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A simple general derivation of the Hartree—Fock equations is given. The derivation
is based on the Brillouin theorem which is proved in its most general form for a Slater deter-
minant built up from not necessarily orthogonal spin orbitals. The Hartree—Fock equations
can be obtained as a specific formulation of the Brillouin theorem for the case of orthogonal

spin orbitals,

As the possibility of finding alternative derivations of the Hartree—Fock
equations has been the subject of recent discussion in the literature [1, 2], it
seems to be of interest to present the following simple and general derivation
based on the Brillouin theorem. This theorem is treated not as a consequence
of the Hartree—Fock equations but is first proved to be a necessary condition
which should be satisfied for the Slater determinant wave function with the
lowest energy value. It is then shown that the theorem is also a necessary and
sufficient condition for the stationariness of the energy expectation value
and that the Hartree—Fock equations can be obtained as consequences of the
Brillouin theorem. This second part of the treatment has some similarities
to those given by DaHL et al. [2] and LEFEBVRE [3] but is more general (and
also more general than the usual derivation [4]) because no restriction is put
on the variations of the one-electron orbitals. It is usual either to consider
specified variations [1—3] or to introduce Lagrangian multipliers [2, 4] in
order to ensure that the one-electron orbitals remain orthogonal even after
variation, Since, however, any Slater determinant wave function can also be
built up from orthonormalized spin orbitals, the conservation of the orthogo-
nality of the spin orbitals puts no physically meaningful restriction on the
variations of the wave function; accordingly, as will be seen, there is no need

for such a condition.

The Brillouin theorem for the Slater determinant
with the lowest energy value

The Brillouin theorem states that: The matrix element of the n-electron
Hamiltonian vanishes between the n-electron single Slater determinant wave
function giving the lowest expectation value for the energy (the “best” Slater
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determinant) and any single Slater determinant wave function which can be
obtained from the former by replacing one filled spin orbital with an arbitrary
unfilled spin orbital orthogonal to the filled orbitals (i.e. there is no mixing
between these wave functions).

If the interchanged spin orbitals have different spins the theorem is
trivial, owing to the orthogonality of the spin functions; and if they have the
same spins, an indirect proof can be given.

Let us assume that the “best’ Slater determinant is

Vo = o [9:(1)py(2) - - - 9i() - - - pa(m)], 1)

i.e. for a given n-electron Hamiltonian A the lowest expectation value H =
= Hyobelongs to V. We denote by ¥, the wave function which can be obtained
from ¥, by replacing the spin orbital ¢, with a spin orbital y,:

#y = A [pllga(2) - - o 9) - - - pa(m)]- (2)

(i |y = 0, hence (¥, | ¥;> = 0. There is no need to assume that the spin
orbitals ¢, are mutually orthogonal; the appropriate normalization coefficients
should be included in the antisymmetrizing operator of.

Let us assume that the theorem is not valid, i.e. that ¥ is the “best”
Slater determinant but H,, == 0.

First we form a linear combination

V=¥ + ¥, . 3

and determine the coefficients in such a way as to obtain a minimum energy
for the wave function ¥. The lowest root of the secular equation

Ho—E  Ho izo @
Hm Hn“E

i8

1 Ay
E22H00+?(Hoo 'Hn) ”/1 "—!—01[&*

(5)
(Hoo— Hyy)?
(The notation H;; = (¥, | H| ¥;) is used).

According to our assumption Hy, < H,,, therefore if H 5= 0, then E,
will be smaller than H . It is easy to see, however, that the wave function ¥
is the sum of two determinants differing only in one row and thus can be written
as a single determinant:

¥ = Alg)(L)pa(2) - . - (e39; + ¢ )(E) - . . @r(n)]. (6)

Acte Physica Academiae Scientiarum Hungaricae 30, 1971



DERIVATION OF HARTREE—FOCK EQUA IONS 375

(The appropriate normalization cocfficients should be included in the ¢;s
and of.)

