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A simple general derivation of the Hartree--Fock equations is given. The derivation 
is based on the Brillouin theorem which is proved in its most general forro for a Slater deter- 
minant built up from not necessarily orthogonal spin orbitals. The Hartree--Fock equations 
can be obtained asa  speeific formulation of the Brillouin theorem for the case of orthogonal 
spin orbitals. 

As the possibi l i ty  of  f inding a l t e rna t ive  der iva t ions  of  the  H a r t r e e ~ - F o c k  
equat ions  has been  the  subjec t  of  recent  discussion in the  l i t e ra ture  [1, 2], it 
seems to be of  in te res t  to p resen t  the  following simple and  general  der iva t ion  
based on the  Bril louin theorem.  This t heo rem is t r ea t ed  n o t a s  a consequence 
of  the H a r t r e e - - F o c k  equat ions  b u t  is f i rs t  p roved  to be a necessary  condit ion 
which should be sat isf ied for the  Slater  de t e rminan t  wave  funct ion  wi th  the  
lowest  energy  va lue .  I r  is then  shown t h a t  the  t heo rem is also a necessary  and  
suff icient  condi t ion for the  s ta t ionar iness  of  the energy expecta t ion  value 
and  t h a t  the  H a r t r e e - - F o c k  equat ions  can be ob ta ined  as consequences of  the  
Bril louin theorem.  This  second p a r t  of  the  t r e a t m e n t  has some similari t ies 
to  those given b y  DAHL et al. [2] and  LEFEBVRr [3] b u t  is more  general  (and 
also more  general  t h a n  the  usual  der iva t ion  [4]) because no rest r ic t ion is pu t  
on the  var ia t ions  of  the  one-electron orbitals .  I t  is usual  e i ther  to consider 
specified var ia t ions  [1 - -3]  or to in t roduce  Lagrang ian  mul t ip l iers  [2, 4] in 
order  to ensure t h a t  the  one-electron orbi tals  remain  o r thogona l  even af ter  
var ia t ion .  Since, however ,  any  Slater  d e t e r m i n a n t  wave  funct ion can also be 
bui l t  up f rom or thonormal ized  spin orbi tals ,  the  conserva t ion  of the  or thogo-  
na l i ty  of  the  spin orbi ta ls  pu t s  no phys ica l ly  meaningfu l  res t r ic t ion on the  
var ia t ions  of  the  wave  funct ion;  accordingly,  as will be seen, there  is no need 

for such a condit ion.  

The Brillouin theorem for the Slater determinant 
with the lowest energy value 

The Bril louin t heo rem  s ta tes  t h a t :  The  ma t r i x  e lement  of  the  n-electron 
Hami l ton i an  vanishes  be tween  the  n-elect ron single Sla ter  d e t e r m i n a n t  wave  
funct ion giving the  lowest  expec ta t ion  value  for the energy  (the " b e s t "  Slater  
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determinant) and any single Slater determinant wave function whieh can be 
obtained from the former by  replacing one filled spin orbital with ah arbitrary 
unfiUed spin orbital orthogonal to the filled orbitals (i.e. there is no mixing 
between these wave functions). 

I f  the interchanged spin orbitals have different spins the theorem is 
trivial, owing to the orthogonality of the spin functions; and ir they have the 
same spins, an indirect proof can be given. 

Let us assume that  the "bes t"  Slater determinant is 

~o = o)~ [r ~ , ( i ) . . .  ~.(n)], (1) 

i.e. f o r a  given n-electron Hamiltonian J~ the lowest expectation value t~ = 
=~ Ho0 belongs to k~ o. We denote by kv i the wave function which can be obtained 
from ~o by  replacing the spin orbital cp; with a spin orbital % : 

~V 1 : of�91 [ ~ t ( l ~ 2 ( 2 ) . . .  ~0,(i).. .  ~n(n)]. (2) 

<qk {Vi> = 0, hence <kV o 1 ~Pl> = 0. There is no need to assume that  the spin 
orbitals cpk ate mutually orthogonal; the appropriate normalization coefficients 
should be included in the antisymmetrizing operator aE. 

Let us assume that  the theorem is not valid, i.e. that  ~o is the "bes t"  
Slater determinant but  Hot -z~ 0. 

First we forro a linear eombination 

= q ~ o  + e2~1. (3) 

and determine the coefficients in such a way as to obtain a minimum energy 
for the wave function kV. The lowest root of the secular equation 

is 

[ H ~ 1 7 6  H~ [--  0 (4) 
Hi,  H l l -  E 

1 (Hoo H1,) [V1  4]H~ 1[. (5) 
E~ = Hoo ~- ~ -  ( H o o - - H l l )  ~ . 

