfl,l(x'l'l)O'~(x)dx-~- 

+V~~lal,o(X,O)~Sfl,o(x,l ,O)O~t~(x)dx-4 - 

-~-V~V~al,o(1,1)iffl,o(X, 1, 1) 8i(}(x) dx t , 

al, 1 (1, O)i = {0, O, V 2 }, 

al, 1 (1, 1)i ---~ {V 2~, - - i  V ~-, 0} ,  

al, o (1, O)i = {0, O, 1}, 

al,o(1,1)i={1,--i,O}, 

g2 [ 2 2 f f  2 b * (x,l, 1)fl~(x,l, 1)~(x)dx q- 2 M c 2 ~- 1,1 , 

2 1 ; f ,  (x, 1, 0)fl, 1 (x, 1, 0) ~ (x) dx -4- + ~ ~  ~,1 
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1 ~" * x + 13 -3Jf:'~ ( ,1,0)A,o(x,l,O)~(x)ax + 

1 2 f  fl= ] q- ~- ~-  ,o (x, 1, 1)f,,0 (x, 1, 1) ~ (x) dx , 

b= S~~dx. (64~ 

Here it has been used that  f ~ ? 4 y s q d x ~  0, and also the term correspond- 
ing to the/~ of equation (37) has been omitted. 

Varying (63) with respect to C*, and eonsidering (62) we obtain 

Co (E - -  W) + C: a = 0 ,  

Co a* + C: (E + ~ + • - -  W) = 0 .  (65) 

This system of equations has a nontrivial solution if Det / :  0. From this the: 
lower energy value is 

V i  4 a a* 
+ 7 - - ( ' + 7 )  + (e+~~~ ~ E  aa* 1~ = E + (66) 

2 eA-7 

and the amplitudes belonging to this state 

1 a*  
C 0 = , C 1 - -  C O . ( 6 7 )  

V aa* e-{-7 
1 + (r + ~)~ 

From here it may be seen, that  the approximation used in (66) for the ex- 
traetion of the root does not make use of the small value of g, but of the faet, 
that  the probability of single-meson states is small, eompared with the bare- 
nueleon atate. On the basis of the eonelusions to be drawn from the preeeding 
paragraph we may, however, hope that  by permitting arbitrarily many mesons 
we would obtain essentially the same energy. 

The determination of the f-s remains to be earried out. We determine 
the f-s also here from (66) by variation. The auxiliary eonditions (61) should 
also be taken into aeeount for the variation. However in our present approxim- 
ation they are disregarded, ahhough the f-s obtained as solution are to satisfy 
the eonditions. 

The solution of the set of equations obtained by variation is 

a ( g2 } - 1 
= - - A  #8 ~ (x) a* (1,0)i O, ~ (x) f:,: (x, 1, 0) ~ .  A- q- 2 2McZ-b 1.: , 
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2( ) f~,~(x, l ,  1 ) =  - - A - + - # 2 + 2  g2 .... b 6 ( x )  a* ( 1 , 1 ) q  
2 M c 2 1.1 , 

( g2 ) -1 
f L 0 ( x , l , 0 ) = a  --A + # 2 + 2  . . . .  bO(x)  a*,0(1,0)i0 i 0(x) ,  

2 M c 2  

( g2 } -I 
= a --A -}-,u2-+-~. b(~(x) a*,0(l, 1)iO i 6(x) .  fl,0 (x, 1, 1) - ~  2 M c 2 

(68) 

The normalizat ion factor  a can be determined from a n y f a n d  we obtain always 
the same value. Similarly we m a y  satisfy ourselves about  the fact tha t  the  f s  
o f  different  inner Ÿ ate orthogonal.  

Using (68) f inal ly  the energy of the field is in case of one proton 

W = E - -  ----  ~ O~~(x) --~+~~+~ b~(~) ai~(x) dx.  
2 Mc 2 

(69) 

F o r a  neu t ron  the calculations can be carried out  in the same way.  Final ly  
we receive back the  functions (68) ( f l ,1- -+f l , -1)  and the energy (69). 

Formula t ing  the s ta te  rec tor  of the to ta l  sys tem from (6), (59), (60) 
and (68) ir m a y  be seen, t ha t  the  determined state is the  eigenstate of the to ta l  
angular  m o m e n t u m  and its projection, fur ther  on because the mesons ate 
created in the p s ta te  also of the par i ty  with correct eigenvalues. 

