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( H e c e i v e d  in r ev i scd  form 24. IV. 1971) 

The processes connected with the entropy of measured quantum mechanical objects are 
investigated. The entropic characteristics of the measurement process ate determined by 
means of the so-called entropy balance. It is shown that the Shannon entropy of quantal 
objects described by non-commutative operators is always positive in the post-measurement 
state. From the entropy balance of quantum mechanical measurement also follows that the 
measurement of the characteri,:,tics of quantai objects provides some information on quan- 
tities not measured. 

Introduction 

In the last  decades the conceptual  and mathemat ica l  appa ra tus  of 
information theo ry  has been successfully applied in various fields of physical  
science [1, 2, 3]. These applications have been possible because the physical  
phenomena  in quest ion ate to a great  ex ten t  describable by  means of  pro- 
babi l i ty  of stat is t ical  formalism. The probabilist ic in te rpre ta t ion  of  q u a n t u m  
mechanics permits  a direct applicat ion of the terms of in format ion  theory  also 
in the descript ion of an individual  particle,  as to each quan ta l  object  can be 
a t tached  a value of its probabi l i ty  uncer ta in ty ,  the measure of which is called 
the ( information-theoret ical)  en t ropy  [4]. 

Al though the  en t ropy  of a quanta l  object  m ay  generally change in any 
physical  process, the change tha t  takeS place during a measurement  is especially 
impor tan t .  Before measurement  (the pr~-measurement  state) the measured  
observable generally has a non-zero ent ropy.  After the measurement  (the 
pos t -measurement  state) this en t ropy  is decreased, and in the opt imal  case ir 
complete ly  vanishes. As the measured quanta l  object  is described by  a set 
of  observables which are mutua l ly  s tochast ical ly related,  the removal  of the  
en t ropy  of a measured  observable generally affects the en t ropy  of the non-  
measured observable of the object .  The  de terminat ion  of these various ent ropic  
changes forms the subject  of this paper .  

The entropic  changes in a measured object  play an im p o r t an t  tole in the  
physical descript ion of the link between the measured micro-object  and measur-  
ing macrophysica l  ins t rument ,  since according to the en t ropy  law the t o t a l  
en t ropy  of the whole measuring complex - - m e a s u r i n g  ins t rument  and measured  
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object - -  should increase (or at least be constant) during the measurement, so 
that  the negative entropic change of the measured object must be compen- 
sated for by a corresponding positive entropic change of the measuring instru- 
ment. By considering the measuring instrument as a physical statistical 
system, ir is possible to determine this necessary positive change of its physical 
entropy using the well known relation between the physical and information- 
theoretical entropy [5]. 

From the point of view of information theory, the measuring process 
may be simulated by a mathematical model, called the entropic model of 
quantum measurement [6]. In this model the measured object and measuring 
instrument are represented by two probability systems. The measured observ- 
able z0, a random variable, is determined on the set of the physical states of 
the measured object. The measuring instrument may occur in one of its pointer 
positions representing the basic set on which the random variable z,, is defined 
through the scale values attached to the pointer positions. During the measure- 
m e n t a  statistical linkage is established between the random variables ~o and 
Tm, by means of which the measuring instrument obtains information about the 
measured object. The measure of the statistical linkage between the random 
variables z0 and z,, is in information theory given by a quanti ty called the 
information [7]. 

We shall first recall some terms of information theory which will be used 
in the further physical considerations. The measure of the probability uncer- 
ta in ty  of a quantal observable represents the information-theoretical entropy, 
which is defined as follows [8]: 

A random variable (observable) ~ defined on a complete set of physical 
states S with the probability distribution given by the scheme 

S A1 �9 ~ ~ 

P Pi P2 I " ' "  ] Pn 
o , , X 1 

A2 I I Ah 

x2 I I x~ 

n 

. ~  Pi = 1, 
i = 1  

has an information-theoretical entropy (the magnitude of its probability 
uncertainty) of 

n 

H = . ~ p i l o g . p  i. (1) 

Ir  not otherwise stated, we shall take a = e. The entropy a s a  function of the 
variables p,, P2 . . . . .  Pn (i.e. the elements of the probability distribution of the 
random variable ~) fulfils a system of important mathematical axioms [8]. 