(The notation H i j  = (Wi[ /:/I ~j> is used). 
According to our assumption H00 < H1,, therefore ir Hot # 0, then E 2 

will be smaller than Hoo. I t  is easy to see, however, that  the wave function 
is the sum of two determinants differing only in one row and thus can be written 
a s a  single determinant: 

---- of�91 (c~q~ i + c2~fli)(i) . . . q%(n)]. (6) 

Acre Physir Ar Sr Hungarica~ 30, 1971 



1)ERIYATION UF I [ A R T R E E - - F O C K  EQUA IONS 375 

(The app rop r i a t e  normal iza t ion  eoefficients should be included in the  ci-s 
and ~ . )  

The  waxe funet ion ~Pean thus  be wr i t t en  a s a  single Slater  de te rminan t .  
I t s  energy E_o is lower t han  H00 and eonsequent ly  710 eanno t  be the " b e s t "  
Slater  de t e rminan t .  This eont radie ts  the  original premise,  thus the  t heo rem is 
proved.  (Ir,  however ,  Hol = 0, the  lowest  root  of the secular  equa t ion  is 

E = H00. ) 

The Bril louin theorem f o r a  Slater determinant  
with  a stat ionary energy value 

Tu v a r y  the  wave  funet{on ~/t 0 ~ ojO, [ql(1)cf2(2) . . . qn(n)] normal ized  to 
1 the spin orbi tals  m u s t  be var ied.  There  is no need to regard the spin orbitals  
as or thonormal ized ,  aecordingly there  is no need to require  t h a t  this p r o p e r t y  
be eonserved dur ing  the  var ia t ion .  I t  should be no ted  t h a t  the  normal iza t ion  
of the d e t e r m i n a n t  wave  funet ion can ehange during the  mos t  general  var ia t ion .  

Le t  
cr 

~r~~k = ~ ~ '  c,,~~ ~f,, £ zd ,  (7 )  
) . = l  

where ~ is an a r b i t r a r y  complex  q u a n t i t y  tending tu zero. This  var ia t ion  is 
~he mos t  general  one, because one can cons t ruc t  a comple te  sys tem of funct ions 
f rom the filled orbi tals  hav ing  spin 7.k and f rom a rb i t r a ry  unfil led orbitals  of 
the  same spin which are or thogonal  to the  filled orbitals .  The only r equ i rement  
is t h a t  the funct ion  represen ted  b y  the  sum should be finite and regular .  
Ev iden t ly  an a r b i t r a r y  n u m b e r  of Ckx-S can be equal  tu zero, which pe rmi t s  
the  real izat ion of specific var ia t ions .  The  wave  funct ion ob ta ined  af ter  the 
var ia t ion  is a d e t e r m i n a n t  for which every  e lement  is the  sum uf two t e rms  
[(Ft: q- bF~)(i)], and  it can therefore  be  wr i t t en  as a sum of 2 • de te rminan t s .  
The ma jo r i t y  uf these,  however ,  are p ropor t iona l  tu the  square  or to higher  
powers of  r/ and  are therefore  negligible as compared  wi th  t e rms  of the f i rs t  
order  in r~ ( " independence  uf the va r ia t ions" ) .  Accordingly,  

/3 

~~r/= ~ a)~ [qpl(1) rP2(2) . . . �91 (pn(n)] = 

(8) 
/2 

= ~ / ~ ,  ~ "  ckz 6(;/k, Zx) di: [~p~(1) cp2(2) . . .  ~pz(k) . . .  • 
k=l ~ ~ 1  

Summing  over  2 separa te ly  up to n and  f rom n + l :  

k : l  ) . = n +  1 
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In  the sum corresponding to the values 2 ~< n we have taken into account 
tha t  i f  2 ~ k the determinants  have two equal rows. 

The norm of the wave function after variat ion is 

<T  o +  � 9 1  o +  6 T > =  1 q- < ~ ~ l T o > +  < T o l 6 T > ~ -  <6T I£ (10) 

t h a t  
The last term is proport ional  to rt 2 and can be omitted.  I t  is easy to see 

/ /  

<~~1%> = ~* .2" c~.,~, 
k=x (11) 
?/ 

k = l  

because T 0 is orthogonal to all terms of the second sum in the expression for 
� 91  (<r ]~~> = 0, ir k ~< n, 2 > n.) 

