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ON THE ELASTIC MODULI OF 
A L K A L I N E  AND NOBLE METALS I I I  
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A new term is given in the energy expression for the elementary cell of a monovalent 
metal under uniaxial tension. This term accounts for the interaction of the quadrupole moment 
of the deformed elementary cells. The caleulated values of c H and c12 for potassium and silver 
are given. 

1. In  the  two previous  papers  of  this series [1, 2] the au thor  has described 
a me thod  for ob ta in ing  the elastic modul i  c~1 and cl2 of alkaline and noble 
metals  using the  theo ry  of m o n o v a l e n t  metals  developed b y  GOMB~_S [3 - -8 ] .  
The me thod  leads to an a p p r o x i m a t e  expression for the energy  of the W i g n e r - -  
Seitz cell of a m o n o v a l e n t  meta l  subjec ted  to uniaxial  elastic de fo rmat ion ,  
the e l emen ta ry  cell in this case being regarded  a s a  ro ta t iona l  ellipsoid ins tead  
of a sphere.  The ra t io  of the el l ipsoidal  axes is ob ta ined  a t  the  m i n i m u m  of 
the cell energy and this yields the  Poisson rat io  for the  cell v e r y  near  the 
uns t ra ined  equi l ibr ium state ,  while the  compressibi l i ty ,  the uns t ra ined  equi- 
l ibr ium energy and  radius  of the cell are known from GOMB~S'S theory .  Then  
the elastic modul i  c1~ and c12 can be calcula ted f rom these quant i t ies .  

GOMB�93 t heo ry  of m o n o v a l e n t  meta l s  accounts  for the cohesion of the 
alkaline, a lka l ine  ea r th  and noble meta ls  on a purely  theore t ica l  basis, w i thou t  
in t roducing any  empir ical  or semiempir ica l  p a r a m e t e r  giving the  energy 9f 
the  e l emen ta ry  cell a s a  funct ion of the  cell radius,  the W i g n e r - - S e i t z  cell 
being a p p r o x i m a t e d  by  a sphere of equal  volume.  The compress ibi l i ty ,  energy 
and equi l ibr ium la t t ice  cons tan ts  of the  cell can be eva lua t ed  for the equi- 
l ibr ium case, when  the cell energy is m i n imum,  giving resul ts  in excellent  
agreement  wi th  expe r imen ta l  values  measured  at an adequa t e ly  low t empe ra -  
tu t e  or even ex t r apo l a t ed  to absolu te  zero. 

The  me ta l  is t r ea t ed  in GOMB�93 theory  a s a  sy s t em composed  of a 
posi t ive  me ta l  ion la t t ice  and an a p p r o x i m a t e l y  free gas of  va lence  electrons.  
The valence electrons are t r ea t ed  in a modif ied  la t t ice  po ten t ia l  consist ing 
of the e lec t ros ta t ic  po ten t ia l  of the  ion cores a n d a  nonclassical  pseudopoten t i a l  
being the resul t  of  the  Pauli  principle.  In  calculat ing the  energy  of ah elemen- 
t a r y  cell it is now unnecessary  to or thogonal ize  the  eigenfunct ions of  the  
valence electrons to those of  the core electrons,  since the  pseudopoten t i a l  
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automat ica l ly  compensates  for this, and thus one obtains the deepest  possible 
energy states for the valencc electrons. 

GOMB�93 energy expression for an e lementa ry  cell  can be wr i t t en  as 
follows: 

U =- U E +  U w + H ,  (1) 

where U E is the to ta l  self energy of the valence electrons,  U w the to ta l  inter-  
act ion energy of the valence electrons with the ion cores and H the in terac t ion  
energy of  the ion cores. 

U E and U w can he wr i t ten  fur ther  as 

and 
U E = E c + E A ~ - E w 2 r - E F  

ti w= ~/c +~E +v~ +~w +~'~, 

(2) 

(3) 

where the  indices are C for Coulomb-type,  A for exchange,  IV for correlat ion,  
F for zero-point  and E for non-Coulomb-type  electrostat ic  energy, and the  
index K represents  the energy resuhing  from the pseudopotent ia l .  