In order to quantitatively characterize the statistical linkage between 
the random variables ~ and y we need the data given by the transfer matrix [9]: 
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R = ( r1(1) . . .  r@) ) 

rn(1) rn(n) 

where ti(j) is the conditional p robability for assuming the j - th  value of the 
random variable ~ when the random variable H has its i-th value. The informa- 
tion contained in the random variable y about the random variable ~ is given 
[10] by  the formula 

l(H;y) = ~ P i  ri (J)los 
t,J 

which can be rearranged in the forro 

r,(j) 

~j~ pk rk(j)- ' 
R 

(2) 

where 

I ---- -- ~ qt log ql + ~.~' Pi ~ rt (j) log r~. ( j ) ,  
i i j 

qi ---- , ~  Pk rk(i). 
k 

(3a) 

If  the random variables ~ aud ~ are continuous with the density functions 
p(x) and q(y), respectively, formula (2) takes the forro 

f j~ I = p(x) rx(y) log rx(y) dx dy ,  (3) 
Y q(y) 

where rx(y) represents the transfer function between the random variables 
H and ~.  

The entropy of a measured quantal object ehanges by various ways, 
depending on the measuring eonditions. When only one observable is measured, 
not only does its probability uncertainty change but  also the probability 
uneertainties of those observables of the measured object with whieh ir is 
statistieally linked. Depending on the physical situation of the measureraent, 
one may use various entropic charaeteristies of the measured quantal object 
in its deseription. The most important  of these ate the following: The total 
probability uneertainties of the measured object in its pre-or post-measurement 
state (Hb of H~, respeetively) and their differenee (AH = Ha - -  Hb), the pre- 
and post-measurement probability uncertainties of the measured observable, 
the entropie ehange of the non-measured observables during the measurement, 
etc. Wbich of them is used depends on the eharacter of the problem. 
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1. The entropic changes in a quantal meaaurement 

The basic assumption of the theory  of quantun~ measurements is tha t  in 
measuring a quantum-mechanica l  objeet one marks a system of eigenfunetions 
of the measured observable [11] and the result  of a measurement  representa 
one of these eigenvalues. The general wave funet ion of the quanta l  object is 
thua redueed to an eigenfunetion. This ehange of wave function is aceompanied 
by  a corresponding change in the entropy of the measured object, here con- 
sidered as an information source. We shall now determine this entropic change 
for the measured quanta l  object. 

Consider the general quanta l  object Z described by  ah assembly of 
observables G 1, G 2 . . . . .  Gs to which the operators 01, 02 . . . . .  6 s are associated. 
We shall denote by symbols { ~0i, } ,  { ~i2 } . . . . . .  { ~0io } the seta of eigenfunetions 
of the operators 61, 65 . . . . .  O s satisfying the quanta l  eigenvalue equations 

6y qi i = gij 9~ij, j = 1, 2 . . . . .  s 

where gij denotes the i-th eigenvalue of the operator  Oj. We shall fur ther  denote 
by  Ujkl,, the elements of the operator  of the un i t a ry  t ransformat ion between 
the systems of eigenfunctions {~Jk} sud {cp,~} , whence 

q Jk = 2 "  u j ,~  ~ l . .  
lm 

Let  the quanta l  object Z under  s tudy  be described by  the wave function 

~ ( x )  _- 2 "  ~;1 ~,, = ~ ~ , . ~  r . . . . .  2 t,,, ~,.. 