In  the  present approximat ion  the s tate  vector  characterizing the  real 
nucleon has a l ready been determined,  so tha t  now the value of an a rb i t ra ry  
operator  characterizing the field can be determined.  Below the magnetic mo- 
me n t um of the nucleon is calculated. The operator  of the magnetic momen- 
t u m  is 

(70) 

F rom the  obtained state funct ions we obtain the relat ion found by SAc~s [45] 

< ~ > P + < ~ > N - -  2 M c  
(71) 

The numerical  values of the  magnetic  m o m e n t u m  with a cut t ing off at  ~q 
g~ 

become in case of  15 : 
4~rhc 
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( ~ > p = 0 , 9 8  < g J ~ > N = - - 0 , 4 0  C * C ~ = 0 , 3 2  if  ~ = 4  

= 1,04 = - -0 ,29  = 0,19 = 3 

1,04 = - -0 ,14  = 0,08 = 2 

i n  case of 2 = 0,2, : 

< ~ >v - -  1,02 < ~ >N = - -0 ,20  C* C~ = 0 ,14 ,  ~ = 3 .  

These are in accordance  wi th  the earl ier  s t a t e m e n t s  of SAcrts: pe rmi t t ing  
o n l y  single meson s ta tes  we ob ta in  for the  anomalous  magne t i c  m o m e n t u m  
of  the  nucleon wrong resuhs .  Tak ing  into accoun t  the  t e rm  of the  in te rac t ion  
ene rgy  p ropor t iona l  to 2 does not  a h e r  this fac t  ei ther.  

Le t  us de te rmine  now the electron charge  d is t r ibut ion  of  the  nucleon. 
Le t  us fo rm with the  de te rmined  s ta te  r e c t o r  the  mean  value of  the  charge 
dens i ty -ope ra to r  

1 + "r 3 e q~. d4 ~(x) =:ere~ ,~~  +~~ 

Similar ly  to our  o ther  me thods  we ob ta in  b y  considering w h a t  has  been 
said  abou t  ~o 

1 ~ ~ f i  <~(x)>,,=c'£ +-~c~cl~(x)7,~(x) +-~c*cl  �9 

1 * 2"1~ -~ ( x - -  1, O) -4- 2f*,1 (x--x 1, 1, 1) - ~ - f l , 1  (X - -  X 1, 1, O) 2 ( - -A + q 1, J1,1 x l ,  

3" '~~- (x 1, 1) } (x 1) d x x , �9 2 ( - -A  + g )' J~,l - -  xi ,  ~ (x 1) r4~ 0 

2 C* 2 C ,  Cl e f i l  , 
( ~ ( x ) > N =  ~-  iClecp(x) 7, q(x ) -  - ~ c J l ~ f l , _ l ( x - - x l ,  X,O). 

2 , 
�9 2 ( - - A  + #2 )~f , , _~  (x - -  x ~, 1, O) + ~ - f i , _ x  ( x - -  x 1, 1, 1 ) .  2 ( - -A  + q �9 

�9 f ~ - l ( x  - -  x x, 1, 1)I ~ (xi) 7aq  (x~) d x  ~ . (72) 

F r o m  here mak ing  use of  the fac t  t ha t  the  9-s wi th  the  same inner  Ÿ ate 
ident ica l  funct ions ,  ir can  be read  t h a t  the  mesonic charge cloud of  the  real  
p r o t o n  and  neut ron ,  - -  disregarding the  sign - -  are the  same.  

< e (x) >p + < a (~) >N = e ~ (~) r~ v (x). 
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Finally from (72) in case of 2 = 0 with the determined quantities the mesonie 
charge cloud becomes 

eC~C ~ tt O e -~'lx-x'l 8 K l O t l x - - x l l )  ~(x~)r, qJ(xl)dxl" 
4~~c 8~~~,~ Ox, I x -~ , l  t Oxe I x - x ~ l  

Let us finally calculate the mean value of the energy density of the field. 
With the aid of l?he determined state vector and in the approximation used 
in equation (66) we obtain tha t  the energy density of the meson field is in the  
environment of the real nucleon 

(g)'3 ir <eM(x)> = ~ ~  ~ ~  ~(xl)7,~(xl){0,  8 j ( - A  +~2)- ,~(x_xl )  

