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By using the solutions of eigenvalue problems often occurring in the various fields of 
theoretical physics the method of series, already used in certain cases for solving the Poisson 
equation, has been reformulated. In case the charge distribution can be expressed by the Dirac 
£ the potential distribution can be given in the forra of a series, the convergence 
of which is sufficiently rapid. For simple cases the formulae can be analytically redueed 
to the known solutions of corresponding problems (e. g. in the case III/1). In other cases (III/2) 
the calculated potential distribution coincides with the potential distribution obtained by 
electrolytic tank measurements. In the case of the cylinder ]ens of electron optics (III/3) the 
method yields the potential distribution and the corresponding electrode shape for arbitrary 
slit width. 

I .  I n t r o d u c t i o n  

The wel l -kown t a sk  of e lect ros ta t ics  is the  de t e rmina t ion  of  the electrie 
f ie ld of  charge d is t r ibut ions ,  when the  electrode a r r a n g e m e n t s  ate  given in 
advance .  For  the solution of  the p rob l em several  me thods  have  been  worked  
out  [1]. A c o m m o n  fea ture  of  mos t  of  these me thods  is t h a t  ah electrode 
a r r a n g e m e n t  of  pa r t i cu la r  s y m m e t r y  is a ssumed  and t h a t  for  the  individual  
a r r angemen t s  the  solut ions ate  given sepa ra te ly  in an explici t  forro. Thus  these 
me thods  ate  in genera l  too specialized for  appl ica t ion  to the  ac tua l  electrode 
a r r a n g e m e n t  ( required b y  some prac t ica l  problems) .  The  las t  possibi l i ty  
r emain ing  in such cases is the  expe r imen ta l  de t e rmina t ion  b y  electrolytir  
t anks  which,  however ,  m a y  in cases not  hav ing  s y m m e t r y  proper t ies  p rove  
to be a v e r y  compl ica ted  under tak ing .  

The  solut ion of  the  f u n d a m e n t a l  p rob l em of  e lec t ros ta t ics  in explicit  
f o r m  could be i m m e d i a t e l y  given (a l though the  possibi l i ty  of  its pract ica l  
eva lua t ion  in s l ight ly  more  compl ica ted  cases seems s o m e w h a t  doubtful) ,  
i f  the d is t r ibut ion  of  the  surface charge dens i ty  on the  m e t a l  electrodes were 
known.  Fo r  a qui te  general  electrode a r r a n g e m e n t  such an a s sumpt ion  would be  
indeed v e r y  audacious.  In  several  cases of  prac t ica l  impor t ance ,  however ,  the  
d is t r ibut ion  of  the  surface charge dens i ty  is exac t ly  of  a t  leas t  a p p r o x i m a t e l y  
known.  I n  the  l a t t e r  case when the  d is t r ibu t ion  is a p p r o x i m a t e l y  known  o n e  
can proceed  also in sucia a m a n n e r  as to  base  the  f inal  execu t ion  of  the  shape  
of  the  electrode s y s t e m  on the  equ ipo ten t i a l  surfaces of  the  f ield de te rmined  
previous ly .  
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The basic idea of the method is the following. Let us consideran electrode 
system of which the distribution of the surface charge density is given and 
a closed surface on which the values of the electrostatic potential is prescribed. 
Knowing the latter the Green function of the fundamental  equation of eleetro- 
statics can be determined and hereby the solution produced in the forro of 
a series. In many instances a considerable reduction of analytical formulae 
can be achieved by producing the series in finite form. 

The method developed is specialized first for the case of axially symmetric 
fields, then we show on a very simple example, the case of a cylinder capacitor, 
how the method may be applied. Afterwards the fields of three-electrode 
arrangements are determined which are used in the Penning's vacuum gauge, 
resp. which are differing from it in the placing of the anode and the cathode. 
These results ate compared with the distributions measured by an electrolytic 
tank. Finally the potential field of an electrode arrangement important in 
electron optics (the two-cylinder lens of finite slit width) is determined in 
the forro of a series. 