The  interact ion energy of the ion cores H is approx imate ly  zero for 
alkaline metals,  and for noble metals can be given as ah average value,  so the 
e l ementa ry  cells ate to be regarded as electr ically neut ra l  in equi l ibr ium con- 
f igurat ion,  since they  can be app rox ima ted  by  spheres. GouB�93 has shown th a t  
in this case the calculations can be carried out  using free-electron eigenfunc- 
t ions for the valence electrons (while as regards the ion cores the resuhs  for 
free a tomic ions calculated by  the self-consistent field method  were used). 
Express ion (1) was calculated by  GOMB�93 for some monova len t  metals  at  
different  e lementary  cell radii.  For  alkaline metals  U can be given in a simple 
analy t ica l  f o r m a s  a funct ion of the cell radius:  

U - -  el + - c 2 -  (4) 
R R 3 

(for ct a n d c  2 see [3]). For  noble metals the numer ica l ly  computed  values of 
U can be approx ima ted  analyt ica l ly  in the form:  

A B 
U = - - +  - - ,  (5) 

R R n 

whcrc A, B and n aro constants .  
h mus t  be stressed t ha t  the analyt ical  forros [4], [5] ate always connec ted  

with complete  spherical symmet ry ,  i.e. the  shape of the Wigner - -Se i t z  cell 
does no t  change. I t  follows tha t  in calculating the energy of the c lementa ry  
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cell every  e l ementa ry  sphere has to be taken  electrically neut ra l  f rom the  
outside, so there  is no direct in terac t ion  t e rm between different  cells, as the  
ion core in terac t ion  occurring in the uns t ra ined s y m m e t r y  conditions has been 
taken  into account  a l ready with the t e rm H in (1). 

Now we have  the e lementary  cell energy as a funct ion of the sphere 
radius U(R), the  equil ibrium cell radius R o and minimal  cell energy U 0 can 
be obta ined forro the  equil ibrium condi t ion 

dU 
- -  0 .  ( 6 )  

dR 

For  spherical symmetr ic  deformat ion  of the e lementa ry  cell (i.e. iso- 
t ropic compression or di latat ion) the cell radius is 

R = Ro(1 § /1). (7) 

Near  the equi l ibr ium state  A is a small quan t i ty ,  and the cell energy can be 
given up to the  second order  as 

Ro fd~v I A~_. 
u = u0+  2 -  ( dn~ IR0 (8) 

From (8) one gets for the compressibi l i ty  ~ (see [1]) 

or, in t roducing 

and 

and using (5): 

Thus  

1 --  1 ( d2~U } (9) 

~- 12~Ro [ dR2 ]Ro 

3 

U o 
w .  - -  ( 1 0 )  

r£ 

1 n w  o 
- -  ( 1 1 )  

z. 9 

) 11 A 2 . (12) U =  U 0 9 
2 W  0 

2. I f  a uniaxial  tension stress deforms the Wigner - -Se i t z  cell, the  spherical 
s y m m e t r y  is lost  and hence the e lementa ry  cell is more accura te ly  represented 
b y  a ro ta t iona l  ellipsoid than  by  a sphere. Le t  the two main axes a and b of 
the  ro ta t iona l  ellipsoid be given, by  
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a - ~  R 0 ( l +  A) I 
b = R0(1 ~- #A) / 

and let  the  direction of the  stress be the  direct ion of the  axis a. 
To a first  a p p r o x i m a t i o n  (see [1]) the  cell energy  can be t aken  as 

(13) 

u~ = u0( t  - -  ~,.~~), (14) 
where 

3 
(3§191176 (15) 

