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An analysis is presented for laminar radial flow due to a linear source between two
parallel stationary infinite disks. The source strength varies according to Q = @, (-;:—:) (t>0)

and the solution is in the form of an infinite geries in terms of a reduced Reynolds number

2
Rf = G / ). The results are valid for small values of R and¢| = o . The effect of
4mvh h xS

the parameter Rj on the radial velocity distribution, pressure distribution, shear stress at
the upper disk at different times is discussed.

Nomenclature

h = half distance between disks
r = radial coordinate

r . . . .
=5= dimensionless radial coordinate

~
[

z = axial coordinate
z = 7.'— = dimensionless axial coordinate
t = time
1t . . .
=45 =-dimensionless time
R = dimensionless radial coordinate of a cross-section in the flow domain
u = radial velocity
u = i:— = dimensionless radial velocity
v = axial velocity
v = h—: = dimensionless axial velocity
P = pressure
pht . .

p = o == dimensionless pressure
Q = instantaneous source strength
Q, = gradient of source strength

— _¥o_ _ ;
R, = ook gradient of source Reynolds number
R} = _,Ta = gradient of reduced Reynolds number
o = density
# = viscosity
v =4% — kinematic viscosity

%, = shear stress at the upper disk

Ty =1 / (4”—73};) = dimensionless shear stress at the upper disk
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1. Introduction

Unsteady flow is of practical importance in many areas of engineering,
e. g. acoustics, biomedical engineering and lubrication. Oscillating radial flow
is of primary interest in the design of thrust bearings and radial diffusers.

A system which has received considerable attention is that of unsteady
flow in circular tubes, e. g. UcHipA [1]. Recently ELkoun [2] has given an
analysis for a system in which the flow rate varies sinusoidally about a zero-
mean value. His solution is valid for small values of the reduced Reynolds
number and all values of the frequency Reynolds number.

In this paper an analysis is presented for laminar flow due to a linear
source between two parallel stationary infinite disks. The solution obtained
for the motion of the liquid is in the form of an infinite series expansion in
terms of a reduced Reynolds number, R}, which signifies the effect of con-
vective inertia. The results are valid for small values of R and t.

2. Basic equations and their solution

Consider the unsteady axially symmetric flow of a viscous liquid bet-
ween two parallel stationary infinite disks, which lie in the planes z= —h
and z = + h (Fig. 1). The flow through the system shown in Fig. 1 is due
to a source, at r = 0, whose strength varies according to

0=10, (7‘) . ©>0). (2.1)

In terms of the dimensionless variables defined, see nomenclature, the
Navier-Stokes equations are

2 2

u 0w ,ou__op (w1 _81_1‘_+21}, 2.2)
ot or 0z or or? r or r oy
ov ov ) ) o 1 oo %

___}_u.__*_,,_”:_l_}_(_,_}___ —), (2.3)
ot or oz oz or? r or 022

[
N
L

%¥=-h
Fig. 1. Flow system and coordinates
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and the equation of continuity is

fu vy, (2.4)
or r 0z

The boundary conditions for the flow system under consideration are

u=0 v=0 at z=-41,

J+Huh==2R"h (t > 0) 2.5)

-1 r

where R, — is the gradient of the source Reynolds number.

TTY

The following expansions which are valid for small values of the reduced
R

Reynolds number R} = (—;J and away from the source at r = 0 are assumed
r

for u, v and p:

=l + (o) + [ e+ ], (2.6)
=[( SECTET N COE| (27)
P =he0) + Rlhofes ) logr 4 (72 e, ) 4 [T mten 4o (29

where the primes denote partial differentiation with respect to z.
The boundary conditions on the functions f,(z, t) and their derivatives
are

fi(+1,6)=0,n=0,1,2,...

f(+L,t)=0,n=1,2,.....
and 2.9)

Jo(l,8) — fo(— 1,2) = 2t, (t > 0)

which upon choosing

fo(_L t) =—1
fo(l, t) =1.

The expressions for the velocity components (2.6) and (2.7) satisfy the
continuity equation. Substituting (2.6), (2.7) and (2.8) in (2.2) and (2.3) and

gives
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equating coefficients of equal powers in r reduces the Navier-Stokes equations
to an infinite set of systems of simultaneous linear partial differential equa-
tions. For the sake of brevity we record only the first two systems below:

System I
3 2
8 sy, (2.10)
9z®  otoz
Ohy _ 0, i.e. hy(z t) = hyt) + constant.
0z

The partial differential equation for h(z, t) is

ok _

=0, b b ) = he), (2.11)

where h(t) is determined from a known pressure at a point in the flow domain.