I t  may be finally mentioned that  the mathematical method applied 
here has recently been widely used for numerous problems [2]. Thus for 
instance also for the solution of the fundamental electrostatic problem in the 
case of simpler electrode arrangement [3]. 

II. General part. Survey of the method. 

The fundamental problem of electrostatics is the determination of the 
solution of the Poisson equation, 

A~ ---- -- 4zt~, (1) 

i. e. determination of the potential distribution �9 for given boundary condi- 
tions, if the space charge density Q, respectively in other cases the surface 
charge density o, the line densities 7 or the dipole momenta of the surface 
double layers are known. In principle �9 can be determined from equation (1) 
when the above quantities ate known, practically, however, it depends on 
the charge distribution and the boundary conditions whether the solution 
can be given. In the present paper the method is described for the case of all 
those potential distributions for which the charge distribution can be written 
down by the Dirac (~-function. (Hence for instance for any point charge 
distribution, for a surface and line charge distribution, provided they have 
suitable symmetry,  etc.) In the following after the description of the general 
method we shall apply ir to some actual instances. 

The charge density of a single point charge occuring in the Poisson 
equation can be taken in the followin~ form 

Q = ~o ~ (~ -- ~0), (2) 
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where Q0 is the charge at  the point  ro. Hence equation (1) takes the following 
forro 

A~ : -- 4~Q0 (5 (r -- r0) , ( la)  

The boundary  conditions are t ha t  the potent ia l  shall on a closed of open 
surface take u p a  value determined in advance.  

The solutions ~i of the eigenvalue equation 

A~b = E~b (2) 

by  which the above boundary  conditions are satisfied, belong to the eigen- 
values Ei. The Laplace operator is hermit ian,  and its eigenfunctions r  forro 
an or thonormal  complete set of functions.  As is well known the Dirac 
(~-function can be expanded in a complete set of or thonormalized functions,  
hence 

6 (r -- ro) = ~ r re ~ r  0:) (4) ~s i~ 0p 
l 

The functions r  sat isfy the same boundary  conditions as the potent ia l  q~ 
which is to be determined,  the la t ter  can be expanded in the r 

(~) : ~" c, ~~ (r). (5) 
l 

Substi tuting(5) and (4) into (la) owing to the l ineari ty of the Laplace operator  

.~" c, 3 r  i = - -  4 ~ ~ 0  ~~, ~* (r0) ~, ( r ) .  ( l b )  
i t 

Using equation (3) from the comparison of the coefficients 

r  (r,,) 
c, = -- 4 z ~ ~ 0 -  (6) 

E, 

isobtained.  Thus the potent ia l  is 

q~ (r) -- -- 4zt~0 ~ "  r (ro) ~b ( r )  
z Ez 

(More generally see for instance [2].) 
The method can be generalized wi thout  difficulties for the case of many  

p3int charges. Similarly all problems can be dealt  with for which the charge 

2* 
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density can be written as the superposition of terms of the forro (2). In this 
case the determination of the potential can be reduced to the search of solu- 
tions of (3) satisfying suitable boundary conditions. 

II[. Special problems 

In the following some axial symmetrical problems will be dealt with, 
on the one hand because of their physical importance (calculation of electron- 
optical cylinder lenses etc.) on the other because also from other sides the 
neeessity of the solution of similar problems emerged. As a matter  of course 
the method is also suitable for electrode arrangements having other adequate 
symmetries.  

For axially symmetrical arrangements equation (3) can be written in 
the following form 

O ~ �9 1 O~ O ~ 
- -  + A -  - -  - -  E q b  , (3a) 

Or ~ r Or Oz z 

r and z are the well-known cylinder coordinates. In the following the solution 
of some special problem is searched. 

1. As a first application such ah electrode arrangement is dealt with 
for which calculations can easily be carried out also otherwise. An infinitely 
long metal  cylinder of radius R x the axis of which coincides with the z axis 
of the system of coordinates is first considered. The surface charge density 
on the cylinder be %. I t  is surrounded by ah earthed metal cylinder of radius 
R (cylinder capacitor). In the case of this arrangement the charge density is 

= ao  ~ ( r  - R 1 )  . 

