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Several methods for the determination of the trace of the product of an arbitrary num-
ber of Pauli matrices are established. Formulae are derived for the evaluation of various types
of products of two traces when terms of the type 0;,0;, . . . 0;, occur in bothof them. Expressions
are found for the product of two different traces and the square of the trace of an arbitrary
number of Pauli matrices. Similar formulae are obtained when Dirac matrices occurring as
N 9;A4; are considered instead of Pauli matrices. From this all previous results in which y; has
r=1
been considered separately are recovered. A useful identity for traces involving either Pauli or
Dirac matrices is given.

Introduction

One of the purposes of this paper is to reduce the problem of the calcula-
tion of the trace of the product of any odd or even number of Pauli matrices,
to one involving a smaller number — in the final stage, two or three — of
Pauli matrices. First the formulae for the determination of various types of
products of two traces when o, 0,,...0;, occur in both traces (summation
over the dummy suffixes i, is implied) are derived and then expressions for
the product of two different traces and the square of the trace of an arbitrary
number of Pauli matrices. Next, the five Dirac matrices y,, y,, v3, 74 and yp;
are considered simultaneously instead of the Pauli matrices and similar expres-

sions are obtained. More explicitly, the Dirac matrices occur in the trace as
5
product of an arbitrary number of elements likeZ A;y,;. From the results
i=1
obtained in this second stage all the results of the author’s previous paper [1],
A :
in which Dirac matrices occur in the form > Ay, and y, may occur separately,
=1
can be reproduced. An identity for traces involving either Pauli or Dirac
matrices has been established. This is found to be useful in the reduction of
the formulae and in demonstrating the equivalence of some of the results in
our deduction. In this connection it should be mentioned that CuisHoLm [2]
3 3
has evaluated the sums > 0,6005 . . . 040, and >...0r...8p(0/6u0%. . .04).
r==i r=i
CrisaoLM [2] has also solved the same problem for Dirac matrices. CAIANIELLO
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352 S. SARKAR

and Fusini {3] and KanANE [4] have investigated various aspects of the
problem of evaluating the trace of the product of Dirac matrices. The calcula-
tions are set out in three sections: Section I deals with the Pauli matrices
whereas Sections II and III with Dirac matrices. I have generally followed
the notation and method of [1].

1

All the formulae derived here are based on the following algebraic pro-

perties of Pauli matrices:
Ui"j“!‘gjo'i:zdija (1)

G;0; = € Oy + 6:'1": (2)

where €;;, is the Levi Civita tensor of the third rank. Let us use the abbreviated
notation

trace (A AyAy ... A,) = (A, 4,4, ... A,), (3)
A= Ai () (4)
A-B=A,B;. (5)

Summation over i = 1, 2, 3 is to be done. (Throughout this paper summation
is implied whenever repeated suffixes occur.)

Let us denote (4,4,4,...4,) by S, i.e.
S=(A4,4,4; ... A)). (6)

When n is even we already know the result

S:Z(—l)iAl-Ai(A2A3... A Ay ... AY). (7
=2

Forn odd we shall develop other methods for the evaluation of S, some of which
may be applicable for even n also.
We can write

S = ZAliAzj (UIGJA3 [N An) =
L
— Al‘Az(A3A4 PRI An) + iel‘jkAll' Azj(o'k A3A4 ... An) = (8)
1 n
= Ay A dady - Ay) —— Z (1) (A Ao
r=3
(AsA, ... A, Ay ... A).

This formula is valid when n is odd.
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TRACE OF THE PRODUCT OF PAULI AND DIRAC MATRICES 353

S can also be written in the form

SZZAlfAQjA3k (UiGjUkA4A5~~-An)- (9)

Lk

The summation here can be split up in the following manner:

2=+ T+ 2+ >+ 2 (10)

i,jk i#j#k i=j#k i=k#j i#j=k i=j=k

Application of Eq. (10) provides the third formula for S, which is valid for
any n, even or odd:

S=4d,-Ay(A,A, ... A,)+ Ay- Ay(A1A, ... 4,) —
' 1 (11)
— A Ay(Ag Ay .. AL+ ? (A1 4,45)(A4,45 ... A,).
Let us now discuss some relations involving the product of two traces. We have
n P
(0, A\ Ay ... Ao, AL A} ... A) = ‘:'(_1)’““1 (4,45 ... A Ay, ... AY) -
i=1
(12)

