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The general izat ion of the  Lorentz t ransformat ion  to regioos where l ight  is propagated 
inhomogeneously is given and  i t  is shown tha t  the  Lorentz  priociple can be main ta ined  in 
i ts  ordinary form provided the  Lorentz t rans format ion  is taken in its more general forro 
fo rmula ted  for such regions. The well-known eqttations for the geodetie linei in a gravi ta t ional  
field are obta ined from the Lorentz principle thus  generalized. 

Generalized definition of the Lorentz transformation 

w 1. In  this section we shall fo rmula te  the Lorentz  principle for  regions 
of space where light is p ropaga ted  inhomogeneously.  We shall assume, however,  
t h a t  e v e n i f  the  propaga t ion  at  large is inhomogeneous still in suff icient ly 
small regions the  propagat ion  remains homogeneous.  Thus we suppose t h a t  a 
l ight signal s tar t ing f rom a point  P with coordinates  r at  the t ime t arrives 
in a point  Q with coordinate  vec tor  r + p at  the  t ime t + T so t h a t  

where 

x = r , t  

~g(x) ~ = 0 ,  

and ~ = p, r 

(I) 

provided  the components  of ~ are suff icient ly small so tha t  the  change of 
g(x) while x changes by  ~ should be negligible. 

A s a  first  step we generalize the Loren tz  t rans format ion  to  the case of 
inhomogeneous propaga t ion  of light. 

Le t  us consider to  s ta r t  with an a rb i t r a ry  t rans format ion  of coordinates.  
Suppose the  coordinates  x and ~ refer  to a sys tem K. We introduce a sys tem K '  
in whieh the  four  coordinate  vectors  are given by  

~' + ~ '  = f ( x +  ~),  (2) 

where  f has four  components  f , ,  r = 1, 2, 3, 4 and all four components  are 
supposed to be slowly vary ing  funct ions of  their  argument .  More precisely 
we shall consider only such values of ~ for which we can write in a good 
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approximat ion 

f(x + ~) = f(x) + ~ 3f(x) 
0x 

Writ ing more explicitly 

Of~(x) _ S,~ v, # -- 1, 2, 3, 4 .  

The t ransformat ion  (2) can also be wri t ten as 

where 

~' = S~ and x' = x + t~, (3) 

-~ f(x) -- x .  (3a) 

The t ransformat ion  (2) should possess a unique inverse and therefore we 
suppose 

det  S @ 0. (4) 

w 2. The propagation o f  l i g h t  in the vicini ty  of the point P can thus  
be expressed relative to K '  expressing (1) in terms of the  t ransformed variables. 
Neglecting small terms we f ind thus  

~' g'(x') ~' = 0 ,  
where 

g'(x') = S-~ g(x) S-L 

(5) 

(6) 

There exist coordinate t ransformat ions  which leave the  components of g(x) 
unchanged.  We consider these t ransformations as the  generalized Lorentz 
t ransformations.  Thus a generalized Lorentz t ransformat ion  ~ / / (x ,  t~) is 
expressed with  the help of a shift  ? and a matr ix  M such tha t  

x' = x -[- ~ (7a) 
and 

Mg(x + t~) M = g(x). (7b) 

I t  must  be emphasized t h a t  the  t ransformat ion  ~/~ does not  change the  
components  of g(x) in the f ixed point  x but  it may  change the values g (x + ~) 
in the vicini ty  of x and therefore it  m a y  change the derivatives of g(x) in x 
(see Par ts  IV and V) 

The t ransformations defined by (7a) and (7b) forro a s t ructure wi th  
the following properties. Consider two t ransformat ions  ~//Ÿ ~ ~1) and 
~f~ (x �91 ~1, P~2), we have thus  

Mg(x + ~1)M = g ,  (a)~ 
(8) ! 

Ng(x + t~1 -4- 72)N = g(x + ~~). (b)J 
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M u l t i p l y i n g  (8b) f r o m  t h e  le f t  b y  ~ a n d  f r o m  t h e  r i g h t  b y  M we f i n d  

(�9 g(x + ~1 -~ ~tz)NM = g(x).  

T h u s  NM a n d  ~t 1 + ~t 2 de f ine  a t r a n s f o r m a t i o n  ~ ~ ' ( x ,  7 1 - ~  ~t2) a n d  NM is 

t h u s  i t s e l f  a L o r e n t z  m a t r i x .  