The potential depends owing to the symmetry properties only on r, a n d a s  
is known 

R 
=4z~a o l o g - ,  if R ~ ~ r ~ R ,  

r 

R 
=4z~a o l o g - ,  if  0 ~ r ~ R  1.  

R1 

(7) 

Consideringthat the potential docs not depend on z, the normalized solution 
of  equation (3a) which vanishes at r -~ R is 
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for the eigenvalues 

E i  = k~ , 
R 2 

where J0 is the Bessel function of first kind of order zero and the kl-s ate 
the roots of this Bessel function. The dash means derivation into the argument. 
The potential can be produced according to the method given in the general 
part in the form 

i R j (8) 

As can be easily seen by integration (8) is the expansion of (7) in a series of Bessel 
functions of different argument and order zero. 

The fact that  the series is convergent can be easily rendered plausible. 
According to the well-known asymptotical formula [4] referring to the Bessel 
functions of p th  order 

cos  q - -  , (x)  
Jp (x) ~ ]/1/2 ~x and q~ -~ x -- (p -- 0"5) ~2 

if x -+  ~ .  Thus 

Jo [ ~ R 1 ) J o  ( ~ - r / ~  ~ v ~ l c ~  [~--2i (R1--r)]  + s i n [ ~  -~-~ (R1 -4- r)]l" 

On the other hand it can be demonstrated also by (x) that for sufficiently 
great i 

2 
. /~  (k;) k, ~ - - .  

Thus the series is 

COS 

4 R~7 o 
[ ~ ( R  1 -- r)] + sin I -~(R 1 -f- r)] 

k~ 

Substituting the highest possible value of cos resp. sin, i. e. 1, and considering 
the asymptotieal behaviour of the roots of the Bessel functions 
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k i ~ ( i - - 1 ) z r ,  if i--+c~ , 

it can be seen that  the series can be majorized by the absolutely convergent 
1 

series . ~ . - ~  (a > 1), which is a sufficient condition for convergence [5]. 

2. Let us calculate as another special problem the potential field of 
the following electrode arrangement : In a closed earthed cylinder of radius 
R and height 1 are placed in planes parallel with the base circle-shaped electrodes 
ofradius R 1 provided with a charge density ? as illustrated in Figure I [electrode 
arrangement of the Penning's vacuum gauge]. Rotating the Figure around 
the z axis the electrode arrangement above described is obtained. In the 
case a) two rings of radius Ri placed in heights z x and l z 1 have been applied 
with the charge density YA ---- ?B. Case b) - -  where in the middle plane of the 
cylinder one ring is present with a charge density ~'A - -  is, as can be seen, 
a special case of a). Case c) is a combination of cases a) and b) where a ring 
having a charge density ~'c is placed in the middle plane while in the planes in 
heights z 1 and l--z t there are rings bearing charge densities ~'A ---- ?B- 

Z 

I - Z  I 

R 

/ / 

0 
0} 

z 
R 

z~ 

] I-zt 
/ 2 

4 2 

ZI 
r 
r 

R 

t ' ,  . . . .  ~~ - -7  " (  

0 ~ 
c) 

Fig.  1. S c h e m e  of  t h e  e lec t rode  a r r a n g e m e n t  o f  t h e  P e n n i n g  t y p e  v a c u u m  g a u g e  

I t  can be immediately seen that  in all the three cases the charge densities 
oeeuring in the Poisson equation can be expressed by one, two resp. three 
&functions and the charge density ?. The part  depending on r of the solution 
of equation (3a) satisfying the boundary conditions will be also now the 

system of Bessel funetions of order zero, J0 { ~  r}, whereas the part  depending 

on z is produeed by the set of funetion sin n ~ -z  . 