8/0j(--A + g , ) - l ~ ( x _ x l )  + V - A  +~~ 0 j ( - - A  + ~~)-1 

(x -- ~~) V-A + ~~ 0j ( -A + ~~) -i ~ (~ _ xi) + 
+ tz2 8j (--Aq-#~)-l(5 ( x - - x  1) 8j ( - -3+g2)  -1 (5 (x - -x  1) }dx  1 . (73) 

Indeed its integral over the whole volume agrees apart  from the sign to the 
self-energy term of expression (69). In analogy with (47) ir may however be 
assumed tha t  taking into account the many-meson states the energy densi ty 
of the field can be better  approximated by  the expression 

�9 (-A +~,~)-1 ~ (x_xl)+~,~ 8j (-A +~,~)-1 ~ (x-x~) 8j (-/~ +~,2)-1 ~ (~_~1)} d~l, 
(74) 

the integral of which taken over the total  volume agrees also with the  
second term of (69). From (74) in case of a point-like nucleon with 
g~/4 zt tŸ c ---- 15 we obtain 

g2 
.( ( ~ ( x ) > d x  --  0 ,99Mc  ~ = 14 ,8Mc 2, 

x,~(~~_~)9 4zŸ 

namely only the energy of the meson field extends to the considered par t  of 
the space. Since the total  energy of the field is (neglecting the kinetic energy 
of the Dirac field) Mc ~, t hus in  such cases the energy present in the internal 
region is --  13,8 Mc ~. I t  might be of interest to repeat the calculations of  
BHABH.( by considering our present resuhs. 

My thanks are due to Dr. G. MAax for bis advices given during the 
preparation of this work and for his continuous interest.  Similarly I am in- 
debted to Prof. Dr. G. HEBER (Jena) for his valuable remarks. 



TOMONAGA'S I N T E R M E D I A T E  COUPLING T H E O R Y  USING CONFIGURATION SPACE METHODS 4 5  

Appendix 

Earlier the recoil of the nucleon was t aken  into consideration. Here the 
,calculations taking into account the recoil ate carried out in the  momen tum 
spaee. The present discussion shows clearly why  the choice of tr ial  function 
(34) means jus t  the consideration of the recoil of the nucleon. Let  us write 
(34) in the following form 

< x l ; y l  . . . .  yn]>= 

1 1 "qn l i  " = C n  (2zr~)3/2 (2 j r$)Zn '2 | r  J (P)e~PXdPi=,~l 1 2 ~ o  i f(ki)  e~ ~ dk'  (1) 

where the recoil has to be t aken  into consideration by  

Us (p) is owing to (7) ah uni t  spinor charaeterizing a nucleon with mo- 
m e n t u m  p, polarisation s (spin, isotope spin) and positive frequency,  its 
,explicit form is in the  usual representation of the 7-s 

C$1s 
~ts 

c (~p)ls 

E +  Mc~ 
i c2p2 i- �89 c(crP)2s - s = l ,  2 

1 + ( E ~ M  c2) ~ -E -4- M c 9" in case of s = 3,4, elements 4= 0 ate 

0 at  the lower 4 places. 

0 (3) 
0 
0 

. ~  ~ a* (p) a~ (p) d p = 1, 
8 

o~ = V c2 k 2 + m~c 4~ 

S f*  (k)f(k) d k = 1.  (4) 

F rom (2) and (3) it can be seen, t ha t  neglecting the small components  of  the 
u-s (1) jus t  agrees wi th  (34). From the normalizat ion condition < ti t > = 1 
i t  again follows tha t  

v C~* Cn = 1 (5) o 

Let us first calculate the mean value of the momen tum of the field. 
F r o m  (10) on the basis of the above we obta in  
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( P i  > = ~'~, .IP' a* (p) a~ (p) d p .  
s 

(6) 

Similarly the mean value of the energy of the fietd is 

c <p~>  _ ~ v c * c t i 2 f . . .  fa*(p)~f*(kJ)(Vc2(p- ~_X'kJ)2+M2~ 
"�91 t i  s 

n ti ti  

+ 2, ~ Vc2 kJ2 + m 2 c a ) . a s ( p ) F l f  (k i) d p I I  d k J + 

+ g x, (n -4- 1)~ C* Cn+ ~ ~.~ . . .  a* (p) l l f *  (kJ)f(kJ) d kJ .  
n S~ 8" 

+ 

n /7 

�9 ª (P--2 .  ~ kJ) Us" ( P - - q - - 2 '  kO as" (P) 
(2 ~ )i) ~/~ ~ 2 COq 

f (q) dq dp + C .  C. 