(A, A A ALY,

Here n is odd and m may be either even or odd. Knowing that

S-3.3. 13)

W=
We obtain with the help of Eqs. (1) and (2)

T,=(0;0; 4,4, ... A ) (0,0, A1 A5 ... A}) =

' ;g . g , 14
=3(4,4, ... A)YA1A;...A,) —2(0, A A, ... A Yo, A4S ... AL). (14)

By repeated application of Eq. (14) we get
Ty = (0,000 4,4, ... A)o0,0;0, Aj A5 ... A}) = (15)

= (A Ay . ANALAL . AT Ay Ay . Ao A Al AL).
In general, if we write

Tm+1 = (0’,'1 Cig - .- Oip;i1 A1A2 [P An) . (O’,‘l Oig v v« Oipmiy AiA.:, ‘e A;n) =
= (A Ay o A (AL Ah . A £ Bloi A Ay . A (0 AL A Ay) (16)

then
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Em+y = 3Bm - 13m+1 = % — 2P, (17)
and we easily obtain
m—2
B = 3 (—3) —2(—3)y"" (18)
r==0
and
X = 1'113m' (19)

In Eqgs. (14), (15) and (16) both n and m can be either even or odd. With the
help of Eq. (12) we obtain

(070, Ay Ay ... A)(0i0; A[ Ay ... Al) = 3(A Ay .. YA} A5 . ..) —
—22 YAy Ay Y (A A A AL ) — A, A(A AL )]

Here n must be even but m can be either even or odd.

In Eq. (20) the notation of double primes over the trace (4,4,...)"
implies that the two unprimed Pauli matrices (in this case 4, and A4;) which
are now present in the other term, are now absent from the trace (4,4, ...).
This notation in the general form, with any number of primes over the notation
of trace, will be widely used in this paper.

Comparing Eqs. (14) and (20) we have

(0; Ay A, .. A)(o; A[ A} ... 2( 1)+ (A4, )X
(21)
X[(A, A A] Ay .. ) — A, A (A A5 .. )]

When n and m are both even, Eq. (12) is not applicable and must be replaced
by Eq. (21).

: A particular case of Eq. (21) is

(0; A AN o: Ay Ay ... AL) =2(A, Ay AT As. .. ALy —2A, - Ay(A{ A5 ... A).(22)

If we use the relation (7) in the left hand side of Eq. (22), taking m to be odd,
we obtain Eq. (8) for determining S. With the help of Eq. (1) we can write

Ay...A4)=2 YA A(AsAy . Ay Ary . Ap) —
(4, ) g i 14in ) (23)
— (AgAd, ... A1A4))
where n is odd.
From Eq. (23) we obtain the identity
n
2( 1) A, A (Ay Ay ... Aj Aiyy ... A) = 0. (24)

I
»N

i
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TRACE OF THE PRODUCT OF PAULL AND DIRAC MATRICES 335

This identity proves to be very useful in reducing the number of terms occurring
in the expansion of some traces.
Through successive application of Eq. (12) we can write

(010,00 Ay Ay .. A) (0,00, A A5 ... ALy = T(o; 4,4, ... A4,)

(25)

(oo di Ay Ap) 4 3 (=D (A A, ALY S OpP(A A A A A ALY,
P

inj>k

In Eq. {25) and elsewhere, P is any permutation of the suffixes (in this case

i,jand k), and 6, = 4 1 depending on whether P is an even or odd permuta-

tion. The notation 3 denotes summation over all the possible permutations.
P

Now it can be shown that

0pP(A; A, A, AT A, ...)=
gl’ ( S Skl Gt ) (26)

=6([AiA; A~ A A; A+ Ay A, Aj—A;- A, A 4] 45. ).