Takine into eonsideration the svmmetrv of the arran~ement the following 
expressions are obtained for the potential distribution : 
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a) ~~, 32_Crea 

= ~,w 11{2 r , 2 (  k t,n t,. ~0 ~, li 

sin(nlZl) sin(nlZ)Jo(~RllJol~ r) 
y~2 k ,  + n2__ 

R 2 q 

b) 16 ZteA 
q~ = ~t.n IR 2 j£ (kt) 

sin(n2) sinlnlZ)Jo(~Rll Jo(~r I 
7~ 2 k2 § n 2 - -  ~ (9) 

R q 

16 ~7A I e~ sinln ~_l + 
c) ~ = . ~  l R 2 j£ (ki) ki ~2 I YA ( 2 I 

, , n  R~2 -~- n2 q 

+ 2 sin n ~ - z  1 . 

(n is odd in all three cases). 
It should be mentioned, although this is not essential for the method, 

but is of considerable importance from the point of view of the numerical 
calculations, that in the double sum the summation over n can be easily carried 
out. The formulae (9) can be thus brought to the following forro : 

a) g ~ -  8ZteA 
,~ ( k,l t k, J~ (k~) eh t~ )  

b) ~ =  4~eA 2 oh(k~~ I R i k'J£ [2R] 

Ish{~ z)ch[ ~--~~ { z l - / } ] ,  if z l>z>0,  

sh{~ zl)ch[~ {z -- l-I ],ifl-z~>z>zl, 

{ sh z ,  if ~ / > z ,  

sh [~--L (l -- z)], if l ~ - < . ,  

R , k, j£ I • 

{ k, ~~~h/~z/+2sh/~~tchI~lz~--~/], i~z~>~>0, 

~~ shI~l,--~,~2sh(~ZllCh[~(z- '2tl.if,-z~>~>~. 7-a- --- 

(9a) 
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~ Z 

I 

vi r 
t 02 0 

Fig. 2. Re|ative potentia] dist l ib~t ion ototained wi th  the method i~ case of the e]ectrode 
a r r a n g e m e n t  of  F igu re  la. A l o n g  t h e  r a x i s  m e a s u r e m e n t s  a re  g j v e n  in  R un i t s ,  whe rea s  a ]ong  
the z axis in 1/~ units. The equipotential lines correspond (starting from the cylinder 
with the value 0% towards the thread eorresponding to 100%) to the following relative 
potential va]ues : 2,5% ; 5% ; 7.5% ; 8.75% ; 9.37% ; 9.66% ; 10% ; 11.25% ; 11.40% ; 

12.5%; 13.75%; 15%; 17.5%; 20%; 25%; 30%; 40%; 60% 

,z 
I 

P 
- -  t ~__ 

o f olz ~~ "a'£ a s  
1 

Fig. 3. The relative potential distribution measured in the electrolytie tank in the case of the 
electrode arrangement of Figure la. Denotations as in Figure 2. The relative potential values 
are: 2.5%; 5%; 7.5%; 8.75%; 9.37%; 9.68%; 9.84%; 10%; 11.25%; 12.05%; 

13.75%; 15%; 17.50%; 20%; 25%; 30%; 40%; 60% 

The problem of the convergence of the series can be dealt  with also here in 
a way  analogous to the case 1 by  taking into account  the asympto t i ca l  

expressions for the functions shx and chx. 
The potent ia l  distr ibutions obtained for the case of  electrode ar ran-  

gements  dealt  with herc were compared  with the corresponding poten t ia l  

* We ate indebted to Mr. E. KOLTAY q "candidate" fellow for earrying out the 
measurements. 
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Fig. 4. The dependence of the relative value of the  potr  on z in case of r : 0. The full  
d rawn line corresponds to the  potent ia l  values  obta ined exper imenta l ly  and  the  dot ted  to  

t h a t  obtained by  the  me thod  

~ 100 

" a z  ' a #  ' a '6 ' a '8  ' i ~  

Fig. 5. The dependence of the  relative value of the  potent ia l  on z, in  case of r = 0.22. 
Denota t ions  as in Figure 4 