T h u s  L o r e n t z  t r a n s f o r m a t i o n s  c o n s e c u t i v e l y  a p p l i e d  g ive  a g a i n  L o r e n t z  

r a n s f o r m a t i o a ~ ,  h~w~ver ,  a g i v e n  L o r e n t z  t r a n s f o r m a t i o n  re fe r s  t o  t h e  f i x e d  

p o i n t ,  s a y  x a n d  p r o d u c e s  a sh i f t  t o  a n o t h e r  p o i n t ,  s a y  x ' .  T h e r e f o r e  a p p l y i n g  

a L o r e n t z  t r a n s f o r m a t i o n  w h i c h  p r o d u c e s  a sh i f t  x -+ x '  we can  a p p l y  on  t h e  

t r a n s f o r m e d  q u a n t i t i e s  on ly  such  f u r t h e r  t r a n s f o r m a t i o n s  w h i c h  p r o d u c e  

sh i f t s  f r o m  x ' ~  x " .  T h e r e f o r e ,  i f  x =/: x ' ,  t h e n  t h e  t w o  t r a n s f o r m a t i o n s  a re  

o f  d i f f e r e n t  c a t e g o r i e s .  T h e s e  t r a n s f o r m a t i o n s  fu l f i l l  t h e  p o s t u l a t e s  of  a p a r t i a l  

a l g e b r a i c  s t r u c t u r e  a n d  m a y  b e  d e n o t e d  a s e m i - g r o u p . *  I n  t h e  case  of  a 

h o m o g e n e o u s  p r o p a g a t i o n  of  l i g h t  t h e  d e p e n d e n c e  o f  t h e  t r a n s f o r m a t i o n  on 

t h e  c o o r d i n a t e s  o f  t h e  p o i n t s  u p o n  w h i c h  i t  is to  be  a p p l i e d  d i s a p p e a r s  a n d  

so t h e  s e m i - g r o u p  d e g e n e r a t e s  i n t o  an  o r d i n a r y  g r o u p  - -  in  t h i s  w a y  t h e  

s e m i - g r o u p s  o f  L o r e n t z  t r a n s f o r m a t i o n s  d e f i n e d  for  t h e  i n h o m o g e n e o u s  case  

d e g e n e r a t e  i n to  t h e  L o r e n t z  g r o u p  i r  t h e  i n h o m o g e n e i t y  d i s a p p e a r s .  

w 3. T h e  g e n e r a l i z e d  L o r e n t z  t r a n s f o r m a t i o n  can  a lso  b e  i n t e r p r e t e d  

( l ike  t h e  m o r e  spec i a l  t r a n s f o r m a t i o n )  t o  g ive  n o t a  c o o r d i n a t e  t r a n s f o r m a t i o n  

b u t  to  d e s c r i b e  a d e f o r m a t i o n  o f  some  p h y s i c a l  s y s t e m  ~ .  S u p p o s e  t h u s  

t o  be  a p h y s i c a l  s y s t e m  in t h e  v i c i n i t y  o f  x = r ,  t;  v a r i o u s  p o i n t s  ~ l ,  ~32 . . . .  

o f  ~ can  be  d e s c r i b e d  b y  f o u r  v e c t o r s  

x + ~ ~  ~ = 1 ,2  . . . . .  

T h u s  t h e  p o i n t  ~~ as r e p r e s e n t e d  in  K m o r e s  a l o n g  a n  o r b i t  w h i c h  a t  a t i m e  

t + �9 has  a d i s t a n c e  ~(~) f r o m  r. 

T h e  d e f o r m e d  s y s t e m  ~ *  cons i s t s  o f  p o i n t s  ~* ,  ~ *  . . . .  w i t h  c o o r d i n a t e  