Eq. (25) combined with Eq. (15) enables us to establish that
’ 7 ’ 1 - i+f k 4
(A Ay ANATA;. AR = —— 3 (1) (A4,4,...4,)"-
6 i>j>k (27)
- D 0pP(A; A;A AT AL AL
P

With the help of Egs. (27) and (26), and taking n = 3 and m as either even
or odd, we obtain formula (11) for the determination of S.
Eq. (27) can also be rewritten in the following alternative form:

(Aydy. . A NATAS. A= (— 1)k (A4,4,...4,)" -

i>juk
SN Ay A A A Ay A A A A A A Ay D)
r>s
=— 3 (1)K A4,4,.. 4,)” -
i>j>k (29)
(L)t (A A4y ALY S 0p P[A; - AT Ay AL A A
r>s>t P
The general relation (29) leads to the particular relations
(A, Ay A)(A A} ) = 50)

==2 (1) X 0pP Ay AL,y AA, - A)(A1 Ay A7)
P

r>s>t
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(A, Ay AN (AL ALA)) = 4 30 P4y AjAy- AL, A]]. (31)

(Ady. A= 3 (1)K, 4, A,)" -
i>j>k (32)

2 ( 1 res+t >6 P[A . A A A AI\ 1](A1A2...An)/”.

r>s>t

In Eqgs. (29)—(32) permutation P of the suffixes r, s and ¢ is implied.
By putting 4,, 4,, A, = = 01,0503 in relation (30) we get another formula
for the determination of S:

iy A) = 3 (=1 A AAN A Ay A" (33)

2 r>s>t

In Eqs. (28)—(33), both n and m must be odd.

We have now established four equations (7), (8), (11) and (33) for deter-
mining (4,4,...4,).

For n = 5, using identity (24), we get according to both Egs. (8) and (11)

Ss = (A1A2A3A4A5) = Al ' Az(A3A4A5) + A2 ' As(A1A4A5) - (34)
- Al : Aa(A2A4A5) + A, - As(A1A2A3) .

Eq. (33) gives 10 terms for S;, which can be reduced to four terms with the
help of the identity given by Eq. (24). For other odd values of n, Eqs. (8)
and (33) give more terms than Eq. (11).

S,, for even values of n are found from Egs. (7) and (11). For n = 6
we get from Eq. (11)

S, = (A, A,4,4,A.Ay) = A, - A(A, A AA) + A, - A(4,4,4,4,) — (35)
A, A(A,AAA) A+ — (A A, A,)(A,4,4,).

Eq. (11) gives as expression for S, shorter than that of Eq. (7) and is thus
most convenient for determining S, for both odd and even values of n.

1

The notation and method of Section I are mostly followed in Sections
II and III also. For Dirac matrices, the anticommutation relation (1) is

replaced by
Yivi 7"7:‘—25['-; 36
/ / 7
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TRACE OF THE PRODUCT OF PAULT AND DIRAC MATRICES 357

where the suffixes of y matrices can be 1, 2, 3, 4 and 5. We use the abbreviated
notation given by Eq. (3), except that here

A=Ay, (37)
A-B=A,B,, (38)
Vs = V1 V2 V3 Vs - (39)

Summation over i =1, 2, 3, 4 and 5 is to be done.
With the help of relation (10) we can write

S=(4,4,... A, = Z-AliAQjA:%k (Vi?j?z;A4A5- coAy) =
bk (40)
= A;-Ay(A A, ) F Ay Ag(A Ay ) — A Ay(AA, L) —

1
- ? Eijklm Ali A2i Aak (71 Ym A4 As' ' 'An) ’

where €, is a Levi Civita tensor.
It can be easily shown that the last term of Eq. (40) is

1 "
o = CUTAAAAA) (A5 A"
§>r

This is the 2, part of 2, and can be rewritten in the form (as in [1])

2 = 2 Ay Ay Ay Ay (yivivivids Ag .. Ay) =
i#j#k i#j#k - ., - (41)
= 2 + 2+ 2+ 2
iFjARAEL  iEER AR £k
=i d=j 1=k
Now
4 = Cijuim Ay Agj Ay Ay (v As A - - - A,). (42)
i#j#RF#L

With the help of Eqs. (41) and (42) we obtain the second formula for S:
S = ([A4;, - 4yd, A, — A, - A3 4,4, + 4, - A4, A, +
+4, - A dydy — Ay - A A Ay + Ay - A,4,4,]
1 43
Ady o ) =~ (Ao A d) - (A, . 4,) — (43)
1 n
—— 3 (—1)(414,4;4,4,)(A;4q ... A, A4, A)).
r=5
Proceeding in a way similar to that used in deriving Eq. (41), we obtain
2= 2 2+ 2+ S 2 (44)
IARAL iR ARRAm RERAL AL TR AT
m= =] m= =
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358 S. SARKAR

Applying relations {44) and (10) we have the third formula for S:

S= AliAzj Agy Ay Ay (?i?’j’}’k VivmAgAq, ... Ay) =

= ([A,- A, 434y — A, A4, A, + A, A A A+ A A, 4,45 —

_— Ag'A4A1A3 "{'_ A3°A4A1A2] ASAB .. .) —_

1
— T(A1A2A3A4)(A5Ae -+ ([“—Al'As {AzAsAa} +

(45)

+ A,y A; {A1A3A4} — Ay A, {A1A2A4} + A4, {A1A2A3}] X

1
X Agdy- ) ¥ (Ao A A) (A, ).

In this equation terms of the type {A2A3A4} stand for

(A A:A,) = A, AA, — Ay Ad, + Ay A Ay — Ay - A4, (46)

Using relation (10) we arrive at the following result for the product of two

traces:
(vivivedi s ... 4,) (VerVkA{Aé oAy =
=3(yyi A, Ay A Nviy; AT AL ALY+

+ 13(y; 414, . .. Ay ATA; ... AL)—15(A4,4, . ..

(A Ay ... AL).
By repeatedly applying Eq. (47) we obtain

ivivini A As - A) iyiveyi AT Ay - Af) =
=22(y;y; 4,4y ... A,) (viv; A1 A5 ... AL) +

24y Ay Ay A (7 AL Ay AL)—45 (A, A, ..

(4745 ... 4L).

Givivvi¥mAi Ay o ANV vy vm AL Ay - AL) =
=90(yiv; A1 Ay .. A) (yiy; AT A5 - An)
+ 241 (y; Ay Ay . Ap)-(y AL A - .. Ap) —
— 330 (A, Ay ... A) (A A ... AL).

In general, proceeding in this way we can evaluate

(YaVis - - Vin A1 Ay ..} (¥ in"‘yl'nAl,A‘:’."‘)'

P

tarwm H icae 30, 197]

5
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TRACE OF THE PRODUCT OF PAULI AND DIRAC MATRICES 359

For odd values of n we have a relation similar to Eq. (12):

(yidi Ay ... A)(vi A1 A3 ... AL) =
o o (50)
= ()N A Ay Ay Ay ANAA A A).
i=1

Corresponding to Egs. (20) and (25) we have the relations

(riviAdy As ... Ap) (iv; A1 Az ... AL) =
=5(dy Ay . AN (A7 Ay A —2 3 (—1)( A, 4, . A,)" X

i>f

g , . g , (1)
X [(A;A; A1 Ay ... Ap)—A;- A (A7 A5 ... AL)]
and
ivive Ar Ay - A) iy v A{ Ay - AR) =
— 13 (i Ay Ay . A) (i Af Ay A) + (52)
+ 3 (F1)yHRA4,4,. . A" S 0p P(AA;A A1 Ay .. A7)
i>j>k P
From Egqs. (52) and (47) we have for odd values of n and m
(viviAy Ay oo A) (vividiAs ... Ap) = (53)
_ 1 S (—1)HKA4,4,. . Ap)” 30p P(A;A;4,A14;. . . AY)
i>j>k P

+5(Ay Ay A) (A A, .. AL).

Relation (51) can be applied when either n or m is even. In a similar manner
we obtain

(Yi)’j?’k?’IAlAz s Ap) (_Vi)’j)’k?’lAi A;. . Ap)=
=— 442‘(—1)i+f(A1A2. . .An)”([A,-Aj—A,--AJ-]A{AQ AR+

i>j

3 (DR Ay A X (54)

i>j>k>1
X 30pP(d;AjA A A 45 ... AL) +
P
4 65(A, Ay ... A)Y(A] A5 ... AL)
and
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360 S. SARKAR

Giviveviym A Ay o A) iV v v vm AL A - Ap) =
=24 (yiy; A1 Ay - A (yiv; AL Ay . A) +
4241 (y; Ay As. . A (y; A Ab. . Ap)—120(4,4,. . . A,) ¥
X(ALAy ... ALY +22 N (—1)ittKA A, A)" X
STk (35)
x%ﬁépP(A,.A,A,{AiAg...A;n) —

— \ (_1)i+j+k+l+m (A1A2 . An)w” %

|
i>j>k>I>m

X S 0pP (A Aj A A Ay AL A} .. A .
P

Comparing Egs. (48) and (54), we have for even values of n and m the result

(i Ay Ay .. A (i A1 4y ... Ap) =
= 514; 2 (_1)i+j+k+l(Al A2 . An)unx (56)
i>j>k>1

X 3 0pP (A, A Ay A A} A} .. Al).
P

For this case where n and m are both even relation (50) is not applicable
In Eqgs. (52), (54) and (55) permutation P of the suffixes i, j, k, I and m is
implied.