The elements of the probabil i ty  distributions P1, P2 . . . . .  Ps, which are given 
on the seta of physical states of the quanta l  object L" for the observable 
G 1, G 2 . . . .  , Gs are determined by  means of the well-known equation 

Pit = #it #~ = I/zij[ 2 �9 i = 1, 2 . . . . .  n. (4) 

Between the observables G1, G 2 , . . . ,  G s certain statist ical  dependences may  
exist which are described by  means of the assembly of transfer matrices 
R ( p ,  t), p ,  t - ~  1, 2 . . . .  , s, whose elements are determined by the elements 
rip(jt ) of the operator of the un i ta ry  t ransformat ion Ui,i,  between the p- th  
and t-th seta of eigenfunctions: 

r i , ( j t )  = U i p j  t" Ui+jt = I u , . i , I  ~. p.  t = 1, 2 . . . . .  s. (4a) 

The tota l  probabil i ty uncer ta in ty  H ( P  (~)) of the quanta l  objeet 2: is 
given by  the entropy of the jo in t  probabil i ty distr ibution p(z) [12], which is de- 
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rined on the p roduc t  set Z = $1@ $2@ . . .  @)S s. where S, = {s~ '), s~ ') . . . . .  s~ 1) }, 
S u=- {s~ ~4 . . . . .  s~ ~)} . . . .  , S~-= {s~ s), . . . ,  s~ }} are the sets o f q u a n t u m  states 
of observables G 1, G 2 . . . . .  G r. The elements  of the produc t  set Z represent  all 
ordered n-groups of quan tum states (s(~), s} -') . . . . .  s~)), on whieh a veetor  ran- 
dom variable ~ = {gi~,ga . . . .  , &,} is determined,  where gi, represents  k-th 
eigenvalue of the observable G r Denot ing  by  P i , , i  . . . . .  is the  elements of 
the jo in t  probabi l i ty  distr ibution P(:), the total  en t ropy  of the measured 
quanta l  object  is, according to Eq.  (1), given by  the relat ion 

H(P(z ) )  = -  , ~  Pi ,  i . . . .  i, l o g P i ,  i . . . .  i , .  
i~,i,,i3,.. -,is 

(5) 

The elements  of the jo int  probabi l i ty  distr ibution P(:) ean also be wri t ten  
in the form 

P i ,  i . . . .  i, = pi,  " ri,(i2)" ri~(i3). . . ris ,(is) , (6) 

where rik(il~ + 0,  k = 1, 2 . . . . . .  s -  1, represents  the element  of the t ransfer  
matrices R ( k ,  k q- 1), and Ph is an e lement  of the probabi l i ty  dis tr ibut ion of 
the i- th observable.  

Subs t i tu t ing  Eq.  (6) into (5) we f ind 

y _ } t ) .  ~r ri,(i=,)" I1(P(~)) : = -  ~~pi ,  l o g p i ,  . .  p.~ 
;~ i, i , , ia , . . . , i s  

�9 ri~(ia) . . . .  r;, , ( is) ' log r,(i,_,) ri,(ia) . . .  r/, ,(i~). 
(7) 

Eq. (7) determines  the total  en t ropy  of the measured quanta l  objeet  with the 
jo int  probabi l i ty  p(z) in its p re-measurement  state. Sinee there  are generally 
statistieal dependenees  between the observable deseribing this objeet ,  its 
en t ropy  has a smaller value than  the sum of the entropies of the individual  
observables.  We have [13] 

H(P(~~) <7 H ( P  0 + H ( P 2 )  4 - . . .  H ( P ~ ) ,  (7a) 

where P1, P2 . . . .  , P~ are the  probabi l i ty  dis tr ibut ions of the observables 
G t, G 2 . . . . .  G~. In the relation (7a) the sign = is to be taken  only when all the 
observalfles are stochast ical ly independent  from each other ,  i.e. when 

P~~{. .... i, = ] )  p ; , ,  
k = l  

where P 5  represents  the element  of the probabi l i ty  dis t r ibut ion of the h-th 
observable.  

