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The unitary operator, the generator of symmetry transformations in the Hilbert-
space, will be formed on the basis of the field equations together with the commutation law.
Our method is the reversal of SCHWINGER’s method used in the covariant formulation of the
quantum theory and eliminates some insufficiencies of the previoas treatments.

§ 1. The present paper deals with a problem of methodological interest,
across which the author came in the course of his university lectures,

The transformations leaving the field equations (Lagrangian) as well
as the commutation laws invariant play a significant role in the quantum
theory. Such transformations of the coordinates x; and of the field quantities y,

X, %, Pulx) >9.(x') 1)

are the so-called symmetry transformations. In the Hilbert-space the generator
of a transformation which does not affect the commutation rules is a unitary
operator :

V() =Upx) U, (2)

In the course of quantum theoretical applications the explicit form of the
generator U becomes important. As is well known [1] in the classical theory
always a conservation law corresponds to every symmetfy transformation.
There exists a close relation between this conservation law and the form of
the unitary generator U. This operator gives the transition between the two
state vectors with which observers in different “systems of reference’ describe
the same physical state :

> =U|>. 3)

It is very remarkable that in case the Lagrangian is known a method can be
given for the unambiguous formation of the generator of a continuous symmetry
transformation. This method can be obtained by the aid of the fundamental
theorem of continuous transformations.

In the ScHWINGER’s covariant formulation of the quantum theory
this fundamental theorem is regarded as an axiom of the theory and the form
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of the commutation rule was deduced from it [2]; in addition it is possible
to deduce also the field equations. However, the reversed process can also
be considered: the fundamental theorem can be deduced from the field
equations and the commutation law. These latter can be introduced more
easily in a correspondence-like way, therefore this kind of treatment seems
to be methodically more advantageous (although ScEWINGER’s method is
mathematically more elegant). The deduction of the fundamental theorem
from the commutation law has already been treated in the special case when
the symmetry transformation does not affect the space coordinates (e.g.
gauge transformation, the transformations of the isotopic space) and formerly
the general case was handled, too, but in a rather indirect and cumbersome
way [3]. The author, however, has not read any plain direct deduction of the
fundamental theorem in a covariant manner which would be valid for all
kinds of continuous symmetry transformations. This paper aims at presenting
such a deduction which is of general validity. Only then will the equivalence
(resp. the extent of the equivalence) of the Hamilton principle and the commu-
tation law with the fundamental theorem become quite clear.

§ 2. As starting point for the covariant formulation of the theory serves
the Lagrangian L. For the sake of simplicity let us assume that L is built
up from the field quantities and their first derivatives. The physical field is
described (in the classical theory as well as in the Heisenberg picture of the
quantum theory) by such field quantities for which the integral

JL@G)ov(y)dy 3)

is stacionary (i.e. its first variation is zero) for values g, (x) fixed on the
boundary of the four-dimensional domain W. This Hamilton principle will be
regarded as the first axiom of the theory; from this the Lagrangian form of
the field equation can be obtained :

oL _, oL

=0, (4)
Yy l 99; Y

When substituting the expression for y, (y) determined from (4) for the
innerregion of W into (3), we get the action integral

S = licf L(y(y),8y(y)dy, ()

which devends only on the extent of W and on the specific value of g, prescribed
on the boundary of W.
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Varying the four-dimensional domain W a surface point with coordinate
x; becomes a surface point with coordinate x; = x; -+ dx;. The value of the
field quantity in this boundary surface peoint be also changed from vy, () to
Yu(x) = pu(x) + oy.(x). (By using the changed functions y (y) corresponding
to the modified boundary conditions the action integral S becomes of course
stacionary in the interior of the domain.) The variation of the boundary
conditions modifies also the value of the action integral. The variation of S
(according to the boundary formula of the variation calculus) can be trans-
formed into a surface integral :

s L)

(where the domain of integration I is the boundary surface of W). Let us
use the following notations :

X st 00w, [ aF, = ) (mbyut piox)ar,  (6)
aal\ Yu ’ H

8L

@lk(x) = Laxk — 8, P 53 v
k't

(7)

is the canonical energy momentum tensor, N; is the normal unit vector of
the surface element dF, (i.e. dFy = N dF, N, N, = 4+ 1). According to
Pierre WEIss the quantity

1 oL
ﬂp(x) = .