~v, - -  10 w 0 z 

A fu r the r  t e rm  has to be in t roduced  into the  energy  expression (14) because  
of the  change  of the e lec t ros ta t ic  in terac t ion  be tween  the  ion core and valence  
electronic charge,  r e suh ing  f rom non symmet r i ca l  de format ion  of the elemen- 
t a ry  cells: 

U 2 =- Uo(1 - -  q~j12), (16) 
where 

4e  2 
% = ~,, + (1 ~)" .  (17) 

75 R. U0 

3. In  the case of uniaxia l  tension stress plainly the  whole la t t ice  will be 
deformed.  E v e r y  W i g n e r - S e i t z  cell or e l e m e n t a r y  sphere will change its 
shape to a ro ta t iona l  ellipsoid of  parallel  ro ta t iona l  axis, and with  this there  
will be a change in the in te rac t ion  energy of the ionic lat t ice.  Le t  us assume,  
however ,  t h a t  the ion cores themselves  do not  a l ter  dur ing the  de fo rma t ion  
of the  la t t ice  and tha t  even the  eigenfunct ions of  the  'valence electrons r emain  
the same as in the uns t ra ined  equi l ibr ium (this a s sumpt ion  is s imilar  to t h a t  
Used in the  usual  f irst  order  per tu rba t ion) .  The  change in the ion core inter-  
act ion energy  can now be calcula ted  as an e lec t ros ta t ic  in terac t ion  be tween  
the  deformed  W i g n e r - S e i t z  cells because the  ro ta t iona l  ellipsoids are not  
electr ical ly neut ra l  i.e. the  deformed e l emen ta ry  cells have  a l inear  electric 
quadrupole  momen t .  

I t  is known [9] t h a t  a ro ta t iona l  ellipsoid wi th  axes a and b (a > b) 
has a l inear  electric quadrupo le  m o m e n t  directed along the a axis ir ir has a 
poin t  charge  @e at  the  origin a n d a  un i fo rm nega t ive  charge dens i ty  of  

3e 
0 0  m 

4zab 2 

The  quadrupole  m o m e n t  Qn is then  given as 

e (a 2 b2 ) (18) 
Qll = 5 

and all o ther  Qik are zero. 
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Using (13) 
2 

QI~ = - -  eRo(1 - -#)  A (19) 
5 

up to the first order in A. 
Let  V(r) be the potential  in the crystal  due to all such quadrupole  

moments .  Then, owing to this field, the  energy of the e lementary  cell placed 
in the origin will be 

ce~l) 2 - - [  Oxy ]o Qn (20) 

up to the seeond order. 
The electrical potent ial  of a linear quadrupole  moment  Q11 at a point  

given relat ive to Qu by  (r, ~) is 

V -- Qu (3 cos 2 vq_ 1). (21) 
2r 3 

Let  there be a quadrupole  moment  Qu at the point (r, ~) a n d a  parallel quad- 
rupole m o m e n t  Qu at  the origin. The interaction energy of these two quadrupole  
moments  together  can be calculated from (20) and (21). The hal l  of this belong- 
ing to each moment  is: 

lrJ~~-- 9 Qll ( 1 - 1 0 c ~  35 ) - -  cos 4 0 . (22) 
' 8 r s 3 

The interact ion energy for one e lementary  cell is found by  summing up 
(22) for the whole latt ice and using (19): 

W= 9~-e2Ro(1 / ~ ) 2 A 2 Z  r ~ ( 1 - - 1 0  cos 2 z$i -t- 35 / 3 c~ zgi] " (23) 

Let  the smallest distance be tween  two atoms in a given lat t ice be �91 

Ir  is known tha t  

~thrhere 

and 

ri = @. 

�91 = / ~ R  o, 

= ( l ;5- )1 '3  

~__~~(231~,~ 
for s.c.e, lat t iees 

for f.c.c, lattices. 

