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By using the solutions of eigenvalue problems often occurring in the various fields of
theoretical physics the method of series, already used in certain cases for solving the Poisson
equation, has been reformulated. In case the charge distribution can be expressed by the Dirae
d-function, the potential distribution can be given in the form of a series, the convergence
of which is sufficiently rapid. For simple cases the formulae can be analytically reduced
to the known solutions of corresponding problems (e. g. in the case ITI/1). In other cases (IT1/2)
the calculated potential distribution coincides with the potential distribution obtained by
electrolytic tank measurements. In the case of the cylinder lens of electron optics (IT1/3) the
method yields the potential distribution and the corresponding electrode shape for arbitrary
slit width.

I. Introduction

The well-kown task of electrostatics is the determination of the electric
field of charge distributions, when the electrode arrangements are given in
advance. For the solution of the problem several methods have been worked
out [1]. A common feature of most of these methods is that an electrode
arrangement of particular symmetry is assumed and that for the individual
arrangements the solutions are given separately in an explicit form. Thus these
methods are in general too specialized for application to the actual electrode
arrangement (required by some practical problems). The last possibility
remaining in such cases is the experimental determination by electrolytic
tanks which, however, may in cases not having symmetry properties prove
to be a very complicated undertaking.

The solution of the fundamental problem of electrostatics in explicit
form could be immediately given (although the possibility of its practical
evaluation in slightly more complicated cases seems somewhat doubtful),
if the distribution of the surface charge density on the metal electrodes were
known. For a quite general electrode arrangement such an assumption would be
indeed very audacious. In several cases of practical importance, however, the
distribution of the surface charge density is exactly or at least approximately
known, In the latter case when the distribution is approximately known one
can proceed also in such a manner as to base the final execution of the shape
of the electrode system on the equipotential surfaces of the field determined
previously.

2 Acta Physica IX/4.
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The basic idea of the method is the following. Let us consider an electrode
system of which the distribution of the surface charge density is given and
a closed surface on which the values of the electrostatic potential is prescribed.
Knowing the latter the Green function of the fundamental equation of electro-
statics can be determined and hereby the solution produced in the form of
a series. In many instances a considerable reduction of analytical formulae
can be achieved by producing the series in finite form.

The method developed is specialized first for the case of axially symmetric
fields, then we show on a very simple example, the case of a cylinder capacitor,
how the method may be applied. Afterwards the fields of three-electrode
arrangements are determined which are used in the Penning’s vacuum gauge,
resp. which are differing from it in the placing of the anode and the cathode.
These results are compared with the distributions measured by an electrolytic
tank. Finally the potential field of an electrode arrangement important in
electron optics (the two-cylinder lens of finite slit width) is determined in
the form of a series.

It may be finally mentioned that the mathematical method applied
here has recently been widely used for numerous problems [2]. Thus for
instance also for the solution of the fundamental electrostatic problem in the
case of simpler electrode arrangement [3].

II. General part. Survey of the method.

The fundamental problem of electrostatics is the determination of the
solution of the Poisson equation,

AD = — 4ap, (1)

i. e. determination of the potential distribution @ for given boundary condi-
tions, if the space charge density g, respectively in other cases the surface
charge density o, the line densities p or the dipole momenta of the surface
double layers are known. In principle @ can be determined from equation (1)
when the above quantities are known, practically, however, it depends on
the charge distribution and the boundary conditions whether the solution
can be given. In the present paper the method is described for the case of all
those potential distributions for which the charge distribution can be written
down by the Dirac d-function. (Hence for instance for any point charge
distribution, for a surface and line charge distribution, provided they have
suitable symmetry, etc.) In the following after the description of the general
method we shall apply it to some actual instances.