System 11
3 2 2
h_ % oher) — (a_f"] , (2.12)
9z  dtoz 0%
ahy

. =0, i.e. hyz,t)=h,(t) + constant.
%

The solution of (2.10) subject to the boundary conditions (2.9) represents
R

the limiting case when [——f) —- 0. The linearity of (2.10) and the form of the
r

boundary conditions suggest a solution of the form

Jo(z: 1) = Fo(2) + Gof2)t, (2.13)
and
ho(t) = Hy 4 P,t. (2.14)
Substituting (2.13) and (2.14) in (2.10), we get
Gy = P, (2.15)
and
Fy —Gy=H,. (2.16)

The boundary conditions on F,, and G, and their derivatives are

F(+1)=0, Fy(+1)=0,
and (2.17)
Go(+1)=+1, Gy(+1)=0.
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The solutions of (2.15) and (2.16) under the boundary conditions (2.17)
are

Fy(z) = — (i:—%ﬁ—)- . (2.18)
Go(3) = —;—(37. — 29). (2.19)
Thus
o, Jolt) = — (—z—_—%—ﬂ + %(3,7 — )1, (2.20)
ho(t) = — % — 3. (2.21)

) 2
Substituting for (—8&] from (2.20) into the right-hand side of (2.12)
Z

will contribute time-independent terms and terms with ¢ and ¢2, Taking into
account these circumstances we can express the solution of System II in
the form

[z t) = Fy(z) + Fyz)t + Gy(2)?, (2.22)
and
h(t) = H, + Ht + Py (2.23)

8 2
Substituting (2.22), (2.23) and (%J from (2.20) in (2.12) ,we get
4

Gy = — 2P, — —Z-(l — 222 4 2, (2.24)
Fy — 26} = —2H, + 4—3;)(1 — 72 4 11z — 529, (2.25)
Fy — Fi= —2H, — ﬁ (1 — 1222 + 462 — 6028 - 2528). (2.26)

The boundary conditions on Fs, F,, G, and their derivatives are

Fs(il)zoa Fé(il)z“(),
F(+1) =0, F(+1)=0, (2.27)
G+ 1) =0, Gi(+1)=0.
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The solutions of (2.24), (2.25) and (2.26) subject to the boundary condi-
tions (2.27) are

8633 479 53

F (2) = 7 — 23 2°
) = 15204000 388080 © 42000
_B e 1 (2.28)
36750 5600 39600
97 191 23 3 1
F.(z) — — 2 3 _ 5 7 9, 2.29
i(2) 200 * T a0 ” " mizo” Taet e’ @)
3 33 3 3
Gi(3) == ——2 ——— g8 f g5 — g7 2.30
) = 20> T 0 (2:30)
and
hy(t) = — 4 2, 2.31)

40425 175 35

3. Results and discussion
(a) Radial velocity distribution

We now define a dimensionless radial velocity such that

ur
u* = —, 3.1
R, (3.1)

Substituting for f(z, t) and f,(z, t) from (2.13) and (2.22) into (2.6) and
neglecting higher order terms, we get

. [ (1— 62 + 529 (1 _ t]

u* =
m
LRef( 8638 _ e 53 B, 9

19404000 129360 ~ ' 8400~ 5250 = ' 5600
1 97 . 191 23 21 3

- 10 _ 2 4 6__ At
3600 ] + ( 11200 T 2800 " 226 T 300”320

3 99 3
3D, — 3 el 3.2
+(56 280 + 40z] ] (3.2)
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The first term on the right-hand side of (3.2) represents the radial ve-
locity for R§ = 0, i. e. as r tends to infinity, while the second term represents
the effect of the nonlinear inertia. The nonlinear-inertia contribution is in the
form of steady and unsteady streamings.

The instantaneous radial velocity distributions for ¢t = 2, 3, 6 and for
R?% = 0 and R§ = 0.5 are shown in Fig. 2. The magnitudes of the nonlinear

1
-10 -08 -04 -02 00 02 04 08 10

Fig. 2. Variation of u* with z at different times

inertia contributions to the velocity distributions are very small up to about
t = 2xtze(—1, 1). Fig.2 also shows that u* is maximum at z = 0 and it decreas-
es monotonically as we move towards the solid boundaries.

(b) Pressure distribution

Using (2.11) and neglecting terms of higher order than R}, the pressure
distribution is of the form

p = h(t) + R,[h(¢) log r + hy(t) R;], (3.3)

where h(t) is determined from a known pressure at some cross-section in the
low domain. Assuming that the pressure is known at r = R and using (2.21)

f
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and (2.31), the expression for the pressure distribution is

. _ p(r,t) — p(R, 1)

p

R,

=[§+3z]log(§)+R: (1—7';;)[— 38 +iz—§-t"‘]- (3.4)

40425 175 35
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Fig. 3. Variation of p* with time - %

The variation of p* with time for % = 0.5, R2=0 and R} = 0.5 is

shown in Fig. 3. From this Figure it is clear that the effect of the nonlinear
inertia is insignificant up to about ¢t = 2. For R} = 0, the pressure also varies
linearly with time.

(¢) Skin friction

The shear stress at the upper disk is given by

= - ﬂl‘ = — —222— glf— [ ”‘QO 4 1 Rt " 1 ]
& “ (62 Jl=h h? (87. }z:l 47her [fo( ? t) + afl( ’ t) .
Thus

1 986 6 12
= |— 4+ 3t| — R} —_——t 2. 3.5
o (5 + ) "(606375 175 1 3 J (3:5)
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Fig. 4. Variation of 7, with time

The variation of 7, with time for R} = 0 and R} = 0.5 is presented in
Fig. 4. This Figure indicates that the effect of the nonlinear-inertia is negligible

up to about t = 2. For R} = 0, the shear stress at the upper disk also varies
linearly with time.
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