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The processes connected with the entropy of measured quantum mechanical objects are
investigated. The entropic characteristics of the measurement process are determined by
means of the so-called entropy balance. It is shown that the Shannon entropy of quantal
objects described by non-commutative operators is always positive in the post-measurement
state. From the entropy balance of quantum mechanical measurement also follows that the
measurement of the characteristics of quantal objects provides some information on quan-
tities not measured.

Introduction

In the last decades the conceptual and mathematical apparatus of
information theory has been successfully applied in various fields of physical
science [1, 2, 3]. These applications have been possible because the physical
phenomena in question are to a great extent describable by means of pro-
bability or statistical formalism. The probabilistic interpretation of quantum
mechanics permits a direct application of the terms of information theory also
in the description of an individual particle, as to each quantal object can be
attached a value of its probability uncertainty, the measure of which is called
the (information-theoretical) entropy [4].

Although the entropy of a quantal object may generally change in any
physical process, the change that takes place during a measurement is especially
important. Before measurement (the pré-measurement state) the measured
observable generally has a non-zero entropy. After the measurement (the
post-measurement state) this entropy is decreased, and in the optimal case it
completely vanishes. As the measured quantal object is described by a set
of observables which are mutually stochastically related, the removal of the
entropy of a measured observable generally affects the entropy of the non-
measured observable of the object. The determination of these various entropic
changes forms the subject of this paper.

The entropic changes in a measured object play an 1mportant role in the
physical description of the link between the measured micro-object and measur-
ing macrophysical instrument, since according to the entropy law the total
entropy of the whole measuring complex — measuring instrument and measured
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object — should increase (or at least be constant) during the measurement, so
that the negative entropic change of the measured object must be compen-
sated for by a corresponding positive entropic change of the measuring instru-
ment. By considering the measuring instrument as a physical statistical
system, it is possible to determine this necessary positive change of its physical
entropy using the well known relation between the physical and information-
theoretical entropy [5].

From the point of view of information theory, the measuring process
may be simulated by a mathematical model, called the entropic model of
quantum measurement [6]. In this model the measured object and measuring
instrument are represented by two probability systems. The measured observ-
able 1,, a random variable, is determined on the set of the physical states of
the measured object. The measuring instrument may occur in one of its pointer
positions representing the basic set on which the random variable 7, is defined
through the scale values attached to the pointer positions. During the measure-
ment a statistical linkage is established between the random variables 7, and
Tm» by means of which the measuring instrument obtains information about the
measured object. The measure of the statistical linkage between the random
variables 7, and 7,, is in information theory given by a quantity called the
information [7].

We shall first recall some terms of information theory which will be used
in the further physical considerations. The measure of the probability uncer-
tainty of a quantal observable represents the information-theoretical entropy,
which is defined as follows [8]:

A random variable (observable) X defined on a complete set of physical
states S with the probability distribution given by the scheme

s 1 4, | A4, | e |4, ;
P i‘ pp | P2 | - | pa gl pi=1
x { x, } X, i .. | x,

has an information-theoretical entropy (the magnitude of its probability
uncertainty) of

H=— 3pilog,p;. (1)

i=1

If not otherwise stated, we shall take ¢ = e. The entropy as a function of the
variables p,, p,, . . ., p,, (i.e. the elements of the probability distribution of the
random variable x) fulfils a system of important mathematical axioms [8].
In order to quantitatively characterize the statistical linkage between
the random variables X and ¥ we need the data given by the transfer matrix [9]:
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(1) ... rn)
R=| .
(1) ro(n)
where 7,(j) is the conditional probability for assuming the j-th value of the
random variable ;r when the random variable ¥ has its i-th value. The informa-

tion contained in the random variable 'y about the random variable ¥ is given
[10] by the formula

o - . ri(J)
I(x;y)= ¥ p;ri(j)log—"—, (2)
% % PerilJ)

which can be rearranged in the form

I = 4~2q110gqi‘+Zpizri(j)logri(j)a (38)
i i i
where

q; = %Pk (i)

If the random variables ¥ and ¥ are continuous with the density functions
p(x) and ¢(y), respectively, formala (2) takes the form

i )
I= x)rdy)lo dxdy, 3
Jnyp( )r:(y)log o) al 3)

where r,(y) represents the transfer function between the random variables
% and ¥.