The charge density of a single point charge occuring in the Poisson
equation can be taken in the followine form

0=1000(r — 1), (2)
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where g, is the charge at the point t;,. Hence equation (1) takes the following
form

AD = — Amg, 6 (t —1,) , (1a)

The boundary conditions are that the potential shall on a closed or open
surface take up a value determined in advance.
The solutions @; of the eigenvalue equation

AD = E® (2)

by which the above boundary conditions are satisfied, belong to the eigen-
values E;. The Laplace operator is hermitian, and its eigenfunctions @; form
an orthonormal complete set of functions. As is well known the Dirac
d-function can be expanded in a complete set of orthonormalized functions,
hence

O (r — o) = 3 Pf (1) D: (v) - (4)

The functions &; satisfy the same boundary conditions as the potential @
which is te be determined, the latter can be expanded in the @;-s

P (1) = Xe P (r). (5)
1
Substituting(5) and (4) into (1a) owing to the linearity of the Laplace operator
640, = — dmg, 3P} (1) D, (1) (1b)
i i

Using equation (3) from the comparison of the coefficients

*
¢, = — 4mp, —_QSIE(%) (6)

!

isobtained. Thus the potential is

B (1) = — 4mo 2@ (IOE avly

(More generally see for instance [2].)
The method can be generalized without difficulties for the case of many
point charges. Similarly all problems can be dealt with for which the charge

2%
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density can be written as the superposition of terms of the form (2). In this
case the determination of the potential can be reduced to the search of solu-
tions of (3) satisfying suitable boundary couditions.

IIL. Special problems

In the following some axial symmetrical problems will be dealt with,
on the one hand because of their physical importance (calculation of electron-
optical cylinder lenses etc.) on the other because also from other sides the
necessity of the solution of similar problems emerged. As a matter of course
the method is also snitable for electrode arrangements having other adequate
symmetries.

For axially symmetrical arrangements equation (3) can be written in
the following form

820 130 3P

8r? r Or 822

Ed (3a)

r and z are the well-known cylinder coordinates. In the following the solution
of some special problem is searched.

1. As a first application such an electrode arrangement is dealt with
for which calculations can easily be carried out also otherwise. An infinitely
long metal cylinder of radius R; the axis of which coincides with the z axis
of the system of coordinates is first considered. The surface charge density
on the cylinder be oy. It is surrounded by an earthed metal cylinder of radius
R (cylinder capacitor). In the case of this arrangement the charge density is

6=0,0(r—R,).

The potential depends owing to the symmetry properties only on r, and as
is known

¢=4zrwolog£, if RR<r<R,

r

R Q)
¢=4«naologR—, if 0<r<R,.

1

Consideringthat the potential does not depend on z, the normalized solution
of equation (3a) which vanishes at r = R is

2= g 9o [5
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for the eigenvalues
_H

Ej=——L,
R2

i

where J, is the Bessel function of first kind of order zero and the k;-s are
the roots of this Bessel function. The dash means derivation into the argument.
The potential can be produced according to the method given in the general
part in the form

k; k
Jo (—ERI) Jo (—I{L 7)
EJRk)

@ = 8no, > 8)

As can be easily seen by integration (8) is the expansion of (7)in a series of Bessel
functions of different argument and order zero.

The fact that the series is convergent can be easily rendered plausible.
According to the well-known asymptotical formula [4] referring to the Bessel
functions of pth order

cos @ 7
N ————— d =x— — 05) —,
@t amd p=x— (5 05) ®

if x — oco. Thus

o) )~ i o [ ] e o)

On the other hand it can be demonstrated also by (x) that for sufficiently

great i

2
(k) by~ —
i1

Thus the series is
cos &(R —r)]—}—sin[ﬁ(R + 7
__4Ro,m R * R'? ]

“ R * Z

Substituting the highest possible value of cos resp. sin, i. e. 1, and considering
the asymptotical behaviour of the roots of the Bessel functions

?(r)
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kiw[i—l]n, if i oo,
4

it can be seen that the series can be majorized by the absolutely convergent
1 .
series > ——(a > 1), which is a sufficient condition for convergence [5].
i U

