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The unitary operator, the generator of symmetry transformations in the Hilbert- 
space, wiU be formed on the basis of the field equations together with the commutation law. 
Our method is the reversal of SCHWlNGER'S method used in the covariant formulation of the 
quantum theory and eliminates some insufficiencies of the previoas treatments. 

w 1. The  p re sen t  p a p e r  deals wi th  a p rob lem of  methodologica l  in te res t ,  
across which the  a u t h o r  carne in the  course of  his un ive r s i ty  lectures.  

The  t r ans fo rma t ions  leaving the  f ield equat ions  (Lagrangian)  as well 
as the c o m m u t a t i o n  laws i nva r i an t  p lay  a s ignif icant  tole  in the  q u a n t u m  
theory .  Such t r an s fo rma t ions  of  the  coordinates  xi and  of  the  f ie ld quant i t i es  ~~ 

x, --, x , ,  ~v,(x) ---~V,,(x ) (1) 

ate  the so-called s y m m e t r y  t r ans fo rma t ions .  In  the Hi lbe r t - space  the genera to r  
of  a t r a n s f o r m a t i o n  which does not  affect  the  c o m m u t a t i o n  rules is a u n i t a r y  
ope ra to r  : 

,p'(x) = U ~v(x) U -~, (2) 

I n  the course of  q u a n t u m  theore t ica l  appl ica t ions  the  explici t  forro of  the  
geuera tor  U becomes  i m p o r t a n t .  As is well known [1] in the classical t h e o r y  
a lways a conserva t ion  law corresponds  to every  s y m m e t r y  t r ans fo rma t ion .  
There  exists  a close re la t ion  be tween  this conserva t ion  law and  the forro of  
the  un i t a ry  genera to r  U. This  ope ra to r  gives the t rans i t ion  be tween  the two 
s ta te  vec tors  wi th  which observers  in different  " s y s t e m s  of  re fe rence"  describe 
the same phys ica l  s t a te  : 

! > ' = u i > .  (3) 

I t  is ve ry  r e m a r k a b l e  t h a t  in case the Lagrangian is known a method can be 
given[or the unambiguous formation of the generator of a continuous symmetry 
transformation. This m e t h o d  can be ob t a ined  b y  the  aid of  the  fundamental 
theorem ~f continuous transformations. 

In  the  SCItWINGER'S cova r i an t  fo rmula t ion  of  the  q u a n t u m  t h e o r y  
this f u n d a m e n t a l  t h e o r e m  is r ega rded  as an ax iom of the  t h e o r y  and  the forro 
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of  the commuta t ion  rule was deduced f rom it  [2] ; in addit ion it is possible 
to deduce also the field equat ions.  However ,  the reversed process can also 
be cons idered :  the fundamen ta l  theorem can be deduced f rom the field 
equat ions  and the commuta t i on  law. These l a t t e r  can be in t roduced  more 
easily in a correspondence-l ike way,  therefore  this k ind of t r e a t m e n t  seems 
to be methodica l ly  more advantageous  (a l though SCnWINGER'S me thod  is 
ma themat i ca l ly  more elegant).  The  deduct ion of  the  fundamenta l  theorem 
f rom the commuta t ion  law has al ready been t r ea t ed  in the special case when 
the s y m m e t r y  t rans format ion  does not  affect the space coordinates (e.g. 
gauge t ransformat ion ,  the t ransformat ions  of the isotopic space) and fo rmer ly  
the general  case was handled,  too,  bu t  in a r a the r  indirect  and cumbersome 
way  [3]. The  author ,  however ,  has not  read any  plain direct  deduct ion of  the  
fundamen ta l  theorem in a covar iant  manner  which would be val id for all 
kinds of cont inuous s y m m e t r y  t ransformat ions .  This paper  aims at  present ing 
such a deduct ion which is of general  val idi ty.  Only then  will the equivalence 
(resp. the ex ten t  of the equivalence) of the Hami l ton  principle and the commu-  
t a t ion  law with the fundamenta l  theorem become quite  clear. 