The wave function ¥ can thus be written as a single Slater determinant.
Its energy E, is lower than H, and consequently ¥ cannot be the “best”
Slater determinant, This contradicts the original premise, thus the theorem is
proved. (If, however, Hy, = 0, the lowest root of the secular equation is

E = H,)

The Brillouin theorem for a Slater determinant
with a stationary energy value

To vary the wave function W = ofl [¢1(1)74(2) . . . ¢,(n)] normalized to
1 the spin orbitals must be varied. There is no need to regard the spin orbitals
as orthonormalized, accordingly there is no need to require that this property
be conserved during the variation. It should be noted that the normalization
of the determinant wave function can change during the most general variation,
Let

Ok =1 € 02 0L 11) » (7)
A=1

(x = 2 or B)

where 7 is an arbitrary complex quantity tending to zero. This variation is
ithe most general one, because one can construct a complete system of functions
from the filled orbitals having spin y, and from arbitrary unfilled orbitals of
the same spin which are orthogonal to the filled orbitals. The only requirement
is that the function represented by the sum should be finite and regular.
Evidently an arbitrary number of ¢,;-s can be equal to zero, which permits
the realization of specific variations. The wave function obtained after the
variation is a determinant for which every element is the sum of two terms
[(p, + 6¢)(@)], and it can therefore be written as a sum of 2" determinants,
The majority of these, however, are proportional to the square or to higher
powers of 7 and are therefore negligible as compared with terms of the first
order in 7 (“independence of the variations”). Accordingly,

W = 3R [gy(1) 7o(2) - . . 7ylk) - .. )] =
k

n

=7 €ir 0(Xies 22) L LP1 (1) 9o(2) . . . u(K) - . - p(m)].

©
=1 A=1

Summing over A separately up to n and from n 4 1:

k=1 k=14=n+1

0¥ =1 {_{_ e Fo + ‘S 3 €, 0> 22) S [F1(1) ‘P2(2)---‘Px(k)-’-‘l’n(")]} )
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In the sum corresponding to the values 2 < n we have taken into account
that if A 5= k the determinants have two equal rows.
The norm of the wave function after variation is

(ot 8F | Wyt 0¥y = 1 4 (OF | W) + CF, | 8% + (5% | 8%). (10)

The last term is proportional to 72 and can be omitted. It is easy to see
that
n
OP ¥ =n* > ckis
= (11)
CHRIOF) =0
=1

because ¥ is orthogonal to all terms of the second sum in the expression for

Thus we obtain

| &4 n
- OV [H 40T = 140* N et S oy (12)
k=1 k=1

The expectation value of the Hamiltonian after variation is

H + 6H = Hyy+6H = LBV
o+ 0¥ [Fo+0¥ )

g e e g
1+n* \ ckh+n2 Chk

(13)
+7* 2 1 3 a0 1)< @1 (1) 9o(2) - @a(K) . @uln)] 1H| Fo> +
k=14=pn4-1
+7 ‘% ) 2: ca 82k 1) CFOLH T A L1(1) y(2) -~~‘h(k)---%(n)]>} .
k=11=n+1

We have again dropped the terms proportional to 72. After a further term
containing 7> has been omitted and the division by the denominator standing
at the beginning of the expression has been carried out, the first matrix element

gives just Hy, = (¥ | H| ¥,), and we obtain

n 2 3t 80 1)CAPA1) 92) - 91 (k) - p(m)] || s
oH — =1i=n+1 +
1+77*2 Che T 1 5‘ Cxk (14)

+ complex conjugate.
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It follows that for arbitrary variations H = 0 if, and only if, the Brillouin
theorem is satisfied, i.e. the Slater determinant ¥ has a stationary value of
H(8H = 0) if, and only if, the matrix element of the Hamiltonian is zero
between ¥, and any Slater determinant which can be obtained from ¥, by
replacing one filled orbital by an unfilled orbital which is orthogonal to the
filled orbitals. LEFEBVRE [3] earlier gave a derivation of the Brillouin theorem
for the case of a Slater determinant with a stationary energy value, using a
similar but not identical method.

It follows from the comparison of the above two theorems that if there
exists a Slater determinant for which the energy reaches its exact lower limit
(for the set of wave functions which can be written with a single Slater determi-
nant), this Slater determinant will have a stationary energy value too. This
is usually assumed in all approaches based on the variation principle, although
it is questionable whether it may be regarded as evident a priori for all types
of trial wave functions.

The Hartree—Fock equations as consequences of the
Brillouin theorem

Using an appropriate orthogonalization procedure one can always
arrange that the wave function ¥ considered in the discussion of the Brillouin
theorem be given as a Slater determinant built up from orthonormalized spin
orbitals. In this case we can obtain the Hartree—Fock equations expressing
the Brillouin theorem in terms of one-electron orbitals.