Similarly from Eqs. (49) and (55) we obtain for odd values of n and m

(A Ay .. A) (AL Ap ... AL =
1 .
—_— e __I l+j+k+1+mAA "'An I'II/><
120 i>j;:k2>‘l>m( ) ( e ) (57)

X 3 0p P (A A; Ay Ay Ay A Af . AL)
P

Putting n = m and A] = A4; we can obtain from Eq. (57) a relation for
(A, Ay .0 A) [2]:

Taking 4, A,, Ay, Ay, Ay = Y1, V3, V30 V4> V5 and n = 5, we obtain from
Eq. (57)

S=(A,4,...4,) = (58
1

—_— 2‘ ("1)i+j+k+l+m(AiAjAkAlAm)(AlAg- ] .An)/uu.

4 i>j>k>I>m

Acta Physica Academiae Scientiarum Hungaricae 30, 1971



TRACE OF THE PRODUCT OF PAULI AND DIRAC MATRICES 361

In a manner given in Section I, taking n = 3 and m even, we obtain from
Egs. (52) and (47) the first relation (40) for S. Similarly, taking n = 4, m odd
in Eqgs. (54), (48) and n = 5, m arbitrary in Egs. (55) and (49) we derive the
second and third relations (43) and (45), respectively, for S.

Eqs. (40) and (43) both give the same number of terms in the expansion
of S for n = 7 and 9. On the other hand, (45) gives 11 terms for n = 7. But
these can be reduced to 9 terms by using the identity (24), which is also valid

5

when A stands for > Ay, Forall values of n > 13 Eq. (45) gives the smal-

lest number of terms. =}

I
From the results of Section II we shall now 00 on to derive similar

results to those obtamed in [1], in which A4 stands for 2 A;y; and the dummy
suffixes in terms like

(YirVia - - - Vin Ay Ay Y (Vi Via - - - Vin Ay Ay - . 2)
are restricted to the values 1, 2, 3 and 4. To do this we split the summation
over the dummy suffixes occurring in Section II in the following manner:

4
> — 2 + terms corresponding to i = 5 only.

By following this prescription we obtain from Eq. (40), taking 4, = y;
S'=(ysAs Ay . . Ap) = Ay- Ay (ys A3 45 ... 4,) —

)
B (1) (g dy Ay A, A) (A Ay - AL) (59)
4‘ S>r
Assuming that in Eq. (43) 4, only involves y; we can have the relation
= (y;[4y - dpdy — A, - 434, + A, - A A ] A A5 )
(60)

1 o i
b (1), A A AN A A Ay Ay ).

>
Similarly, assuming that in Eqs. (43) and (45) A4; only involves y;, we obtain
third formula for S':

S = (ys{A4, AsAyAy — A, A4, A, - A A A4y -+
+ Ay Ay A A, — Ay - A A Ay + Ay - A A A] X
1 61
X Ay ) = (A A ) Ay )+ (61)
1
+ Z (rs41A42434,) (445 - - ).
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Taking n and m to be even and odd successively, we get from Eq. (47)

(vsvivyAidy - Ap) (s iy, A1 As - Ap) =
=4(p; Ay Ay .. ys AT A} ) — 4 (A Ay . N A A5+ (62)

+ iy A Ay - )iy A Ay ),
Wivive Ar Ay - A) iy v A1 A5 .. AL) =

=6(ysyi Ay As .. )(vsvi A Ay .. ) + (63)
+10(y; A1 Ay .. ) (yi A1 45 . ).

and

Similarly from Eq. (48) we obtain

Vivivevi Ay Ay - A) (vivivevi A1 A; .. Ay) =
=10(y;y; 4, Ay .. ) (yiv; A1 Az .. .) + (64)
+O6(ysyiviAr Ay .. ) (ysyiv; AL Ay .- )

and
(vsvivive Ar Ay .- A (rsvivive A1 Ay - A) =
=10(ysy;i A, 4y .. .) (ysyi Az Al .. .) + (65)