w 2. As s tar t ing point  for the covar iant  fo rmula t ion  of the t heo ry  serves 
the Lagrangian  L. For  the sake of  simplici ty let  us assume th a t  L i s  bui l t  
up f rom the field quant i t ies  and their  f irst  der ivat ives .  The physical  field is 
described (in the classical t heo ry  as well as in the Heisenberg pic ture  of the 
q u a n t u m  theory)  by  such field quant i t ies  for which the integral  

y r (~(y), a ~ (y)) dz (3) 
ir" 

is s tac ionary  (i.e. its f i rs t  va r ia t ion  is zero) for  values q ) f ixed on the 
b o u n d a r y  of  the four-dimensional  domain W. This I-Iamilton principle will be 
regarded  as the f irs t  axiom of  the t heo ry ;  f rom this the Lagrangian  forro of  
the  field equat ion  can be ob ta ined  : 

aL aL 
a, - -  - -  0. (4) 

a~~ aa i %, 

When  subst i tu t ing the  expression for ~ ,  (y) de te rmined  f rom (4) for  the  
i nne r r eg ion  of  W into (3), we get  the act ion in tegra l  

S = 1 f L (~ (y), a~v (y)) dy, (5) 
ic 

IV 

which deoends onlv on the ex t en t  of  W and on the  specific value of~p, prescribed 
on the  b o u n d a r y  of  W. 
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Varying the four-dimensional domain IV a surface point with coordinate 
x i becomes a surface point with coordinate ~i :-- xi + 6xi. The value of the 
field quant i ty  in this boundary surface point be also changed from ~% (x) to 
~~(~) : ~~(x) q- ~~v~(x). (By using the changed functions ~v (y) corresponding 
to the modified boundary conditions the action integral S becomes of course 
stacionary in the interior of the domain.) The variation of the boundary 
conditions modifies also the value of the action integral. The variation of S 
(according to the boundary formula of the variation calculus) can be trans- 
formed into a surface integral:  

dS : 1 - ----aL ~~v# + O,k ~x i d F  k = (:t~, ~~~, 4- Pi dx,) d F .  (6) 
H 

(where the domain of integration H is the boundary surface of W). Let us 
use the following notations : 

O~k(x ) = Lt~,k - -  a, ~ .  - -  
aL  

OOk ~v/, 
(7) 

is the canonical energy momentum tensor, Nk is the normal unir vector of 
the surface element d F k  (i.e. d F k  = N k d F ,  N k  N k  = + 1). According to 
PIVRRE WEISS the quanti ty  

1 aL 
~.(x) -- . N~ (8) 

tc 0~ k %, 

will be regarded as the canonical conjugate of the field quant i ty  %.(x) and 
the function 

1 
p,(x)  : O, k N  k (9) 

ic 

as the canonical conjugate of the independent variable xi [4]. ( h  should be 
noted that  zt, (x) and Pi (x) ate not pure local functions but  they depend on 
the direction of the surface element at the point x.) They can be designated 
canonical conjugates as (in the classical theory as well as in the quantum 
theory) canonical equations can be deduced for them. 

Let J~ (x) be four arbitrarily given coordinate functions and let us form 
the integral 

f 1 f = ~iw 11 LN,-  a, w,,. ~.)f. d E  (tO) B = p , ( y ) f , ( y ) d F =  ic O,~(y)~ . (y)dF~ J t  ~c 

F F F 
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for an arbitrary three-dimensional not-bounded space-like hyperplane F. 
The integrand is a given expression of ~,(y), ~~ ~,(y) and ~t~(y). Using (8) 
the normal derivate of ~,  can be expressed by  ~~ and z ,  and thus B can be 
regarded a s a  functional of the values of ~~ and Ÿ taken on the plane F.  

