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A new term is given in the energy expression for the elementary cell of a monovalent
metal under uniaxial tension. This term accounts for the interaction of the quadrupole moment
of the deformed elementary cells. The calculated values of ¢,; and ¢,, for potassium and silver
are given.

1. In the two previous papers of this series [1, 2] the author has described
a method for obtaining the elastic moduli ¢,; and ¢, of alkaline and noble
metals using the theory of monovalent metals developed by GomsAis [3 —8].
The method leads to an approximate expression for the energy of the Wigner —
Seitz cell of a monovalent metal subjected to uniaxial elastic deformation,
the elementary cell in this case being regarded as a rotational ellipsoid instead
of a sphere. The ratio of the ellipsoidal axes is obtained at the minimum of
the cell energy and this yields the Poisson ratio for the cell very near the
unstrained equilibrium state, while the compressibility, the unstrained equi-
librium energy and radius of the cell are known from GomBAs’s theory. Then
the elastic moduli ¢;; and ¢, can be calculated from these quantities.

GomBAs’s theory of monovalent metals accounts for the cohesion of the
alkaline, alkaline earth and noble metals on a purely theoretical basis, without
introducing any empirical or semiempirical parameter giving the energy of
the elementary cell as a function of the cell radius, the Wigner—Seitz cell
being approximated by a sphere of equal volume. The compressibility, energy
and equilibrium lattice constants of the cell can be evaluated for the equi-
librium case, when the cell energy is minimum, giving results in excellent
agreement with experimental values measured at an adequately low tempera-
ture or even extrapolated to absolute zero.

The metal is treated in GomMBAS’s theory as a system composed of a
positive metal ion lattice and an approximately free gas of valence electrons.
The valence electrons are treated in a modified lattice potential consisting
of the electrostatic potential of the ion cores and a nonclassical pseudopotential
being the result of the Pauli principle. In calculating the energy of an elemen-
tary cell it is now unnecessary to orthogonalize the eigenfunctions of the
valence electrons to those of the core electrons, since the pseudopotential
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automatically compensates for this, and thus one obtains the deepest possible
energy states for the valence electrons.

GoMBAs’s energy expression for an elementary -cell can be written as
follows:

U=UF+UY+H, (1)

where UE is the total self energy of the valence electrons, UY the total inter-
action energy of the valence electrons with the ion cores and H the interaction
energy of the ion cores.

UZ and UY can be written further as

UF = Ec+Es+Ey+Er (2)
and

UY =W+ Wi A-Wa+-Wy + Wi, (3)

where the indices are C for Coulomb-type, 4 for exchange, W for correlation,
F for zero-point and E for non-Coulomb-type electrostatic energy, and the
index K represents the energy resulting from the pseudopotential.

The interaction energy of the ion cores H is approximately zero for
alkaline metals, and for noble metals can be given as an average value, so the
elementary cells are to be regarded as electrically neutral in equilibrium con-
figuration, since they can be approximated by spheres. GoMBAs has shown that
in this case the calculations can be carried out using free-electron eigenfunc-
tions for the valence electrons (while as regards the ion cores the results for
free atomic ions calculated by the self-consistent field method were used).
Expression (1) was calculated by GomBAs for some monovalent metals at
different elementary cell radii. For alkaline metals U can be given in a simple
analytical form as a function of the cell radius:

U:__ﬂ_+_f'2_

r R (4)

(for ¢, and ¢, see [3]). For noble metals the numerically computed values of
U can be approximated analytically in the form:

where A, B and n are constants.

It must be stressed that the analytical forms [4], [5] are always connected
with complete spherical symmetry, i.e. the shape of the Wigner—Seitz cell
does not change. It follows that in calculating the energy of the elementary
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cell every elementary sphere has to be taken electrically neutral from the
outside, so there is no direct interaction term between different cells, as the
ion core interaction occurring in the unstrained symmetry conditions has been
taken into account already with the term H in (1).

Now we have the elementary cell energy as a function of the sphere
radius U(R), the equilibrium cell radius R, and minimal cell energy U, can
be obtained form the equilibrium condition

dU
—-=0. 6
iR (6)

For spherical symmetric deformation of the elementary cell (i.e. iso-
tropic compression or dilatation) the cell radius is

R = Ry(1 + A). (7)

Near the equilibrium state A is a small quantity, and the cell energy can be
given up to the second order as

R (42U
U:U+~i( 1 4. 8
7 9 dR2JR,, (8)

From (8) one gets for the compressibility » (see [1])

1 1 azu
T ©)
% 122R, | dR? [p,
or, introducing
V, = AnR;,
3
and
U,
=— 10
o v (10)
and using (5):
1 nw,
— =" 11
y 9 (11)
Thus
U=U,|1-- 9_/12}. (12)
2w, #

2. If a uniaxial tension stress deforms the Wigner—Seitz cell, the spherical
symmetry is lost and hence the elementary cell is more accurately represented
by a rotational ellipsoid than by a sphere. Let the two main axes a and b of
the rotational ellipsoid be given, by
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a = Ry(1 4 .1)

b= Ry(1 -+ ) (13)

and let the direction of the stress be the direction of the axis a.