Thus we obtain 
I n  n 

(~ /‰ > = 1 +~*  ~.~" c~~ -4- ~ ~_~~" c~~. (12) 
k = l  k = l  

The expectat ion value of the Hamil tonian after variat ion is 

1<( s~f ( ~ 1 >  - -  D 71 

1+~* ~" c~k + ~~~ c~.~ ~~~ 
k = l  k = l  (13) 

+ r/* ~ ~ c~z ~(Zk, ;�91 [~~(1) ~2(2) ._ ~x(k) ... ~,(n)] liql ~o> + 
k = l  2=n+l 

o o / 
q-~7 .~~ . ~  ckxa(Z,.,Zx)(~01/~1 ~[$'l(1)cfz(2)-..~rx(k)...~n(n)]> �9 

k = l  J l = n + l  

We have again dropped the terms proport ional  to ~2. After  a fur ther  te rm 
containing ~72 has been omi t ted  and the division by the denominator  s tanding 
at the beginning of the expression has been carried out,  the first  matr ix  element 
gives jus t  Hoo = ( ~ o [  f / I  To>, and we obtain 

t7 oz 

7" .~  ~" c~z ~(Zk, Z~)(o-E[q5(1) q~2(2).., q~~(k)... ~v,~(n)] ]IrIi To> 

1§ , * c~k ~- ~ ck~ 
k ~ l  k ~ l  

~ complex conjugate.  

(14) 
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I t  follows t h a t  for a rb i t ra ry  var ia t ions  6]t  = 0 if, and only if, the Brillouin 
theorem is satisfied, i.e. the  Slater  de te rminan t  T 0 has a s t a t ionary  va lue  of 
H ( 5 H  : 0) if, and only ir, the  ma t r ix  element  of the Hami l ton ian  is zero 
between T 0 and any  Slater  de te rminan t  which can be ob ta ined  from T 0 by  
replacing one filled orbital  by  an unfil led orbital  which is or thogonal  to  the  
filled orbitals.  LEFEBVRE [3] earlier gave a der ivat ion of the  Brillouin theorem 
for the case of a Slater  de te rminan t  wi th  a s ta t ionary  energy value,  using a 
similar bu t  not  identical  method.  

I t  follows f rom the comparison of the  above two theorems tha t  ir there  
exists a Slater  de te rminan t  for which the energy reaches its exac t  lower l imit  
(for the set of  wave funct ions which can be wri t ten  wi th  a single Slater  determi-  
nant) ,  this Slater  de te rminan t  will have  a s ta t ionary  energy value too. This 
is usually assumed in all approaches based on the var ia t ion  principle, a l though 
ir is quest ionable whether  ir may  be regarded as evident  a p r i o r i  for all types  
of trial wave functions.  

The H a r t r e e - - F o c k  equations  as consequences  o f  the 
Bri l louin theorem 

Using an appropr ia te  or thogonal izat ion procedure  one can always 
arrange t ha t  the  wave funct ion T 0 considered in the discussion of the Brillouin 
theorem be given a s a  Slater  de t e rminan t  buil t  up f rom or thonormal ized  spin 
orb i ta l s .  In this case we can obtain the  H a r t r e e - - F o c k  equat ions  expressing 
the Brillouin theorem in terms of one-electron orbitals. 

According to  the  Brillouin theorem 

wbere 
< T  0 ]/… Ti> = 0 ,  (15) 

111 = .a~' H N ( l ) + .,.'%~' - -  (16) 
l 1.: k r l k  

/_q is the one-electron par t  of the Hamil tonian .  
T o and T 1 differ in one spin orbital ,  as abovc:  instead ofq;t in To,  there  

is ~Or in T 1. Since the  Brillouin theorem is tr ivial  ir Zt ~ Z,, we assume Zt = Zr. 
All spin orbitals  conccrned are or th0normal ized,  and so, using the known s 
mulae [4], Eq.  (15) can be rcwri t ten  in te rms of the integrals ovcr  the spatial  
par ts  of  the orbitals:* 

f~~(,.~(,~r(,.v~+ S[ff~~<'~~(2) l~ ~'i(1)~~r(2)dvldv 2 - -  

i#t r12 (17) 