The entropy of a measured quantal object changes by various ways,
depending on the measuring conditions. When only one observable is measured,
not only does its probability uncertainty change but also the probability
uncertainties of those observables of the measured object with which it is
statistically linked. Depending on the physical situation of the measurement,
one may use various entropic characteristics of the measured quantal object
in its description. The most important of these are the following: The total
probability uncertainties of the measured object in its pre-or post-measurement
state (H, or H,, respectively) and their difference (AH = H, — Hj), the pre-
and post-measurement probability uncertainties of the measured observable,
the entropic change of the non-measured observables during the measurement,
etc. Which of them is used depends on the character of the problem.
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1. The entropic changes in a quantal measurement

The basic assumption of the theory of quantun? measurements is that in
measuring a quantum-mechanical object one marks a system of eigenfunctions
of the measured observable [11] and the result of a measurement represents
one of these eigenvalues. The general wave function of the quantal object is
thus reduced to an eigenfunction. This change of wave function is accompanied
by a corresponding change in the entropy of the measured object, here con-
sidered as an information source. We shall now determine this entropic change
for the measured quantal object.

Consider the general quantal object 2' described by an assembly of
observables G,, G,, . . ., G5 to which the operators 0;, O,, . . ., O, are associated.
We shall denote by symbols { Piy } { @i, }, .. { @i, } the sets of eigenfunctions
of the operators 01, 02, . 0 satisfying the quantal eigenvalue equations

0, ¢i, = 8i,%i, j=1,2,...,s

where g; denotes the i-th eigenvalue of the operator Oj. We shall further denote
by Uj,;, the elements of the operator of the unitary transformation between
the systems of eigenfunctions {(pjk} and {q)lm} , whence

Ik = 2 Ujklm (plm *
Im
Let the quantal object 2 under study be described by the wave function

E[/(x) 2 Uiy @iy = 2ﬂ1o¢1»—- ~~:2/1i,¢'i,-
iy

The elements of the probability distributions P, P,, ..., P, which are given
on the sets of physical states of the quantal object X for the observable
Gy, G,, . .., G, are determined by means of the well-known equation

Pi; = pi oy = ]® i=1,2,...n (4

Between the observables G, G,, ..., G, certain statistical dependences may
exist which are described by means of the assembly of transfer matrices
R(p,t), p,t =1,2,...,5, whose elements are determined by the elements
,(]1) of the operator of the unitary transformation U, ; between the p-th
and t-th sets of eigenfunctions:

ri(jr) = Upp Ul = |Usil2 p,t=1,2,...,s. (4a)

The total probability uncertainty H(P®) of the quantal object X is
given by the entropy of the joint probability distribution P® [12], which is de-
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fined on the productset Z= 8§, S,® ... &S, where S, = {s(ll), st s },
S, = {s(f),. .o sf)}, ceey S == {s(f), . sff)} are the sets of quantum states
of observables G, G,, .. ., G,. The elements of the product set Z represent all
ordered n-groups of quantum states (s(}), s}z), e sﬁf)), on which a vector ran-
dom variable 7 = {g,-l,g,»z, .. g} is determined, where g, represents k-th
eigenvalue of the observable G, Denoting by P, .
the joint probability distribution P®), the total entropy of the measured
quantal object is, according to Eq. (1), given by the relation

the elements of

HP®)= - 3 P logPy,.

(I PR ETRRE

is * (5)

The elements of the joint probablllt} distribution P® can also be written
in the form

Pii,...iy=pi, rifis) ri(is). . ori,_(is) (6)

where r;(i,, ). k=1,2,...,5s — 1, represents the element of the transfer
matrices R(k,k + 1), and p;, is an element of the probability distribution of
the i-th observable.
Substituting Eq. (6) into (5) we find
H(P@)=— Npilogp,— Zpi) X rilia)-
Y 11 9% ZSPTONE I
) - (7)
) r[:(lli) e rls 1( OU rh )r ) b ris, 1(1’5)'

Eq. (7) determines the total entropy of the measured quantal object with the
joint probability P® in its pre-measurement state. Since there are generally
statistical dependences between the observable describing this object, its
entropy has a smaller value than the sum of the entropies of the individual

observables. We have [13]
H(P®) < H(P))+ H(Py)+...H(Py), (7a)

where P, P,,..., P, are the probability distributions of the observables
G, G, ..., G5 In the relation (7a) the sign = is to be taken only when all the
ohservables are stochastically independent from cach other, i.e. when

P§f)i:...i. =1/ Piy»
k=1

where p; represents the element of the probability distribution of the k-th
observable.