The en t ropy  ehange of the measured quanta l  objeet  ~' during the mea- 
surement  is given by the en t ropy  balance of measurement ,  i.e. by  the differenee 
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between the total  ent ropy of the object in its pre-measurement  state H ~ ( P  (z)) 
and in its post-measurement  state Ha(P(")): 

A H ,  = H , ( P  (~)) -Ho(P(~)). (8) 

During the measurement  of the observablc G 1 the probabil i ty distr ibution of 
the measured object changes. Denoting by w = { wi~, wi~, . . . .  w,,, } the post- 
measurement  probabil i ty distr ibution of the measured observable, we can 
write according to Eq. (8) the total  entropy change 

A H , - - - - - - . ~ ~ ' w / , l o g w i ,  �91 ..~~'pi~ log pi  , - -  . ~  (wi~-- pi,) " .~~ 
il i~ i~ i2,i3 . . . .  ,is 

ri,(i2)" r i . . ( i3 ) . . .  ,'i,_,(i~) "log r i,(i2) "ri2(ij) . . .  ri,_ ,(is). 
(8a) 

According to the entropy law a change A H t  in the en t ropy  of the measured 
quanta l  object requires a minimal change - - k A H t  in the physical ent ropy of 
the measuring ins t rument ,  k being Bol tzmann's  constant .  

Let  us now turn to the determinat ion of the total  post-measurement  
ent ropy H a ( P  (~)) of a measured quantal  object. When only one observable is 
measured (for example G1), the post-measurement  ent ropy is 

H~ ~- ~__'~" wi, log wq -- ~ ,  wi, . ,~  r~,(i2) ~i~(i~) ri~(i,). . .  �9 
i~ i,  i z , i a , . . . , i s  

"ri, l ( is ) ' logri , ( i2)r i2( ia)  r i3 ( i~ ) . . ,  ri, ~(is). 

I r  the probabil i ty uncer ta in ty  of the measured observable is total ly remo- 
ved, we have 

H,~(P(~)) = Hb(P(~)) H ( P 1 ) .  

Taking into account the relations (5) and (6), as well as the equation 

H ( P , )  = - -  "Y p i , ' l o g p i , ,  
i , = l  

we find 

H,~(P (~)) = .~~'Pi~ ri~(i2) r i~( i3) . . ,  ri, ,(i~). log ri,(i2) ri.,.(ia)" r i3( i4) . . ,  ri,_~(is), (9) 
i , , i ~ , . . . , i ,  

i.e. the tota l  post-measurement  entropy of the measured quanta l  object is 
equal to its general condit ional entropy [13]. 

We shall next  determine the foregoing entropic characteristics for the 
sake of simplicity, only for two observables G 1 and G 2. In this case relation 
(9) turns  out  to be 

H ~ ( P  (~)) = ~a~ pi, . ~  ri,(i2) log ri,(i2) . (10) 
i ,  iz 
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Subst i tut ing Eqs. (4) and (4a) into Eq.  (10), we have 

~2 U 2 Ha(p(z ) )=- -  x '  I~i,~ ~ IUi,i,,_[~-l~ i,izl �9 (10a) 

From Eq. (10) it is easy to see t ha t  the post-measurement  entropy H a ( P  (z)) 
vanishes when 

I Uiti2] 2 : £ (11) 

Consequently,  for the corresponding operators 01 and 02 it holds t ha t  

0~00 - -  0201 = 0, (12) 

i.e. the operators 01 and (92 commute.  Thus we can state tha t  only in the case 
when the operators associated with the observables G~ and G 2 commute  does 
the tota l  en t ropy  of the measured object vanish through the measurement  of 
one of the observables. 

�9 When the observables G1, G 2 . . . . .  Gro possess continuous spectra, then 
the eigenvalue problem can be wri t ten in the form 

Oi q~(li, x) = q cf(l i, x ) .  (13) 

Let  the wave funct ion Wc(x) of the considered quantum-mech•  sys tem be 

~P~(x) = .l" q q( l l ,  x)  dll = J" q ~(/2, x)  dl 2 . . . .  J" t~(Im)" of(Ira, x)  d i , , .  (13a 

The uni ta ry  t ransformat ion  of the observables in this case turns  out  to be the 
integral one: 

q:.(1 i, x )  = .1" U(li ,  lJ) of(li, x)  dlj . (14) 