out in the so-ealled tank with tilted bottom. By this modelling procedure 
the rotational symmetry of the eleetrode system is used fo ra  simpler realization 
of the problem. Its drawbaek is, however, that  due to the capillar phenomena 
appearing in the tank the accuracy of the method strongly decreases near 
the symmetry axis [6]. The potential distributions obtained by calculation 
and measurement ate presented for case a) in Figures 2 and 3. Disregarding 
the surroundings of the z axis, agreement of the calculated and measured 
potential distributions within the limit of errors is found. The explanation 
of the differences observable near the axis may be found in what has been 
said above about the measuring accuracy. In Figures 4 resp. 5 so as to illustrate 

V 
the agreement found the dependence of the relative potential value-~~ 100 

on the zcoordinate has been plotted for the values r = 0 resp. r = 0.22 
(V 0 is the potential of the circle). Along the r axis of the Figures values are 
given in units R along the z axis in units 1/2, corresponding to the denotations 
of Figure 1. The experimental curve shown by the full line tends when further 
away from the axis towards the theoretical curve shown by the dotted line. 
For small values of z the agreement is good also for small values of r. 

3. Now wa dat~rmina the note ntial fi~ld of the electronontieal two- 
eylinder lens so important  in praetieal physies. The eleetrode arrangement 
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d 
is the following: Two cylindrical electrodes of radius R 1 and length zo -- - -  

2 
are placed along the z axis a t a  distance d from each other as illustrated 
in Figure 6. They are surrounded by  ah earthed metal cylinder of radius R. 
The cylinders ate charged so that  their surface charge densities are al resp. 

---- -I" --L . . . .  Z 

0 Zo 2zo 

Fig. 6. The schr of ah e]ects162 arrangement os the type os ah e]ectronoptica] 
two-cy]inder ]ens 

<r a. The solution of equation (3a) satisfying the boundary conditions is now 
the complete set of functions 

1 (~j 
~ '~  RJ£ �91 r 

i n  xt z ] en---- V2 q',o (r) sin ( ~ Z o J  (10) 

oŸ = v~ o,0 (r)cos ln - -~  z/ 
2Zo ) 

I-Iereby the sum of the potentials of rings of surface charge densities G 1 and 
~~ becomes 

t 4~ 
~=1 ~ s i .  n ~ J z  0 

+ e2 (-- 1)" 2 z 0 (11) 
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The summation over n can be carried out. We consider the effect of the whole 
cylinder surface by integrating over the correspondig values of the z coordinate 
and we obtain the formula 

d 
z 0 - - - - -  

2 

#=/~8~tRZ~ qb'~176 c h k • 1 7 6  2kiR z~~ 

2~ o 

i ' k, (2Zo _ i z - -  z Ÿ  i) dzŸ + ~2 eh 

d :0+ -~ 

, if O<lzizl]<4z o 
( l la )  

of in integrated form 

i k~sh 2kiz~ 
R 

o~I=s~l~2,o) s~~ ,2zo z, ~~~ ~ + 
k, d l § d } ] §  o~ lsh ~ (z+ Zo-- ~- , -- 

_ sh (~_~i z)l, if 0 < Z < Z o  d - -  - - - 9  
2 

~1 l s h - ~ - ( 3 z ~  sh ~--C (2z~ z) I -4- 

d d -- , (llb) if z 0 ~ < z < z o  + 
2 

a l [ s h ~ { 3 Z o _ Z  d ) s h - k L ( 2 z ~  + R  

+ a~[2 sh{~ 2z0)--ah ~~i (3Zo--z+d)  - 

- - sh  z , if Zo+-9-<z<2z o. 