2. Let us calculate as another special problem the potential field of
the following electrode arrangement : In a closed earthed cylinder of radius
R and height l are placed in planes parallel with the base circle-shaped electrodes
of radius R, provided with a charge density y as illustrated in Figure 1 [electrode
arrangement of the Penning’s vacuum gauge]. Rotating the Figure around
the z axis the electrode arrangement above described is obtained. In the
case a) two rings of radius R, placed in heights 2z, and l—z, have been applied
with the charge density ¥4 = yg. Case ) — where in the middle plane of the
cylinder one ring is present with a charge density y4 — is, as can be seen,
a special case of @). Case ¢) is a combination of cases a) and b) where a ring
having a charge density yc is placed in the middle plane while in the planes in
heights z;, and l—z, there are rings bearing charge densities Y4 = ¥5.

z z z
A R R R
/'Zy ———————— (-Z1——— === 3
8 ! 4
/ /
e / ! _.____'_QL___ / 1 —_..__674-.<7 f/
2 4 2 /
f
L olem s oy Z | ——— ' A
I, 4 r r ! > r
] 0 o 0
a b) G

Fig. 1. Scheme of the electrode arrangement of the Penning type vacuum gauge

It can be immediately seen that in all the three cases the charge densities
occuring in the Poisson equation can be expressed by one, two resp. three
d-functions and the charge density y. The part depending on r of the solution
of equation (3a) satisfying the boundary conditions will be also now the

k.
system of Bessel functions of order zero,Jy {EI T] ,whereas the part depending
/1
n-—z.
N

Taking into consideration the svmmetrv of the arrangement the following
expressions are obtained for the potential distribution :

on z is produced by the set of function sin




DETERMINATION OF ELECTROSTATIC POTENTIALS 375

sin (n il zy| sin |n iz] Jo [h R1] Jo [EL rJ
O N 327y, l R R
a =2 201\ k2 2 S
tn IR J*(k,) S e T
R2 2
. LA 7 ; k,
sin [n —| sin n—z],]o( R]J [—r
5) ~ > 16 7wy 4 l R R ,
= IR J2 (k) L s ﬂ2 ©)
B
16 sin(n% z) Jo %RI)JO{%r)
) =) 7,WA‘~ % 2 L ginn , +
T IR J? (k) Fi g2 ™ Ya 2
R? I

+ 2 sin (nli zl)] .

(n is odd in all three cases).

It should be mentioned, although this is not essential for the method,
but is of considerable importance from the point of view of the numerical
calculations, that in the double sum the summation over n can be easily carried
out, The formulae (9) can be thus brought to the following form :

Jo k_iR] iJo k, sh(lci z]chlﬁ(zl— L]], if 2,>2>0,
a) @8 R "/|R R R 2
TR 4 o (KD . .
R Ty Jo? (k;) ch ) sh &zl\eh L z— L yifl-z,>2>2,,
2R R R 2 -
Jo tR]J(_l) sh[%z], if%>z,
4 R
b o=""74 ¥ \ z
[ : ) sh[i'(z—z)J, if <z
(9a)
4 i R ]J“( ]
R i
Ye sh [&z]—[—2sh [hz ch{ﬁ ZI_LH’ if 2, >2>0,
Va R R R 2
7e sh [& l—2+2 sh(ﬁ zl) ch [ﬁ[z - l”,ifl-zlzz} L.
Va R R R 2 2
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Fig. 2. Relative potential distribution obtained with the method in case of the electrode

arrangement of Figure la. Along the r axis measurements are given in R units, whereas along

the z axis in J, units. The equipotential lines correspond (starting from the cylinder

with the value 09, towards the thread corresponding to 100%) to the following relative

potential values : 2,5%; 5%3 7.5%3 8.75%; 9.37%3 9.66%; 10%: 11.25%; 11.40%
12.5%; 13.75% 3 15%; 17.5%3 20%3 25%;:; 30%;: 40%:3 60%

Fig. 3. The relative potential distribution measured in the electrolytic tank in the case of the

electrode arrangement of Figure la. Denotations as in Figure 2. The relative potential values

are: 2.5%; 5%; 7.5%;3 8.75%; 9.37%; 9.68%; 9.84% ; 10%; 11.25%; 12.05%;
13.759% 3 15%; 17.50%; 20%; 25%; 30%; 40%; 60%

The problem of the convergence of the series can be dealt with also here in
a way analogous to the case 1 by taking into account the asymptotical
expressions for the functions shx and chx.