The f u n c t i o n s p ( / 1 ) =  I q I r . . . . .  p(Im) = I/z(/m) 12 ana r, , ( l])= 
= [ U(li, li) ]2 give the probabil i ty densi ty  functions of the observables G 1, 
G 2 . . . . .  Gro and the transfer  functions rli(lj) determining the stat ist ical  depend- 
ences between them,  respectively. The change of the  to ta l  ent ropy during 
the measurement  and the post -measurement  ent ropy of the measured object, 
while the observable G 1 is being completely measured, are found in a similar way:  

A H  t = H ~ ( P  (~))-~ H b ( P  (z)) = - -  ~ u(l]) log u(l~) dl I -~  Sp(ll)logp(ll) dl 1 -  

- y y . . . . f  j (~(l~) - p i to  - p(l,)) r,(t~) r,~(t~).., r,m_, (tm) 

log [~,(l~) �9 r,~(l~).. ,  r,~ (tm)] dt, e l~ . . . ,Um,  

Ha(P~ ~ ) ) = -  j 'y . . . ~ p(lx) . rl~ (/2)" rt2(l~) . . . rt . . . .  (lm)'log r~,(12) " 

�9 r v , ( l a ) . . ,  r, ..... (/m) d l~d l2 . - ,  dl , , .  
(15) 
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The foregoing quantities occurring in the entropy balance of measurement 
represent basic quantitative characteristies of the measuring process from the 
entropic point of view. 

2. Informat ion  and the m e a s u r e m e n t  

In the preceding Section we have dealt with the change of the probability 
uncertainty of a measured system when performing the measurement of one 
of its observables. We now turn to the problem, of how the probability uncer- 
ta inty of an observable Gp changes when we measure the observable G1, of  
in other words how much information about the observable Gp is contained 
in the observable G 1. Consider again the physieal system deseribed in the 
preceding Section. Determining the i-th value of the observable G1, the entropy 
balance of the variable Gp is Hp = - - . S p 6  log P 6  in the pre-measurement state 

lp 

and HŸ = Sj~ r/~(jp) log ri~(jp) in the post-measurement state. Therefore, the 
mean change of the probability uneertainty in the observable Gp when a 
measurement of the observable G 1 is performed is 

A H = H  v - ~ ' p i H Ÿ  = I (G1;G1,)  = - . . ~ p i ,  l o g p i ~  + 
i i~ (16) 
4- . ~ ' p i ~  ~.a. ~ r , ,( j , )In r , , (  ]p) . 

il j~, 

We can see that  the expression for the mean entropy change A H  is iden~tical 
with that  for the information (see Eq. (2)). 

The change of the total entropy of the joint probability distribution of 
an assembly of observables G 2 . . . . .  G s during the measurement of the observ- 
able G 1 is 

A H  = I(G1;  G 2 . . . . .  Gs) = - .~~ Pi~ i3... i, log Pi~ i . . . .  i• -~ 
5,i~,...,i, (17) 

-f- . ~  P i ,  " r i l ( i2)  " "i . ,( iz) .  . . r i ,_ , ( i~)  logri~(i2) r/,..(i3).., ri ,_,( i~) .  
i~,i~.,...,G 

Since the e l emen t s  Pi ,  i ~ ' ' ' i ,  and Pi,  of the joint probability distributions 
of the observables Gz, G z . . . . .  G s and the measured observable G1, respectively, 
as well as the elements of the transfer matrices R(1, 2), R(2 ,3 ) , . . . ,  are linked 
with the physical parameters of the measured quantum-mechanical object 
according to the relations (4) and (4a), when we substitute these relations in- 
to Eqs. (16) and (17) we get expressions in which only the quantum-mechanieal 
terms occur. 