(24) 

(25) 
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Let  us take  

and 

S = ~~~-5  (l  - -10 cos2 vqi -~- 35 } cos4 0i (26) 
i 3 

27 
--  - -  fl-~. (27) 

8 

]?he U 2 in (16) has to be correc ted  fur ther  by  W given by  (23) and so the  to ta l  
cell energy  will be 

U = Uo(1 + ~~AZ), (28) 
where 

and 
~,, = ~~--h(1 /x)2(I~-~q (29) 

4e  2 
h - -  

75 R O U o 

The energy t e rm (28) has its min imum if 

and 

{ SU I = 0  
~p~ ] A 

F r o m  (30) we obtain the equil ibr ium Poisson ra t io  as 

(30) 

5 
1-4- - -  ~Wo h ( l + ~  S) 

1 3 
- -  . ( 3 1 )  

~o 4 1 _  5 z w o h ( l + ~ S  ) 
12 

Le t  us f inally in t roduce  another  cons tant  g a s  in [2], with 

Then  

5 e 2 
g = ~ w o h = (32) 

1 2  60 R 4 

1 l + 4 g u ( l + ~  S) 
/~o  - -  ( 3 3 )  

4 1 - - g u ( l + ~ S )  

The  elastic moduli  
as in [2], i.e. 

cll and cl2 can now be ob ta ined  in the  same form 

3 
cll = ~ - -  [ 4 -8g~(1A-~S) ]  (34) 
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and 

C12 ---- 5 ~  [1 + 4g~(1 + z/)S 1 . (35) 

Eq. (26) was then calculated for s.c.c, and f.c.c, lattices. 
The numerical results are given in Table I, where c n and c12 were 

calculated from Eqs. (34) and (35) assuming s.c.c, lattice for potassium and 
f.c.e, lattice for silver.The results of F~CHS' calculation for potassium and the 
available experimental values were quoted already in [11 and [21. 

Table I 

All data in 10 li dyne/cm" 

Cll 

C12 

K Ag 

(34) 
FUCHS 

experiments 
(35) 

FUCHS 

experiments 

0.479 
0.440 
0.457* 
0.374 
0.380 
0.374* 

* Measured at 73~ 

17.87 

12.4 
7.63 

9.34 

As can be seen, the  resuhs  a te  fa r  b e t t e r  for  p o t a s s i u m  t h a n  for silver. 
There  is, however ,  a quite r e m a r k a b l e  over lapping  of the  ion eores wi th  silver 
and  so some of the  basic assumpt ions  of  this and of the  previous  articles are 
only rough  app rox i m a t i ons  for noble metals ,  even when  the  eells ate a t  the  
equi l ibr ium s ta te .  Fo r  uns t ra ined  equi l ibr ium of for spher ical ly  s y m m e t r i c  
deformat ions  these  discrepancies can be corrected b y  using a more  sophis t ica ted  
pseudopoten t i a l  [10], bu t  for nonspher ica l ly  s y m m e t r i c  de format ions  the  
present  m e t h o d  is only  adequa te  for alkaline metals ,  where  such over lappings  
ate  prac t ica l ly  negligible. 
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O MO,/I3/.flE 3zI-IP3,'FQCTH HIEJ1OLIHblX H I 3 J I A F O P O ~ H b l X  META.,rI.J]OB III .  

~. A HTA,71 

Pe3mMe 

B /laHuoª pa6oTe, ~8J1~touleiŸ np0110~~eHHeM npe~lbulynmx /IByx CTaTe~ [1, 2], 
Bbmezleti •0Bblª q:JeH 8blpa~eHH~ 3HeprHH 3JleMeuTapuoiŸ nqe¡ 0RHoBaJlenTnblX MeTaJm08 
B c~yqae 0~H00CHOF0 paCT~~eHH~. FI0~IBJIeHHe ~)TOF0 qae~a Bbl3BaH0 B3aHMoRe~CTBHeM K8a/I- 
pyfloJTbHbIX MOMeHTOB JIe~opMIlp0BaHHbIX 3J]eMeHTaDHblX nqeeK. PaccqtlTaHBI 3HaqenH~ c n ~ q .  
~J~~ ~ a n . ~  n cepe6pa.. 
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