-- 6(X,, Z,)~(cf* (1) cp?(2) 1 ~  ~vr(1 ) %(2) dv  1 dv2] = O. 
d J  F12 3 

* Here  a n d  f u r t h e r  on ~v a n d  q) deno t e  on l y  [hose  pa r t s  of  t h e  orb i ta ]s  wh ich  d e p e n d  on 
t h e  spa t ia l  coord ina te s .  
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Taking the complex conjugate of this equation,  using the hermit ic i ty  
of the operator  H N in the first  integral and interchanging the notat ions of the 
variablcs of integration in the second one, we obtain 

j'~~*(1) " "" 1 H N ( 1 ) ~ : ( 1 ) d v ~  + ~~[jj ~*(1)q:*(2)----rr_, ~ / i ( 2 ) % ( 1 ) d v ~ d v  2 - -  

-- �91 X3jy~:7(1) q*(2) ~ ~z(1)~r,(2) dv, dr2 ] = O . 
1"12 

(18) 

Taking the integrat ion over /.t separately and contract ing:  

f %*(1){HN(I)%(1) + ~i#' t_[I,-:| "[%(2)j2 lr12 d%1%(I)- 
(19) 

b(Zi 'Z~)[ f  q-*(2)qt(2) 1 dv2") ]} - -  - -  c F i ( 1  ) d v  1 = 0 .  

/'12 

This equation shows tha t  the function of r 1 in the brackets is orthogonal  
to ~'r. According to the derivation of the Brillouin theorem Fr may  be any 
funct ion orthogonal to all orbitals in T 0 which have a spin Zl. Consequently,  
the function in the brackets  can be expressed a s a  linear combination of the 
functions occurring in T o and having spin Zl. 

+ ~" "[%(2)12 H N (1)%(1) dv 2 %(1)-.~Ÿ i, 7.,) q i (1) = 
i#"'~l 1._. : i#l ~.) r12 ) 

= ~ ~tib(Zi, Z,)~~(1)- (l = 1 , 2 . . .  n) (20) 

These are the H a r t r e e - - F o c k  equations [4]. 
The hermit ic i ty  of the ). matr ix  can be easily seen if one multiplies this 

equat ion by  ~v~(1) and the corresponding equat ion for ~k by cp~(1) and then  
integrates both  over rl, and makes the necessary interchanges of variables of 
integrat ion.  

The equation can be t ransformed with the aid of the usual un i t a ry  trans- 
format ion [4] into a pseudo-eigenvalue equat ion whose solutions for different 
orbital  energies are automat ica l ly  orthogonal,  while solutions with equal orbital 
energies can be orthogonalized in such a way tha t  the functions obtained also 
sat isfy the Har t r ee - -Fock  equations. On the other hand  the Brillouin theorem 
follows from the Ha r t r ee - -Fock  equations, so these ate fully equivalent  for 
the case of orthonormalized spin orbitals. 

In the usual derivation the .Lagrangian multipliers are introduced in 
order to ensure the or thonormal i ty  of the orbitals. As can be shown, in the 
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usual der ivat ion the fact  t h a t  in the case of equal orbital  energies there can 

be solutions which are not necessarily or thogonal  (even ir they  may  be ortho- 
gonalized) is connected with a not  fully consistent application of the Lagrangian  
multipliers. 

Excep t  for the first theorem, the present derivat ion can be applied with- 

out any essential change for the case of doubly  filled orbitals; one has only to 
take into account  t ha t  the spatial par ts  of the orbitals and their  variat ions 

and the terms in formula (14) describing the variat ion of the cnergy are equal 

in pairs. 
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O BblBO,/IE YPABHEttldlTI XAPTP!/I--~OI~A 

Id. MAI~I EP 

Pe3mMe 

I-IptlBO,~HTC~I npocTO.~ H 06II~I4~Ÿ BblB02~ ypaBHeHg~i XapTpH--CboKa. BblBO~ 0CHOBaH Ha 
TeopeMe Bp~f~atoaHa, KOTOpa~ ,RoKa3blBaeTc~ B HaH6o~ee 06tUeM BH~e ~~~ ;teTepMHHaHTHOfi 
B0.rlHOBOIŸ ~yHKI4HH, nOeTp0eHHO.~ ti3 He 0fi~3aTe:]bH0 0pTOFOHadlbHblX CnlfH-0p‰ 
CUCTeMa ypaBHeHH~Ÿ XapTpH--~boKa M0~eT ~blTb noay.eHa l(aK cnet~Ha.abHa~ qb0pMyaIJp0BKa 
Te0peMBl 13pt~~arO3Ha ~,:~~~ c~yqa~ 0pTOFOHad]hHblX cnnH-op6t~TaaeiŸ 
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