To a first approximation (see [1]) the cell energy can be taken as
Uy = Ul — ¢, 47, (14)
where
3

= ——— (3+4p+8u?). 15
Py 10sz( -+ 8u?) (15)

A further term has to be introduced into the energy expression (14) because
of the change of the electrostatic interaction between the ion core and valence
electronic charge, resulting from non symmetrical deformation of the elemen-
tary cells:

U, = Uyl —o,.1), (16)

where

9

5 R, U,

D, =q,+ (1 u)3. (17)

3. In the case of uniaxial tension stress plainly the whole lattice will be
deformed. Every Wigner —Seitz cell or elementary sphere will change its
shape to a rotational ellipsoid of parallel rotational axis, and with this there
will be a change in the interaction energy of the ionic lattice. Let us assume,
however, that the ion cores themselves do not alter during the deformation
of the lattice and that even the eigenfunctions of the valence electrons remain
the same as in the unstrained equilibrium (this assumption is similar to that
used in the usual first order perturbation). The change in the ion core inter-
action energy can now be calculated as an electrostatic interaction between
the deformed Wigner —Seitz cells because the rotational ellipsoids are not
electrically neutral i.e. the deformed elementary cells have a linear electric
quadrupole moment.

It is known [9] that a rotational ellipsoid with axes a and b (a > b)
has a linear electric quadrupole moment directed along the ¢ axis if it has a
point charge e at the origin and a uniform negative charge density of

3e

d7ab®

%
The quadrupole moment @, is then given as
€ 5 1o
Ou=-(a*F) (18)

and all other @, are zero.
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Using (13) 5
Qu= ?eR‘é(l“M)A (19)

up to the first order in /.

Let V(r) be the potential in the crystal due to all such quadrupole
moments. Then, owing to this field, the energy of the elementary cell placed
in the origin will be

2
W — ngQ:_l_( Ll
(cell) 2

| 0 (20)
ox1 Jo
up to the second order.

The electrical potential of a linear quadrupole moment Q,; at a point
given relative to Q,; by (r, 9) is

Vo %(3 cos2®—1). (21)

Let there be a quadrupole moment (,; at the point (r, #) and a parallel quad-
rupole moment Q,; at the origin. The interaction energy of these two quadrupole
moments together can be calculated from (20) and (21). The half of this belong-
ing to each moment is:

W= B

e 1—10 cos® & + %5— cos? 29] . (22)

The interaction energy for one elementary cell is found by summing up
(22) for the whole lattice and using (19):

9 e R |
W=—eR (L et 3—

i Tj

(1 —10 cos? &, 4- 135« cos? 19,-) . (23)

Let the smallest distance between two atoms in a given lattice be 4,

=0, (24)
It is known that
o= PR (25)
where
B = (V3a)s for s.c.c. lattices
and
(97118
p=V2 _31 for f.c.c. lattices.
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Let us take
. 35
S= &5 (1—-10cos?d; + — cos? ¥, 26
‘2 i ( 3 (26)
and

27
n——?ﬂ . (27)

The U, in (16) has to be corrected further by W given by (23) and so the total
cell energy will be

U= Uyl + ¥4, (28)
where
¥, = ¢.—h(1—p)*(1+7S) (29)
and
4«82
R, U,

The energy term (28) has its minimum if

) _,
ou Ja l

and (30)
(ﬂ — 0.
8/1 A0
From (30) we obtain the equilibrium Poisson ratio as
5
14+ —xwyh(1+7S)
1 3
luO == — 7 5 . (31)
1— —»wyh(14-1S8)
12
Let us finally introduce another constant g as in [2], with
5 €
8= 12" " ors (32)
Then
1 14+4g%x(1+9S
= — g«(1+7 S) . (33)

4 1—gx(1+1S)

The elastic moduli ¢;; and ¢;, can now be obtained in the same form
as in [2], i.e.

o = 5i [4—8 gx(1+7S)] (34)
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and

cia= - [+ 4gx(1+)S). (35)

Eq. (26) was then calculated for s.c.c. and f.c.c. lattices.

The numerical results are given in Table I, where ¢;; and ¢;, were
calculated from Eqs. (34) and (35) assuming s.c.c. lattice for potassium and
f.c.c. lattice for silver. The results of Fucas’ calculation for potassium and the
available experimental values were quoted already in [1] and [2].

Table I
All data in 10" dynefcm?

K Ag
(34) 0.479 17.87
€, Fucas 0.440 —
experiments 0.457* 12.4
(35) 0.374 7.63
Cys Fucns 0.380 —
experiments 0.374* 9.34

* Measured at 73°K

As can be seen, the resulis are far better for potassium than for silver.
There is, however, a quite remarkable overlapping of the ion cores with silver
and so some of the basic assumptions of this and of the previous articles are
only rough approximations for noble metals, even when the cells are at the
equilibrium state. For unstrained equilibrium or for spherically symmetric
deformations these discrepancies can be corrected by using a more sophisticated
pseudopotential [10], but for nonspherically symmetric deformations the
present method is only adequate for alkaline metals, where such overlappings
are practically negligible.
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0 MOAVYJIE YIIPYTQCTH WEJIOUHBIX W BJIAIOPOJHLIX METAJLJIOB III.
". AHTAJ1

Pesiome

B nanHoil paOorte, saBnsiouieiica NpoLO/HKEHHEM NpeAbAyIMX ABYX crareil [1, 2],
BBIBEAEH HOBblI UJIeH BbIPAYKEHUST SHEPTHH OJIEeMEHTApHOH AUYeHKH OAHOBAJIEHTHBIX METAJIOB
B CJIyYa€ OJHOOCHOI'O pacTsKeHHsi. [10sABIEHHE 9TOr0 UJIeHa BbI3BAHO B3aHMOAEHCTBHEM KBaj-
PYMOJbHLIX MOMEHTOB Ae(OPMHPOBAHHBIX 3JEMEHTADHbIX AueeK. PaccunTaHbl 3HAUEHHS €y M €py
51 Kankus u cepebpa..
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