By varying the values of ~~ (y) and ~~ (y) prescribed on the hyperplane 
we get for the variation of B (after identical transformations) : 

1 Pi OL OL } 

§ .}'ar ic Oa, v2~, N, .f, £ -- ~,,a~,,fr d F +  (11) 
F 

f { [  1 OL ] t 

F 

The first integral becomes zero due to (4), the second one is also zero 
(in spite of  the fact that  it is a s due to the vanishing of ~~ in the 
space-like infinity. Fram the remaining expression we can see that  the func- 
tional dr are the following : 

8B 1 aL 
- -  - -  a~ (f~ ~~) 

aB 

- -  N~ arf, ,  (12) 

{13) 

In the special case when J~--~ a;k (12) and (13) lead to the following 
canonical equation 

6Pk - -  O k~r"(x) ,  dPk - -  8 kv2.(x), (14) 

w h e r c  

Pk = l~ t 'Qk dFt~ ~-.i  p~ .] 
F F 

is the four-momentum of the system. 

(]~) 

w 3. A symmetry transformation has to be regarded as continuous 
if 1) it is a differentiable function of the parameter  a, 2) it turns into identical 
transformation when a ----- 0 and 3) the parameter  can be chosen so that  the 
successive transformations with parameter a~ a n d a  2 eorrespond to a trans- 
formarŸ with parameter  a 1 + a 2. 
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The transformation changes the field quant i ty  components ~o. in the 
given geometrical point P : they combine with each other 

~~,(P) = a,,~ ~0~(P). (16) 

%v and thus also '~p~ ate functions of the parameter a. 

a~,~(O) ~- d,,., a.~(a2) %.(al) = %~(a~ + al). (17) 

Let us forro the following expressions : 

Aaz, ~ = [ da~,, ] = I , , ,  (18) 
l~--a  3o=0 

A~o,,(x) = [ dv2~(x') ] = / . .  %(x). (19) 

I . .  is the matrix of  the infinitesimal transformation. 
The symmetry  transformation can change the coordinates of the point 

P too :  x--~x'(a) = sx. Let us deal now with the following expression: 

z ~ , = [  ex: l . �89 
L da ~a=o 

I fwe  regard the arguments of the field quantities in (16), 

I t ~ ~ ( x  ) = .~~ ~~(x), (21)  
i . e .  

t v - 1  v ~ , ( x  ) = ~~~ ~~(~ ~ ) 

and change the notation of the independent variable xŸ x,, we get : 

~4(") -- a,~~ ~~(s-~ ~')" (22) 

Thus, eomparing the functional forros of the field quantities (i.e. their de- 
pendence on the coordinates as independent variables) instead of eomparing 
their values taken a t a  given geometrical point aceording to (16) we can see 
that  the expression ~v~ (x) will be altered by  the transformation due to two 
reasons : the components of the field quantities combine in a given point (a) 
and the coordinates of this point will be changed in the argument (s). Thus 
the derivative of yJg (x) with respect to the transformation parameter consists 
of  two parts : 

~.,~(x~ = f~~~(~/~ = r~~~~-i J ~~~ xx~~ 1 L d~-a L=o [ da [a=o %(x) + �91 da _~=o= (23) 
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Let  us consider now, following E. NOETr~ER [1], the action integral  af ter  
the t ransformat ion  a s a  funct ion of the t ransformat ion  parameter  a : 

S(a) = l~tc-j L(~:'(y'), O' ~v'(y'))dy'. 
w 

As the t ransformat ion  is a s y m m e t r y  t ransformat ion  the action integral  has 
to be equal to the non- t ransformed expression S (0), i.e. 

W 

This relation,  however, is valid for an arb i t ra ry  domain l~z only when 

where 
a~j  k = 0 ,  

i / 
j~ (x) = I AW, + O,~ ~x ; / .  (25) 

c t, oak ~ % / 

To every s ymmet ry  t ransformat ion  corresponds a conservation law. The 
differential  forro of a conservation law is given in (25). This is Noether's 
theorem. The current densi ty jk (x) is a pure local funct ion independent  of the 
t ransformat ion  parameter  and the surface clirection. 

Let  us choose the four-dimensional domain I~:in (28) as the four-volume 
between the two hyperplanes F 0 and F and assume the normals of the hyper-  
planes as dŸ into the " fu tu r e " .  Then using the Gauss theorem and the 
fact  tha t  the field quantit ics vanish in the space-like infini ty,  we get for (24) 

A S  = Q(Fo) -- Q (F) ---- 0, 
i .  e .  