v c c t o r s  

x * q - ~ *  ~ = 1 , 2 , . . .  , 

* The expression semi-group is used somewhat loosely. In the usual sense the structure 
we use is that known a s a  BRANDT gruppoid with unit element, i.e. a special type of partial 
algebraic structure. Ir ah algebraic structure is pardal,  then the product ab does not exist 
for ah arbitrary pair ab of its elements. In our case of the semi-group, if a, b, c ate any three 
elements of it and ab = c holds, then any of the elements a, b, c is uniquely determined by the 
other two. Ir  ab  and bc exist, the product abc  may be written without parenthesis, thus the 
associativity law holds. Although in the case of BRANDT gruppoid every element has uniquely 
determined right and left unir elements, and conversely for two unir elements el, e2 there 
is an element whose right and left unit elements a r e e  t a n d e  2, in our case every element 
in the gruppoid has the same left and right uuit elements. The existence of the inverse element 
is needed too. Gruppoid was introduced by BRANDT. ( H .  BRANDT: "• die Axiome des 
Gruppoids". Vierteljahrsschrift der Naturforschenden Gesellschaft in Zª LXXXV 
[19~0], 95--104.) 

I am greatly indebted to Mr. J. D• for having put at my disposal the above inform- 
ation. 

2* Acta Physica Academiae Scientiarum Hungaricae 21, 1966 



20  L. 3~,NOSSY 

where 

and 

x* = x + tt, (9a) 

~* = M~~ ~ = 1 , 2 , 3 , . . .  (9b) 

and M and ~ are the parameters of a transformation M (x, ~) which gives 
the deformation ~ -+ ~* in terms of representation in K. 

The Lorentz principle can now be formulated for regions with inho- 
mogeneous propagation of light as follows. The laws of  nature possess such 
forms that provided ~ is a real system obeying certain laws, then any Lorentz 
deformed system ~* obeys the same laws. 

Furthermore we may add: i f  a system is accelerated adiabatically then 
it changes its configuration a s a  result of the acceleration into a Lorentz deformed 
configuration ~* = M (~).  

The above formulation of the Lorentz principle is identic in form to 
former formulation, however, its eontents ate enlarged as it is supposed to 
be valid to the generalized family of Lorentz transformations IVl (x, ~). 
We show in the following that  the latter form of the principle leads to results 
which ate obtained usually from the general theory of relativity. 

w 4. I t  may appear a s a  deficiency of the Lorentz transformation as 
defined above, that  it can be applied to small systems only, i.e. to systems 
which oecupy such parts of space in which effeets of the inhomogeneity of 
propagation of light can be neglected. However, this apparent deficiency is 
n o t a  real one, ir simply reflects upon material properties of physical systems. 

Indeed, considering a system which is so large tha t  the propagation of 
light inside the space oceupied by the system is inhomogeneous to a noticeable 
extent, then gravitational stresses will appear in the system and its state of 
equilibrium will be determined part ly by the gravitational field, but also by 
the material properties (compressibility, rigidity, etc.) of the system. I f  we 
shift such a system to different parts of space, then ir will readjust itself to 
the field of the new surroundings and the change of configuration which thus 
arises depends very much on the actual physical properties of the system. 
I f  the Lorentz transformation depends only upon the distribution of the 
gravitational field, then ir cannot possibly describe the material changes of 
a large system the changes of which depend -- apart from the gravitational 
field -- also upon the material properties of the system. We see thus, that  
ir would be unreasonable to expect the existence of a general transformation 
which describes the changes of large physical systems when moved about in 
gravitational fields -- since changes thus arising depend very much on the 
actual material properties of the system. 

The fact that  Lorentz transformations ate suitable to express the changes 
small physical systems suffer when transported adiabatically into regions in 
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which the  gravi ta t ional  field differs, shows t h a t  the  react ion of micro-s t ruc tures  
upon  gravi ta t ional  field obey general laws. 

We have here an analogy of  the c i rcumstance  t h a t  the Loren tz  deform- 
ations described by  the  special theory  of re la t iv i ty  are independent  of the 
mater ia l  propert ies  of the  systems provided  the interferences causing the 
deformat ions  are adiabat ic .  

w 5. The Lorentz  t ransformat ions  IVl (x ,~ )  can be divided into two 
kinds: 1) t ransformat ions  with ~ = 0, the l a t t e r  m ay  be denoted  local trans- 
formations, as they  produce  no immedia te  shift of the system ~ .  2) We m ay  
consider t ransformat ions  M 0 (x, ~) which produce  a parallel shift, i.e. a shift, 
with as li t t le changes apar t  f rom the parallel displacement ,  as it is possible. 