+6(yiAidy .. ) (yiAr4; .. .).
In an identical manner Eq. (49) yields

VsyiviviviAy Ay oo A)(vsvivivivi AiAs - . Ap) =
=40 (y, A, dy. . Yy Ai Ay . ) —40(A4, A,. . Y A[ A5 .. )+ (66)
+ 16 (yiy; A, 4y .. ) (viviAiAs - .)

and,
VeV vi¥mAs As - )YV ve Vi ¥m AL Ay ) =
=120 (y;y: A1 Ay - ) (vsvi A1 Ay .. ) + (67)
4136 (y; A, Ay .. ) (p; A1 Ay .. .).
In general
(Vi - Vin Ay As - ) Wi Vin - - - Vin A1 A} . 0)
and

(Vs¥u iz - - Viny A1 As - ) VsV Via - - Vi A1 4y - 1)
can be easily evaluated, in a similar way, from the expression for

(yirVig - Vin Ay Ao o ) Vir Vig o - - Vi AL A5 . L)

in which case 4’s and summation over dummy suffixes are defined in the
manner of Section II.
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These general results an not treated in [1].
Relation (50) of Section II remains unaltered in this Section. Eq.(51) yields

iy Ai Ay - Yoy, AL Ay . ) =4(A A, ) (A7 45
2 (1) Ay Ay Y (A g AT A ) — Ay AL A A )]

i>j

(68)

From Eq. (53) the following relation is obtained:

(avidy As .. Y7y A1 Az .. ) =

- (69)
1
= 2 (- (A4, A4,..)7 ZépP(A,ASA,A{Aé o)
r>s>t P
Eq. (56) leads to
(s A1 Ay ... A (vs A1 43 .. .) = > (— 1)l A Ay )" X
i-j>k>1 (70)
X3 (LA ALY 3 0 PLA ALA AL Ay A Ay AL
ros>t-u P

In Egs. (69) and (70), permutation P of the suffixes r, s, ¢ and u is implied.
Putting n = 4 and A, A,, A3, Ay = vy, V4. Va0 ¥4 in Eq. (70), we obtain

S = (ys4,4,...) = 3 (1) A, A A, A) (A Ay ) (T1)

1
4 5%
Taking A/ = A; and n = m, we can obtain from Eq. (70) an expression for
the square of S’. 5
In identity (24), where in general 4 = > Ay, for Dirac matrices, if we
i=1
assume that 4, only involves y;, then Eq. (24) reduces to the following
identity:
g .
S(-1) A A(AyAy oo Ay Aiy o Ayys) = 0. (72)

{=

[X]

In this Section all the relations except that given by Eqs. (59) and (67)
rea derived in [1] in a different manner. It is found that among the various
formulae for determining S’, that given by Eq. (61) is the most convenient

for n > 8.
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O CJIEAE TIMPOUM3BEOEHWA MATPULL TAYIJIMM 1 IHPAKA
C. CAPKAP

Pesiome

TIpenoxeno HeCKONIbKO METOAOB U1 ONpeeNeH st Cllefa MPoH3BeeHHs Moforo uucaa
matpuy, [Nayad. Jdadol GopmyJisl AJs1 BbMHC/ICHHST NPOU3BeJIEHUIT NBYX CJIER0B Pas3IMuHOTO
THNA B CNlyyae, KOrjaa B 000HX HMEIOTCS WJIeHbl THNA G, Ofy « .. . . . Oy BLIBelIeHBI BoIPAyKeHHsT
AJ151 TPOM3BE/IEHHIT ABYX CJI€l0B W KBAAPATa CJefa B C/Nyuyae NMPOM3BOJBHOTO YHCJIA MaTpHL,

IMayau. MopoGHbie Gopmynel MOayUeHB! W 1Nt MaTphi JlHpaka, mocTpoeHtsl Kak X y;4; Bume-
i=1
cTo marpun Ilaynu. V3 Hux Taioke MOXKHO TOJIYYHTh BCE€ HAuIH Opejbiiyuiiie pe3yJbTaThl,
KOI'aa e y;, GbUIH pPaCCMOTPEHLI B "OTAENBLHOCTH,
BbiBeteHO 0ueHb TOJIE3HOE TOKIECTBO AJIsi CIIC0B, cofleprkawux aubo matpuus [Maynn,
anbo matpuubl Jupaka.
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