(7) 

Here the terms under the integral are still depending on n, thus GLAUBER 
and LUTTI~GER'S method cannot be applied to the solution of the equation 
obtained after the variation, therefore further approximations are used. 
By expansion we obtain 

1 kJ)9 ~ _  V c i ( p - - 2 ' k i ) 2 4 - M 2 c  a ~ V c 2 p 2 + M 2 c  a A - ~ ~  (L" - p 2 k J .  

Assuming further tha t  a(p) and f are spherical symmetric,  then the first  
term is 

of course here 

E = 2 '  S a* (p) Vc~-p ~ + M 2 c 4 a s (p) d p ,  
s 

= Sf*  (k) V ~  k~ + m ~ ca f ( k )  a k :  

k~ = SI*  (k) k2f(k)  dk .  

In the second term using the approximation (compare [5]) 

~s (p - 2" k J) us, (p - q - 2: k J) ~ Y,s (p) us, (p) = 

c2 p 2 
1 

(E + M c~) ~ 
1 + c2P 2 

(E + M c2) 
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w e  o b t a i n  f rom (7) in  such  a n  a p p r o x i m a t i o n  

c < P 4 > =  --vC*Cnn E §  ~ " 4 "  § 2 4 7 1 8 9 2 4 7  
i 2 M  n 

-4- 2'  n~C * Cn-1 a* 

1 f V  ~~c~ 
(2 = g (2 u $)% g(p) J[-2~~-r f(q) d q, (8) 

O u r  m e t h o d  is f r om he re  a l r e a d y  t h e  u s u a l  one ,  t h u s  in  t h e  g r o u n d  s t a t e  w e  

o b t a i n  
(2 a *  

W (~ = E _ . ( 9 )  
k 2 

2 M  

Thi s  a lso  m i n i m i z i n g  w i t h  r e s p e c t  to  f we o b t a i n  t h e  s o l u t i o n  for  f 

1 1 k~ (lo), f (k) ---- a 1/~~,. 
"4" ~ tt O) k 

2 M  

F r o m  he re  t h e  e n e r g y  o f  t h e  f i e l d  is 

W ( O ) = E _ ~ _ g ~ ) 2  ]t2c2 f 1 

(2 ~ ~ ) 3  ~ k  [ ~ k  "4" 
(11)~ 
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METO}~ CPE~HEI71 CBYt3H TOMOHAFA, HPH HCI-IOJ-Ib3OBAHHH KOHOHFXJ'PA - 
L[HOHHO-I-IPOCTPAHCTBEHHbIX METO~OB 

lŸ J1. HA,I3,b 

P e3 ~o r,I e 

Onpe~eaa~OTC~ BeKT0pbl C0CTORHHR, xapa~<TepH3y~omHe pea~bHble HyK2IOHbl, MeTO~OM 
.cpe~He~ cu~3a, ~cnoab3ya MeT0nbl ~<O8qbnrypaL~HOHH0rO np0cTpaHcTBa B ~<BaaTOBO~ TeopaH 
noneiL PacMaTpH8aeTc~ B3aHM0,Ke~CTBHe Me>I<~y HyK.rIOHHbIM HO.rleM, 0IIHr ypaBHe- 
HHeM ~HpaKa, n CKaJlflpHblM HJIrl rlCeB/10cKaJl~IpHblM ble30HHriM rIoJleM. O£ nap 
npeae6peraeTca. B paM~ax KoHqbr~rypatlnom~oro MeTo/la yqHTbmaeTc~ H OTjlaqa ~yKn0H08. 
'C 110M0ra~blO Ber<Topa C0CT0~IHH~ onpe~e.rl~aiOTC~ cpe/Irme 3HaqeHli~l HeKOT0pblX dpri314qecKHx 
BeYmqnH B C0CT0flmm peaabIJoro HyKa0Ha. Pl3-3a ~onqbHrypattHoanoro MeTo/la, ~ oc06erb 
H0 npH pacqeTe Jl0Ka/IbHblX ~H3riqecKHx BeJmqrm ~ rloJ1yqaeTc~ 0qeHb HarJl~jIHaŸ I<apTHHa 
peanbuoro HyKn0Ha. 