N, 8
ic 80,1y, ®)

will be regarded as the canonical conjugate of the field quantity y,(x) and
the function

P:(x) = L Olk Nk (9)

c

as the canonical conjugate of the independent variable x; [4]. (It should be
noted that @, (x) and p; (x) are not pure local functions but they depend on
the direction of the surface element at the point x.) They can be designated
canonical conjugates as (in the classical theory as well as in the quantum
theory) canonical equations can be deduced for them.

Let f; (x) be four arbitrarily given coordinate functions and let us form
the integral

B= j P () dF = i j 0, ()fi(y) dF = j [i LN, —8,y,.mf,dF (10)
F F F
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for an arbitrary three-dimensional not-bounded space-like hyperplane F.
The integrand is a given expression of y,(y), 8; w.(y) and =(y). Using (8)
the normal derivate of y, can be expressed by y, and =, and thus B can be
regarded as a functional of the values of y, and 7, taken on the plane F.

By varying the values of , (y) and 7, () prescribed on the hyperplane
we get for the variation of B (after identical transformations) :

3By, a]— — [ oL 5 L ]6%41F+
L 8% 881 Yy
+ ‘ 5, “.i‘ —6L N, fi opu — mu ’Sy)ﬂf;‘] dF + (11)
- ic 388, y,

dF.

1 8L
—{—f%'ai (fzn#)_—_.— Nz arfiléw#_ [81 lpﬂfl]anﬂ
) ic 93, y,

F

The first integral becomes zero due to (4), the second one is also zero
(in spite of the fact that it is a four-sum) due to the vanishing of 9, in the
space-like infinity. From the remaining expression we can see that the func-
tional derivatives are the following :

B o (fimy— L N, (12)
Oy,(x) ic 098,y
5B
=—13 . 13
5n,,(x) f; t T/"Il ( )

In the special case when f; = 6, (12) and (13) lead to the following

canonical equation

8P, oP,

:8 Tx), —_— = —-a X}, 14‘
Syn(x) & (%) St x) ke Wulx) (14)
where
Pk:_.l ]szdFk: [p,dF (15)
il 'F

is the four-momentum of the system.

§ 3. A symmetry transformation has to be regarded as continuous
if 1) it is a differentiable function of the parameter a, 2) it turns into identical
transformation when a = 0 and 3) the parameter can be chosen so that the
successive transformations with parameter a; and a, correspond to a trams-
formation with parameter g, + a,
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The transformation changes the field quantity components y, in the
given geometrical point P : they combine with each other

YuP) = 9w 9 P)- (16)
0,, and thus also ¥, are functions of the parameter a.

0'#,(0) = O 5 0#3(62) GQ”(GI) = Ou{ay -+ ;). (17)

Let us form the following expressions :

A,y = [d;;” LD =1, (18)
Ay, (x) = l%ﬁd)Lo = L, p.(). (19)

I

v is the matrix of the infinitesimal transformation.

The symmetry transformation can change the coordinates of the point
P too: x— x'(a) = sx. Let us deal now with the following expression :

’
dx;

Ax, = . 20
[ da a=9 ( )
If we regard the arguments of the field quantities in (16),
Yu(x') = o4 p() 5 (21)
i.e.
Yu(x) = 0 (s 1)
and change the notation of the independent variable x’,—> x,, we get :
Yi(x) == 0, (s %) (22)

Thus, comparing the functional forms of the field quantities (i.e. their de-
pendence on the coordinates as independent variables) instead of comparing
their values taken at a given geometrical point according to (16) we can see
that the expression y, (x) will be altered by the transformation due to two
reasons : the components of the field quantities combine in a given point ()
and the coordinates of this point will be changed in the argument (s). Thus
the derivative of , (x) with respect to the transformation parameter consists
of two parts:

. do,,’
A* — |- wﬂ(x)] _ Hy
¥ul) [ da ],y da |, o
= Ay (x) — 0, ypulx)- Ix,.

d(s~1x),;

Yulx) -+ 8, pu(x)

Lo: 23)
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Let us consider now, following E. NoETHER [1], the action integral after
the transformation as a function of the transformation parameter a :

S(a) = Tlc Jﬁ L(y'(y). 8 v(y))dy .