Q = J'Jk dFk  = - -  .~ (~, A ~ ,  + Pi zJx,) d F  (26) 
F F 

is independent  of the hyperplane,  i. e. it  is a constant  of motion and it can be 
t ransformed like a contravar iant  quan t i ty  with respect to the t ransformat ion  
parameter  a. The form of Q can be wri t ten down direct ly when L i s  known.  
This is the integral form of NOETtIER'S theorem. 

w 4. In  quan tum theory  besides the field equations the commuta t ion  
laws must  also be known. Let  us consider a hyperplane F. The following 
commuta t ion  laws are valid for the field quanti t ies  t akcn  at  two points x , y  
of the hvperplane : 

{~,(x), ~r,(y)} = i:~~.~ 6(x - -  y ) ,  {~:,(x), ~~(y)} = 0, {~v,(x), ~,(y)} = 0. (27) 
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Here 

where the sign depends on the statistics of the field investigated. The definition 
of the surfaee function t$(x) is the relation 

f f (y) 6(y -- x) dF(y) = f ( x ) .  
F 

The "simultaneous" eommutation rule (27) refers to the hyperplane F 
(due to the quantities ~~, ~(x) and to the assumption x, yEF).  Comparing (27) 
and the fŸ equations (4) the commutator  l~, (x), ~v (z) t at two points 
of arbitrary location can be obtained and its value is already independent 
of F. 

The rcsults of the classical theory obtained in the above two paragraphs 
are valid also in the quantum theory as operator relations if we take care of 
the sequence of operators in the course of differentiations. The most obvious 
way is to regard all the products as ordered products. 

w 5. As the transformations dealt with are symmetry transformations 
the operators ~,'(x) satisfy the same commutation rules as the operators 
~p,(x) (the transformation is canonical). Thus the two operators can be related 
to each other by  a unitary perator U, namely : 

~'~(~) - -  u ~ . ( ~ )  u - , .  (28) 

Our main task is to determine the explicit forro of the generator U. 
For the transformations dealt with here we can write 

Be 

U(a~)U(al)=U(az-~-a~) ,  U(O)~---1. 

dU 

Differentiating (28) with respect to a and taking the derivative for 
a ~-0  we get by taking into account (23) and (29) 

A* w,,(x~ = [AU. ~.(xU. (30~ 

( [ . . . ]  means a minus commutator.) Evidently, if the operator A U satisfying 
(30), is determined, the operator U can easily be obtained. In the case of a very 
small transformation parameter one can write : 

U(a) ~ U(O) + a = ~ + a 3 U .  
a=0  
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The  re la t ion becomes exact  if  a ~ 0. The genera tor  of  a t rans format ion  with 
a f ini te  pa rame te r  a can be obta ined  from the  genera tor  of  a t r ans format ion  
hav ing  as pa rame te r  a/n in the  following way  : 

~ , a ,  ~ la)  ~ 
and  i f  n is large enough 

U ~ l - k  a A U ,  thus  U ( a ) ~  1-4-. AU . 
Ir  

a 
The  equa l i ty  sign applies if-----~0, i.e. i f  n ~ ~ .  Thus  we can wri te  sym- 

n 
bolical ly 

U(a)= lira 1 +  AU ~-e azU. (31) 
n ~ o o  

As a p repara t ion  for the de te rmina t ion  of  A U  the commuta to rs  of  Q and 
~,(x) have  to be formed : 

H~re 
[Q, ~v,(x)] = - .~ [zt~(y) A~~(y), ~,(x)] dF(y) -- [B, ~,(x)].  (32) 

B ---- j 'p , (y)  Ay, dF.  (33) 
F 

As Q is independent  of  the posi t ion of F we have  chosen a hyperp lane  laid 
th rough  the  fixed point  x. For  the '  evaluat ion of  the f irs t  t e rm on the r ight  
h a n d  side of  (32) the algebraic iden t i ty  

EAB, CI= A{B,C}--{C,A}Z (34) 

can  be used  and for the second t e rm the general  ma themat i ca l  re la t ion 