The entropy change of the measured quantal object X during the mea-
surement is given by the entropy balance of measurement, i.e. by the difference
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between the total entropy of the object in its pre-measurement state H,(P®)
and in its post-measurement state HH(P(z)):

AH, = H,(P®) — H,(P®). (8)

During the measurement of the observable G, the probability distribution of
the measured object changes. Denoting by 1w = { W, W, e e o W,y } the post-
measurement probability distribution of the measured observable, we can
write according to Eq. (8) the total entropy change

AH = — > w; logw;, + >p1,10gp,1——2(w,-1——pn)' 2
i i Tay03y0 -0 (821)
( 0) 10(1’3) . ’.fa_l(lS) 'Iogr ( ) 12(1’]) la 1( )'

According to the entropy law a change /AH; in the entropy of the measured
quantal object requires a minimal change -—kAH, in the physical entropy of
the measuring instrument, k being Boltzmann’s constant.

Let us now turn to the determination of the total post-measurement
entropy Hy(P"¥) of a measured quantal object. When only one observable is
measured (for example G,), the post-measurement entropy is

H,= - >w;logw;,— Zw,‘ > rilie) mi(ts) rig(iy) - - -

11 In fay0a,- - 0,ig

“Tiy_(Ts) log 1 (i) riy(Ey) rip(3y) « - - iy (B5) -

Tf the probability uncertainty of the measured observable is totally remo-

ved, we have

H(P®) = Hy(P®)— H(P,).
Taking into account the relations (5) and (6), as well as the equation

n
H(P]) = 2 pil'logpil’
fi=1
we find
Ha(P(z)) = Zpil ril(i2) ri:(is)' . risfl(iQ) ‘log ril(iz) rf;v_(i3) 13("4) Is..l(ls) (9)
fnsfose - 1in

i.e. the total post-measurement entropy of the measured quantal object is
equal to its general conditional entropy [13].

We shall next determine the foregoing entropic characteristics for the
sake of simplicity, only for two observables G, and G,. In this case relation

(9) turns out to be

H(PO) = — X p;, 3ri,(in)logry(iy) - (10)

[P
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Substituting Egs. {4) and (4a) into Eq. (10), we have

H(I(P(Z))_—— \ |Aull 2 IUllh ologlUllhl . (].OH)
11
From Eq. (10) it is easy to see that the post-measurement entropy H,(P")
vanishes when

|U;

!112' (11)

112!

Consequently, for the corresponding operators O, and O, it holds that
0102 —_— 0201 = Og (12)

i.e. the operators 0, and 0, commute. Thus we can state that only in the case
when the operators associated with the observables G, and G, commute does
the total entropy of the measured object vanish through the measurement of
one of the observables.

. 'When the observables G, G,, ..., G, possess continuous spectra, then
the eigenvalue problem can he written in the form

O: gL, x) = ully) p(li, %) (13)

Let the wave function ¥ (x) of the considered quantum-mechanical system be

W(x) = [ plly)- gl x)dly = § (o) 9l )l ... = § (1) @lls %) dly (132

The unitary transformation of the observables in this case turns out to be the

integral one:

gl x) = * Ul 1) o1, x) d; . - (14)

The functions p(Ly) = | p(l) [%p(1a) = | #)Ps - - - i) = | ) [ and ry (L))
= [ U(l;, 1)) |* give the probability density functions of the observables G,
G, . . ., G and the transfer functions r/(l;) determining the statistical depend-
ences between them, respectively. The change of the total entropy during
the measurement and the post-measurement entropy of the measured object,
while the observable G, is being completely measured, are found in a similar way:

AH; = H,(P®P)—Hy(P®) = — {u(l)) log u(l) d, + § p(l,) log p(h) dl, —
- 55 ce H (u () — ply) — p(l 1)) ) ri(ls) - o vty (U)
log [r,l(lz) rl) ..o, (lm)] ddl,...dl,,
Ha(sz)): - _” 5 L) 1, (L) - ry,(l) - . -1, (1) - log rn(ly) -

15
crlly) e, (b dlydly . . dl,. (15)
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The foregoing quantities occurring in the entropy balance of measurement
represent basic quantitative characteristics of the measuring process from the
entropic point of view.