As the transformation is a symmetry transformation the action integral has
to be equal to the non-transformed expression S(0), i.e.

A8 = ' ds(“)} B :J‘ 5, [i( L gy, + a,kAx,”dx —0. (24)

da ic | 85, vy,

This relation, however, is valid for an arbitrary domain W only when

akjk =0,
where
. i ol
@ =" 2 4y, 0, Axi] . (25)
c |89, v,

To every symmetry transformation corresponds a conservation law. The
differential form of a conservation law is given in (25). This is Noether’s
theorem. The current density jj (x) is a pure local function independent of the
transformation parameter and the surface direction.

Let us choose the four-dimensional domain W in (28) as the four-volume
between the two hyperplanes F, and F and assume the normals of the hyper-
planes as directed into the “future”. Then using the Gauss theorem and the
fact that the field quantities vanish in the space-like infinity, we get for (24)

48 = Q(Fy) — Q(F) =0,
Q= [jxdF;=— [ (m Ay, + p, 4x) dF (26)

is independent of the hyperplane, i. e. it is a constant of motion and it can be
transformed like a contravariant quantity with respect to the transformation
parameter a. The form of @ can be written down directly when L is known.
This is the integral form of NOETHER’s theorem.

§ 4. In quantum theory besides the field equations the commutation
laws must also be known. Let us consider a hyperplane F. The following
commutation laws are valid for the field quantities taken at two points x, y
of the hyperplane :

{vulx), 1(9)} = A0 0(x — ¥) s {mux), m(9)} =0, {pu(x)spu(y)}=0.  (27)
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Here
{4,B} = 4B 4 BA,

where the sign depends on the statistics of the field investigated. The definition
of the surface function §(x) is the relation

[0y —=)dF(y) =f(2).

The “simultaneous” commutation rule (27) refers to the hyperplane F
(due to the quantities 7,, §(x) and to the assumption x, y¢F). Comparing 27)
and the field equations (4) the commutator {y, (x), v, (s){ at two points
of arbitrary location can be obtained and its value is already independent
of F.

The results of the classical theory obtained in the above two paragraphs
are valid also in the gquantum theory as operator relations if we take care of
the sequence of operators in the course of differentiations. The most obhvious
way is to regard all the products as ordered products.

§ 5. As the transformations dealt with are symmetry transformations
the operators y,'(x) satisfy the same commutation rules as the operators
¥u(x) (the transformation is canonical). Thus the two operators can be related
to each other by a unitary perator U, namely :

Yi(x) = Uyu(x) U2 (28)

Our main task is to determine the explicit form of the generator U.
For the transformations dealt with here we ean write

U(a)U(a)=Uay+a), U@©)=1.

Be

AU= {‘%Lo. (29)

Differentiating (28) with respect to a and taking the derivative for
a = () we get by taking into account (23) and (29)

A* p,(x) =TAU. w.(x)1. (30)

([-..] means a minus commutator.) Evidently, if the operator 4U satisfying
{30), is determined, the operator U can easily be obtained. In the case of a very
small transformation parameter one can write :

Ula) ~ U(0) + a (%U_} —1+ad0.
a=90

a
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The relation becomes exact if a— 0. The generator of a transformation with
a finite parameter ¢ can be obtained from the generator of a transformation
having as parameter a/n in the following way :

Ua)=U |2’

°

n
and if n is large enough
a n

U( ~1+24U, thus U(a) ~ (1 4 —a—AU]
n n n

The equality sign applies ifi——>0, i.e. if n— oo, Thus we can write sym-
n

bolically
U(a)= lim [1+1AU] = eV 31)
n

n—w

As a preparation for the determination of AU the commutators of ( and
y,(x) have to be formed :