1~ 8B 
[B, ~,,(x)] = - -  (35) 

which is v a l i d a s  a r e suh  of  (27) for all expressions B of  interest .  ( h  must  be 
t aken  into account  t ha t  only  even number  fermion operators  can occur in B.) 
Thus  we get  

ro ,  ~Ax)l = I [~~,,(x), ~~(Y)~Av', (Y) - 
6B 

--  zt~(y) I~~{~Q(y), %,(x)})dF(y) + i,~ ~~,~(x~ 
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From the commutation laws (27) and from the general canonical equations 
(13) (by choosing j Ÿ  Zlyi) we set 

[Q, %,(x)] = ih (A~p~,(x) - -  8, y~~,(x) Ax,)  = ii�91 A* y~~(x). (36) 

Comparing (30) and (36) we get for the operator A U :  

'f zŸ -~ - -  i Q = (~~ A,p, -}- p, �91 d F  (37) 

and the generator of the finite symmetry transfoTmation becomes 

U(a) = e -a  T Q ----- exp (~r/, A~p,~ ~- p, Ax~) d F  - -  exp a 
88k ~~ 

F P (38) 
-} -LAxk OL 8 i %, 3xi] dFk .  

8Ok V~ 

Thus we have succeeded in obtaining the generator of an arbitrary continuous 
symmetry transformation by the aid of the field equations and the commu- 
tation law. The generator is, according to w 3, a Lorentz invariant constant 
of motion, which is independent of F. 

w 6. As we mentioned already in the introduction, the fundamental 
theorem expressed by (28) and (38) was regarded by J. SCUWINGER as an 
axiom of the quantum theory from which the commutation law can be deduced. 

Indeed:  Let us consider such a symmetry transformation, for which 
Axi = 0. In this case it follows from the expression (37) (which is accepted 
as ah axiom) tha t  

,f zw,, = ~* ~,, = [~Jv, ~/,~(x)] = ~ .  [ .~(y) v,o(y), w,,(x)] r~o aF (y )  = 

F 
i - 

- - ~ j  O,,(Y) {w~(y), v,,,(x)} - {w,~(~), ~~(y)} v,~(y)) L~ dF(y). 

This requirement can be fulfilled for many possible expressions I~~ and point 
x and hyperplane F by choosing 

{~v~(y), %v,(x)} = 0, {~,(x), era(y)} = ih6,, 6(x -- y).  

Of course the fundamental  theorem does not affect the type of the statistics. 
Conclusions can be drawn from the fundamental theorem also regarding 

4 Acta Physica IX/4. 
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the  field equat ion.  The  t h e o r y  is i nva r i an t  aga ins t  the d i sp lacement  of  the  
origo of  the  coordinate  sys t em,  i.e. 

I I i 
=, = =, - a i  , ~0.(= ) = , p , ( x )  (39) 

are s y m m e t r y  t r ans fo rma t ions .  F r o m  this follows according to (26) the  conser-  
va t i on  of  the  field m o m e n t u m  Pi, the forro of  which can be ob ta ined  d i rec t ly  
f rom (15) if  the Lagrang ian  is known.  

Apply ing  (30) to the  t r a n s f o r m a t i o n  (39) we get  

i~ [P, ,  v,,(~)] = o,.,~,,(~). (40) 

(40) de te rmines  the  space and  t ime  var ia t ions  of  the  field quant i t ies  and  thus  
leads to the  field equat ions .  
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O OYH,~AMEHTA.rlbHO17[ TEOPEME HEHPEPbIBHbIX HPEOBPA3OBAHHI7I 
B KBAHTOBO17I TEOPHH 

F. MAPI~C 

P e 3 ~ M e  

YnHTapH/~]~ onepaTop, Hp0H3BQ~HIII~H~ npeo6pa3oaanHfl CHMMeTpHH B ru~6eproaoM 
np0cTpaHcTBe, CTp0HTCH Ha 6a3e ypaBHeHHfi n0~~ ri nepecTaHOB0qHblX C00THOII/eHH~. Hato 
MeT0~ ~IB~~IeTC~ o‰ MeT0~a LL[BHHFepa H OH ycTpaH,qCT HeKoT0pb~e He~0CTaTKH npe- 
~bl~yIl~IIX TpaKTOBOK. 