2. Information and the measurement

In the preceding Section we have dealt with the change of the probability
uncertainty of a measured system when performing the measurement of one
of its observables. We now turn to the problem, of how the probability uncer-
tainty of an observable &, changes when we measure the observable G, or
in other words how much information about the observable G, is contained
in the observable G,. Consider again the physical system described in the
preceding Section. Determining the i-th value of the obhservable G, the entropy
balance of the variable G is H, = ):pl log p; in the pre-measurement state

and H} = 2, r,(jp) log r; (jp) in the poqt measurement state. Therefore, the
mean change of the probahlhty uncertainty in the observable G, when a
measurement of the observable G, is performed is

AH=H, - Np;H =1(6:G,) = — > p;,logp;, +
i : ip (16)
+ 2[’1‘, Zril(fp) Inri(j,) -
i J
We can see that the expression for the mean entropy change AH is identical
with that for the information (see Eq. (2)).

The change of the total entropy of the joint probability distribution of
an assembly of observables G,, . . .. G, during the measurement of the ohserv-
able G, is

AH:I(GI;Gg,...,GS):—- } P,, lOgPi,ia...is+ ’
i I;;, .,13 (17)
+ 2 Piy Tig(ie) ray(is) . ooy (i) log r,(i5) 1y, (i5) - - T (is)-
l;,l ay e ,l.
Since the elements P, ..., and p; of the joint probability distributions
of the observables G,, G,, . . ., G, and the measured observable G,, respectively,
as well as the elements of the transfer matrices R(1, 2), R(2.3), . . ., are linked
with the physical parameters of the measured quantum-mechanical object
according to the relations (4) and (4a), when we substitute these relations in-
to Eqs. (16) and (17) we get expressions in which only the quantum-mechanical
terms occur.

Where the observables have a continuous probability distribution it is
possible to give the mean magnitude of the entropic change of observables G,,
G, . . ., G, by measurement of the continuous observable G;. In accordance
with Eqgs. (17), (13) and (13a), we find

Acta Physica Academiae Scientiarum Hungaricae 30, 1971



ENTROPIC CHANCES 397

I=—[§ .o f )P 1O, L)1 1 U L) 12 - e Uy, L)1
< log [ulle) 12 |U(ly, )12+ 1UU, L) 1* -« - (U1, 1) ]7] d,
cdly . dl 4 (T @) UL L) 2 Uy, L) 2. .. - (18)
NUs—rp L) 12 log [[U (L, L) 21Uy, L) [P - [ U, L) 2] -
cdldl, ... dl,.

It can be shown that the maximum entropy change during the measurement
will be obtained when | U, ;* = r,(jp) = 0;; or when | U(l;, ) 2= o(l,—1),
i.e. when the observables G, and G, are compatlble. This shows that the cri-
terion of simultaneous measurability of the physical observables can be expres-
sed by means of their entropic characteristics. This is of importance in the
mathematical analysis of the quantum-mechanical formalism [14].

Since the general aim of a measurement is to reduce the probability
uncertainty of the measured system as much as possible, one may, using the
relations (8a), (15) and (18), find parameters of the measured object and
measuring instrument (e.g. elements of transfer matrices, ete.) for which
the entropy balance of measurement hecomes optimal.
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IM3MEHEHUE 3HTPOINWU KBAHTOBO-MEXAHWUECKWX OBBEKTOB INPU

N3MEPEHWNH
B. MAEPHMK

Pesiome

O06Ccy)KnawTCst NPOLECChl, CBSI3AHHBIE C SHTPOIHEH CHCTEMbI, NPH U3MEPEHHH KBAHTOBO-
MexaHHYyecKHX 00beKToB. OnpeneseHbl SHTPOMHHHLIE XAPAKTEPHCTHKU NIPOLECCa H3MEPEHHs,
IIPH M3MEPEHHMsIX MPOBECHHLIX B TAK Ha3blBaeMOM pexxume Oajianca sHTponuu. [MoxazaHo, uto
aHTponHs LleHHOHa KBAaHTOBaHHBIX 00BEKTOB, KOTOPASI OMHCHLIBAETCS C MOMOILBI) HEKOMMY-
THDPYHOILHX ONEPATOPOB, MTOCJIe H3MEPEHHS BCerJa noJioxkurenbHa. Janee, H3 6asaHca SHTPOMIH
KBaHTOBO-MEXAHHYECKHX M3MEPEHHH CieayeT, 4To u3mepeHue HaOMIOIAEMBIX XaPAKTEPHCTHK
KBAHTOBLIX O00BEKTOB AaeT HEKOTOpbie HMHPOpMALHH H 0 HEH3MEPEHHBIX BEJIMYMHAX.
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