Where the observables have a eontinuous probability distribution it is 
possible to gire the mean magnitude of the entropie change of observables G2, 
G3, . . . .  G s by measurement of the continuous observable G 1. In accordanee 
with Eqs. (17), (13) and (13a), we find 
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I =  - -  ~ j " . . .  J" I~'(/2)1" I U(12, l a ) l " ' l U ( l a ,  14)1" �9 �9 �9 I U ( / s - 1 ,  Is)l" " 

�9 l o g  []/z(/2)l 2 I U(/2 ,  la)l e" [ U ( / a , / ~ ) [ 2 . . .  I U ( i s _ l ,  ls)l"] dl2 " 

�9 d l 3 . . ,  dl~ + J'J" . . .  J" l/~(/~)l 2 [ U ( l l , / 2 ) [ 2 .  I U(12, I s )12 . . .  �9 (18 )  

�9 l U ( l s - p / s )  I" . l og  [[ U(ll ,  le)la" !U(12, l a ) q  X U(I~_~, ls)12] �9 

�9 dl 1dl 2 . . . d l s .  

I t  can  be  s h o w n  t h a t  t he  m a x i m u m  e n t r o p y  c h a n g e  d u r i n g  t h e  m e a s u r e m e n t  

will  be  o b t a i n e d  w h e n  ] Ui,AI 2 = ri,(jv) = �91 of when  I U(li, lj) 12 = �91 
i .e.  w h e n  t h e  o b s e r v a b l e s  G 1 a n d  G v are  c o m p a t i b l e .  Th i s  shows  t h a t  t h e  cr i-  

t e r i on  of  s i m u h a n e o u s  m e a s u r a b i l i t y  o f  t h e  p h y s i c a l  o b s e r v a b l e s  can  be  e x p r e s -  

sed b y  m e a n s  o f  t h c i r  e n t r o p i c  c h a r a c t e r i s t i c s .  Th i s  is o f  i m p o r t a n c e  in  t h e  

m a t h e m a t i c a l  a n a l y s i s  of  t h e  q u a n t u m - m e c h a n i c a l  f o r m a l i s m  [14]. 

S ince  t h e  gene ra l  airo of  a m e a s u r e m e n t  is to  r e d u c e  t h e  p r o b a b i l i t y  

u n c e r t a i n t y  of  t h e  m e a s u r e d  s y s t e m  as m u c h a s  poss ib l e ,  one m a y ,  u s i n g  t h e  

r e l a t i o n s  (8a),  (15) a n d  (18), f i n d  p a r a m e t e r s  o f  t h e  m e a s u r e d  o b j e c t  a n d  

m e a s u r i n g  i n s t r u m e n t  (e.g. e l e m e n t s  o f  t r a n s f c r  m a t r i c e s ,  e tc . )  for  w h i c h  

t h e  e n t r o p y  b a l a n c e  o f  m e a s u r e m e n t  b e c o m e s  o p t i m a l .  
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|H3MEHEHHE 3HTPOFIHH 1-<BAHTOBO-MEXAHHLIECI<HX OB'bEt(TOB F1PH 
H3MEPEHHH 
B. MA EPHHI< 

Pe3to~le 
()£ HpotleCCbl, CBSt3aHHble C 3HTpO~He¡ Ct|CTe/~lbl, Hpll H3MepeHHH KBaHTOBO- 

MeXaHHqeCKtlX 0~'beKTOB. Oilpe~edleHbl 3HTpOHlt¡ xaparr npotlecca H3MepeHldSt, 
nptt naMepeHnnx lqp0BeReHHbIX B TaK Ha3blBaeMoM pe~nMe £ aHTpOHHH. FloKaaano, tlTO 
3HTp0FIHyl LHettHOHa KBaHTOBaHHblX 06"beKTOB, r<oTopaa 0rlttCblBaeTc~t C FlOM0tllblO HeKoMMy- 
TttpylOIllItX onepaTopoB, lloc.rle H3MepeHttYl BceF~a HO.I10M<HTe.rlbHa. ,~a31ee, 1t3 6anaHca DHTpOrlIIH 
KBaHTOBO-MexaHHqeCKtlX H3MepeHH~ ca3eRyeT, qT0 tt3MepeHl~e Ha‰ xapaRTepHcT;tK 
I<BaHTOBblX 06"beKTOB aaeT HeKoTOpble HH~)opMatltltl H 0 Hett3MepeHHbIX Be.rIHqHHaX. 
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