The potential distributions obtained for the case of electrode arran-
gements dealt with here were compared with the corresponding potential

Alrsclliaetlinma mmancmwad im an alacntralirtin tanlk ¥ Maacuramante wara rarriad

* We are indebted to Mr. E. KorTAY pre “candidate” fellow for carrying out the
measurements.
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Fig. 4. The dependence of the relative value of the potential on z in case of r = 0. The full
drawn line corresponds to the potential values obtained experimentally and the dotted to
that obtained by the method
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Fig. 5. The dependence of the relative value of the potential on z, in case of r = 0.22.
Denotations as in Figure 4

out in the so-called tank with tilted bottom. By this modelling procedure
the rotational symmetry of the electrode system is used for a simpler realization
of the problem. Its drawback is, however, that due to the capillar phenomena
appearing in the tank the accuracy of the method strongly decreases near
the symmetry axis [6]. The potential distributions obtained by calculation
and measurement are presented for case a) in Figures 2 and 3. Disregarding
the surroundings of the z axis, agreement of the calculated and measured
potential distributions within the limit of errors is found. The explanation
of the differences observable near the axis may be found in what has been
said above about the measuring accuracy. In Figures 4 resp. 5 so as to illustrate
the agreement found the dependence of the relative potential valueT/V:— 100
on the z coordinate has been plotted for the values r = 0 resp. r _—:-00.22
(V, is the potential of the circle). Along the r axis of the Figures values are
given in units R along the z axis in units }/2, corresponding to the denotations
of Figure 1. The experimental curve shown by the full line tends when further
away from the axis towards the theoretical curve shown by the dotted line.
For small values of z the agreement is good also for small values of r.

3. Now we determine the notential field of the electronootical two-
cylinder lens so important in practical physics. The electrode arrangement
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is the following: Two cylindrical electrodes of radius R, and length 2, — rY

are placed along the z axis at a distance d from each other as illustrated
in Figure 6. They are surrounded by an earthed metal cylinder of radius R.
The cylinders are charged so that their surface charge densities are o, resp.

Fig. 6. The scheme of an electrode arrangement of the type of an electronoptical
two-cylinder lens

0y, The solution of equation (3a) satisfying the boundary conditions is now
the complete set of functions

1 k,
B AL
RJy(k;) V= R
— { T
G5, =|2P,(r)sin|n—2z| | .
in V 0( ) nl 220 ] (10)
D5, =2 D, (r) cos [n —n—z)
2z,

Hereby the sum of the potentials of rings of surface charge densities ¢, and
G, becomes

4n d ki ; ki
7= ¥ g @t e g PR R R

k. (k;
J _'R J __‘r
. 16 "{R ! °‘R,

1R2J'2(k) k2 L n )2
R 2z,

+

) T | d
alsmn‘z—« Zg— —|—

7
cos [n z
2z,

iMs

-—62s1nn~—(z0+ ] ——sin[niz o‘l(cosni[zo———;{—)——l)—{—

2z, 2z,

d

+02((_ 1) _cosn—zfL (z0+~2—])j| : (11)
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The summation over n can be carried out. We consider the effect of the whole
cylinder surface by integrating over the correspondig values of the z coordinate

and we obtain the formula
d

29— -

2
@ k
o~ 328 Lo0) R0 (o, [ o 2n— |5 5 e+

sh 2kizy I;ézq .