[Q:wu(®)] = — [ [7() Apu(y), pul(x)] dF(y) — [ B, ypu()]. (32)

B = {p(y) 4y, dF . (33)

Here

As (Q is independent of the position of F we have chosen a hyperplane laid
through the fixed point x. For the'evaluation of the first term on the right
hand side of (32) the algebraic identity

[AB,C]= A{B.C}—{C, 4} B (34)
can be used and for the second term the general mathematical relation

0B

35
07,(x) %)

[&mmzé

which is valid as a result of (27) for all expressions B of interest. (It must be
taken into account that only even number fermion operators can occur in B.)
Thus we get

[0, vu(x)] = ( [f.(x), m(V)} Ay, (y) —

— (y) L{w,(y)s wulx) })dF(y) +- i }s_:—%)" ,
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From the commutation laws (27) and from the general canonical equations
(13) (by choosing fi(y) = Ay;) we get

[Q; yul(x)] = ik (AWM(x) — 9, yu(x) Ax,) = th 4% y,(x). (36)

Comparing (30) and (36) we get for the operator AU :

I

AU=— Q= | (mdyy + p, Ax) dF (37)

and the generator of the finite symmetry transformation becomes

]

Ul@)=e™"7¢ = exp %J(ﬂu Ay, + p,Ax ) dF = exp h_iﬂ oL
c
F F

AW# +
08 Y

(38)

—}—LAxk— dFk-

9,9, Ax;

k Yu

Thus we have succeeded in obtaining the generator of an arbitrary continuous
symmetry transformation by the aid of the field equations and the commu-
tation law. The generator is, according to § 3, a Lorentz invariant censtant
of motion, which is independent of F.

§ 6. As we mentioned already in the introduction, the fundamental
theorem expressed by (28) and (38) was regarded by J. ScEWINGER as an
axiom of the quantum theory from which the commutation law can be deduced.

Indeed : Let us consider such a symmetry transformation, for which
Ax; = 0. In this case it follows from the expression (37) (which is accepted
as an axiom) that

= A%, = [AU, ()] = ; [T00) l5): 9] Lo dF(y) =

F
2

= ;J‘(nv(}’) {%(y% 1/’.u(x)} - {w,,(x), 7'5,,()*)} 1/’@(}’)) L,dF(y).

This requirement can be fulfilled for many possible expressions I,, and point
x and hyperplane F by choosing

{We(y)» %(x)} =0, {%(x), n,,(y)} = ifid,, 0(x — y).

Of course the fundamental theorem does not affect the type of the statistics.
Conclusions can be drawn from the fundamental theorem also regarding

4 Acta Physica IX/4.
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the field equation. The theory is invariant against the displacement of the
origo of the coordinate system, i.e.

K=xi—a,  YUE) =) (39)

are symmetry transformations. From this follows according to (26) the conser-
vation of the field momentum P;, the form of which can be obtained directly
from (15) if the Lagrangian is known.

Applying (30) to the transformation (39) we get

ih [Py, pul®)] = 8,9u(2). (40)

(40) determines the space and time variations of the field quantities and thus
leads to the field equations.
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0 ®YHIAMEHTAJIbHON TEOPEME HEIIPEPLIBHbIX IMPEOBEPA30BAHUNA
B KBAHTOBON TEOPUU

I'. MAPKC

Pesome

YHutapHplii onepatop, Mpou3BOASIUME Npeo0Opa3s0BaHHUs CHUMMETPHH B THI0EPTOBOM
NPOCTPAHCTBE, CTPOMTCS HA 0a3e YpaBHeHHH NOJIsT M IepeCTAHOBOYHBLIX COOTHOWeHMH. Haw
MeToq, siBJsiercst o0pauieHvem metoda llIBuHrepa u OH YCTpaHseT HEeKOTOpble HENOCTATKU Npe-
IBIAYVILHX TPaKTOBOK.