The potential of ah infinitely long cylinder capacitor deah with in 1. is 
evidently contained in (11b) when z,--~ oo. As can easilu be seen 

8zth z~ X al, ir a~- # 0, lim q~(r, z)z= o = 2 ' q~i~ q~'~ 
v ._  k2 cr2 z o ~  co i 
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resp .  

l im ~b(r, Z)z=2z ~ : 8~tR2zo ~~~ q~i~ ~i~ ~z, ir  ff& # 0 .  
Zo,-- ~ i k~ ~r:t 

F r o m  the  f o r m u l a  (11b) t he  p o t e n t i a l  d i s t r i bu t i on  o f  the  t w o - e y l i n d e r  

lens used  in e lec t rou  opt ics  is o b t a i n e d  for  the  case R �87 R r 
The  r e s u h  thus  o b t a i n e d  is o f i n t e r e s t  as - - i n  e o n t r a s t  to  a n y  o t h e r  m e t h o d  

appl ied  to  the  ca lcu la t ion  o f  the  f ield o f  t he  e l ec t ronop t i ca l  t w o - c y l i n d e r  

lens ~ no s t i pu la t ion  was  m a d e  du r ing  the  ca lcu la t ion  eoncern ing  t he  w i d t h  

d o f  the  slit.  O the r  m e t h o d s  used  for  the  so lu t ion  o f  the  p r o b l e m  fail  i f  t h e  

w i d t h  o f  t he  slit is o f  the  o rde r  o f  m a g n i t u d e  o f  the  t u b e  d i ame te r .  
F o r  the  f i rs t  two  cases m e n t i o n e d  as e x a m p l e s  in I I I  t he  f o r m u l a  is 

exae t ,  whe reas  in the  case o f  t he  e lec t ronop t ica l  t w o - c y i i n d e r  lens i t  has  t o  

be cons ide red  as a p p r o x i m a t i v e ,  since for  the  ca lcu la t ion  we s t a r t e d  f r o m  t h e  
a s s u m p t i o n  t h a t  the  charge  d i s t r i bu t ion  is u n i f o r m  on  the  ey l inder  surfaees .  

The  a c c u r a c y  of  the  a p p r o x i m a t i o n  can  be e s t i m a t e d  f r o m  the  e q u i p o t e n t i a l  
sur face  r u n n i n g  nea r  the  cy l inde r  surface.  
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OHPE~[EYIEHHE 3YIEKTPOCTATHqECKHX HOTEHIAHAYIOB C HOMOll~blO P~~[OB 

P. FALIII3AP, B. KOYlTAH-~~PMATH H H. TAMAIIIH-YIEHTEH 

P e 3 ~ M e  

Mb~ pe~opMynnposanti MeTO~ pa~oB Ana pemeHHa ypaBHeHH~ HyaccoHa, no~b3y~cb 
pemeHHaMii 3aAaq no C06CTBeHHblM 3HaqeHaaM, qacTo BcTpeqalomHxca B pa8HblX o6nacTax 
TeopeTHqecKofi dpH3HI<H. EC~H paciipeJleJleHHe 3ap~~a COOTBeTCTByeT ~-t~y~KaHH ,/~HpaKa, TO 
pemeaHe aoJ1yqaeTca B qb0pMe O~IHOF0, ,~OB0.7IbH0 x0pom0 cxo~ameroca p~~a. B np0CTb]X cJ1y- 
qa~x Hamii pemeHH~ aHaJIHTHqeCKH TpaHcqbopMHpyeMbl B x0pomo H3BeCTHble pemem4a (HaIIp. 
B cJwqae III/l).  B JlpyrHx cnyqaax (III/2) BblqHC~eHH0e pacnpeneJ1e~He nOTeHt~HaJia coBna- 
1laeT c nonyqenHbiM IJ3 H3MepeHHfi B 9JIeKTp0JII4THqeCI<0M BaHHe. B cnyqae 9JIeKTp0HOIITHqe- 
CKO¡ annnH~pHqecKofl .rl[IH3bI, (III/3) Hato MeTO~ ~aeT pacnpe~e~eHHe nOTeHaHaJ1a/IJI~ ~<aKO¡ 
JIH‰ IIIHpHHbI n~eJm H COOTBeTCTByIomyIO qbopMy a3e~<TpO~OB. 