2, (11a)

+02J.ch%(2z(y—fz—z;i)dz; i 0Zlz 45| <4z

d
ok g
or in integrated form

0'1[2511 (%2zoJ——sh%(2zo—z)—sh%[z+

+ % + )J+02 sh —* (z+z0 Zi
k.
_Sh[i}zl, if 0<z<z0—.§,
k; d k, :
. 1 Shi"{&’o-z——z—J—shE(Zzo—z) +
D=8aR?z, ¥ Py(r) Pig k. p k,
i i k%sh —2,‘: Zor +02[Shﬁ Z'Jl—zo"_?’ —"Sh(EZ]]a
if zo—i<z<fo+’i, (11]:))
2 2
k,
0'1[511 R l3' ——Z-——) —sh (2z0 )] 4

k, d
—13zy —z4—|—
ety

+ 02[2 sh[E’ 2z0)— sh

1k, ) d
—sh(Ez)}, if z0+—2—<z<2z0.

The potential of an infinitely long cylinder capacitor dealt with in 1. is
evidently contained in (11b) when z,— co. As can easily be seen
v D,(r) Po(R,) o.. if _°'_1__+_0’

lim &(r,z), o = 8ak%%, ¥V 270 gy,
s (r,3):0 - k2 1 o,
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resp.

lim B(r, z),~y,, = 8aR%; > Pio(r) PiolRy) oy if A3 +0.
i o,

Zg— k%

From the formula (11b) the potential distribution of the two-cylinder
lens used in electron optics is obtained for the case R > R,.

The result thus obtained is of interest as — in contrast to any other method
applied to the calculation of the field of the electronoptical two-cylinder
lens — no stipulation was made during the calculation concerning the width
d of the slit. Other methods used for the solution of the problem fail if the
width of the slit is of the order of magnitude of the tube diameter.

For the first two cases mentioned as examples in III the formula is
exact, whereas in the case of the electronoptical two-cyiinder lens it has to
be considered as approximative, since for the calculation we started from the
assumption that the charge distribution is uniform on the cylinder surfaces.
The accuracy of the approximation can be estimated from the equipotential
surface running near the cylinder surface.
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QIMMPEAEJIEHUE 3JIEKTPOCTATHUYECKHX IMOTEHLUHAJIOB C ITOMOIbIO PSIOB
P. FTAHIMIAP, B. KOJITAU-OAPMATH u M. TAMAIIU-JIEHTEU

Peszwome

Mbl pedopMyNMPOBAIIM METOA PSIIOB AJIST peliieHHsi ypaBHeHusi IlyaccoHa, MOJb3ysich
peLIeHUsIME 3aay 10 COGCTBEHHBIM 3HAYEHWsIM, YacTO BCTPEYAIOIIMXCS B PasHBIX 06iacTsix
TeopeTHueckoil gusuiu. Ecnu pacupeneseHne 3apsga cootsercTByer d-¢pynxuun Jupaxa, TO
peLieHye I0ayYaeTcss B popMe OXHOFO, JOBOJBHO XOPOLIO CXORAIIErocs psia. B npocteix ciy-
YasiX HAaIM pellleHUsT AHATUTHYECKH TPAHCPOPMUPYEMBI B XOPOLIO H3BECTHbIE pellleHus (Hamp.
B caydae III/1). B apyrux cayuasx (II1/2) BoiuncneHHOe pacnpefesieHue rmoTeHUHana coBna-
JaeT C NMONYYEHHHIM W3 M3MepeHUdl B 2JIEeKTPOIUTHYECKOM BaHHe. B ciyuae 3/1eKTPOHONTHYE-
CKO#t LuuHapUYeckoit munskl, (111/3) Hau mero Aaet pacnpefeseHHe NOTeHIMANA ST KAKOd~
JINGO IUMPHHEI LIEJH ¥ COOTBETCTBYIOILYIO (OPMY 3JIEKTPO/IOB.