According to the Brillouin theorem

(P |H| W) =0, (15)
where
A= SHND+ 3. (16)
i 1ok Tig

H" is the one-electron part of the Hamiltonian.

¥, and ¥, differ in one spin orbital, as above: instead of ¢; in ¥, there
is g, in ¥, Since the Brillouin theorem is trivial if y;, < y,, we assume y; = y,.
All spin orbitals concerned are orthonormalized, and so, using the known for-
mulae [4], Eq. (15) can be rewritten in terms of the integrals over the spatial
parts of the orbitals:*

j P1(1) HN(L) (1) do, + [ j f or(1) g1(2) ri%u) pA(2) dvy dv, —

i#l (17)

= o2 [[ o ) L p1) 7(2) do, d”z] —0.

Ie

* Here and further on @ and y denote only those parts of the orbitals which depend on
the spatial coordinates.
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Taking the complex conjugate of this equation, using the hermiticity
of the operator H" in the first integral and interchanging the notations of the
variables of integration in the second one, we obtain

T

J.W(l)HN(l)fp/(l)dvl n ZUJ 1) ¢#(2) _-—27 7:(2)g(1) dv, dv, — (18)

i#1
#(1) 7(2) da, dv, ]:o.

— 8z x»ﬂw:(l) 71(2) -

Tio

Taking the integration over r, separately and contracting:

J'm(zw—I« d} 7(1) —

ST

dv;‘) q,-(l)” dv, = 0.

j wr(l){HN(l) w(1) + 2[
izl (19)

—~ 0t 1) Utr,’-‘(ﬂ) 742) :

12

This equation shows that the function of r, in the brackets is orthogonal
to y,. According to the derivation of the Brillouin theorem 3, may be any
function orthogonal to all orbitals in ¥, which have a spin ;. Consequently,
the function in the brackets can be expressed as a linear combination of the
functions occurring in ¥, and having spin x;.

J'mv,-(zwidvz) ¢(1) — No(z, zo( J'c;r(z) #(2) dvy| 7, (1) =

Tya i#l Tio

N (g() + 3

i#l

B ) 01). (I=1.2...n) (20)

|
N.]’{:

These are the Hartree —Fock equations [4].

The hermiticity of the 2 matrix can be easily seen if one multiplies this
equation by ¢f(1) and the corresponding equation for ¢, by ¢f(1) and then
integrates both over r;, and makes the necessary interchanges of variables of
integration.

The equation can be transformed with the aid of the usual unitary trans-
formation [4] into a pseudo-eigenvalue equation whose solutions for different
orbital energies are automatically orthogonal, while solutions with equal orbital
energies can be orthogonalized in such a way that the functions obtained also
satisfy the Hartree —Fock equations. On the other hand the Brillouin theorem
follows from the Hartree—Fock equations, so these are fully equivalent for
the case of orthonormalized spin orbitals.

In the usual derivation the Lagrangian multipliers are introduced in
order to ensure the orthonormality of the orbitals. As can be shown, in the
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DERIVATION OF HARTREE - FOCK EQUATIONS 375

usual derivation the fact that in the case of equal orbital energies there can
be solutions which are not necessarily orthogonal (even if they may be ortho-
gonalized) is connected with a not fully consistent application of the Lagrangian
multipliers.

Except for the first theorem, the present derivation can be applied with-
out any essential change for the case of doubly filled orbitals; one has only to
take into account that the spatial parts of the orbitals and their variations
and the terms in formula (14) describing the variation of the energy are equal
in pairs.
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O BbIBOOE YPABHEHUWI1 XAPTPU—®OKA
u. MAMEP

Pesiome

Tpusoautcs npocToit u o61wuil BoBoL ypasHeHuil XapTpu— Poxa. BriBog 0CHOBAH Ha
Teopeme BpuioaHa, KOTopas A0KasblBaeTCs B Hanbosiee o0lieM BHae IJISI LeTEPMHHAHTHOH
BOJIHOBOIT (DYHKUHH, NOCTPOEHHOH H3 He 00a3aTesbHO OPTOTOHAJbLHBIX CrHH-opOHTanei.
Cucrema ypasrennii Xaptpu— ®oka moxkeT OblTh NOJy4€HA KaK creuuanbHasi GopmyTHpPOBKa
Teopembl BpHILIORHA AUISE Cyvast OPTOrQHaJIbHLIX CRHH-opGHTaneH.
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