Concerning the local t ransformat ions  we find f rom (9a, b) t h a t  t hey  
contain matr ices M obeying  

Mg(x) M = g(x) .  (10) 

Thus  the matr ices of  the  local t ransformat ions  are exac t ly  those which ate 
obta ined  for  the  case of homogeneous propagat ion  of light, these matr ices  
were cons ide red  in Pa r t  I -- we explained there  t h a t  the Loren tz  principle 
can be supposed to be valid for such t ransformat ions .  

The local t ransformat ions  in dis tant  points have,  however ,  different  
forms.  C o n s i d e r a  number  of locations xi, x2, x 3 , . . . .  Let  us denote  

g(xk) = gk. (10a) 

Fu r the r  we write Mk for the t rans format ion  mat r ix  relat ing to t rans forma-  

t ions in x~. Thus we suppose 

~ ~ g ~ M k = g k ,  k = 1 , 2 , 3 .  (11) 

The  matrices M1, M 2 . . . .  define local t ransformat ions  near  x 1, x 2 . . . .  A con- 
nect ion between the matr ices  Mk for different  k can be found. Denote  

gF~ g~2 = Slk, (12) 

or ahernatively, ir Slk thus defined possessed complex  elements,  then  (12) 
can be replaced by matr ices  defined in equat ions  (9a), or by those defined 
by  (9b); the la t te r  have  real elements only and behave algebraically similar 

to  the  matrices (12). 
We may  pu t  

Mt ~ = S~1M t Slk. (13) 

In t roduc ing  (13) into (11) we find with the help of (12) 

1~1 gl MI = gr. 
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Thus re la t ion  (13) can be t a k e n  as the  t r a n s f o r m a t i o n  fo rmula  be tween  
matr ices  of  local t r a n s f o r m a t i o n  in different locations.  

w 6. The  matr ices  Slk can be t a k e n t o  define paral le l  shifts. The  Slk are 
matr ices  corresponding to Loren tz  t r ans fo rma t ions  producing  shifts f rom 
xk -+ xi. I n d e e d  with  the  help of  (12) we obta in  

Slk gl Slk = gk" (14) 

R e m e m b e r i n g  the  defini t ion (10a) and compar ing  (14) wi th  (7b) we see t h a t  
Slk is indeed a m a t r i x  p roduc ing  the  shift  xk -+ xt. 

We no t e  t h a t  according to  (12) the  matr ices  Slk obey  the  re la t ion 

and also 
Stk Skm = Sita (14a) 

Sita 1 = Sml. (14b) 

I f  we m a k e  three  paral lel  shifts  whieh compensa te  eaeh  other ,  i.e. x k - +  xl, 
xi -+ Xm and  f inal ly Xm -+ Xn, t hen  the  eorresponding m a t r i x  is found to be  

SklrSlm Smk = 1 .  (15) 

I f  ins tead of  (12) a l te rna t ive  defini t ions of S in accordance  with  (9a) or (9b) 
of  P a r t  I are t aken ,  then  re la t ions  (14a), (14b) and (15) r emain  valid.  Thus  
if we ca r ry  out  a n u m b e r  of  ad iaba t i c  paral lel  shifts wi th  a sy s t em ~ such 
t h a t  we r e t u r n  in the  end to the  original posit ions,  t h e n  the  conf igura t ion  of 
the  sy s t em ~ also re turns  to  its original forro. 

The  l a t t e r  s t a t e m e n t  in this  fo rm has, however ,  no real physica l  content .  
Indeed ,  a shif t  xk -+ xi t akes  some t ime  to  ca r ry  out  and  therefore  we have  
necessar i ly  xk4 < Xl~. When ca r ry ing  out a series of shifts  we cannot  ar r ive  
back  to the  f i rs t  posi t ion xk f r o m  which we s tar ted .  

Howeve r ,  re lat ion ( 1 4 ) e x p r e s s e s  the  real phys ica l  fact;  i t  follows f rom 
(14) t h a t  shif t ing ~ f irst  f rom xk -+ xl and then  f rom xi --~ Xm we obta in  the  
same resul t  as if  we had  carr ied out  direet ly  a paral lel  shift  xk -~ xi. I .e.  the  
paral lel  shif t  here defined is a t rue  parallel  shift  and  the resuh of  such a shift 
does not depend on the path along which the shift is carried out as long as the end 
points are kept f ixed. 

w 7. The  mos t  general  f o r m  of the  Lorentz  t r a n s f o r m a t i o n  is ob ta ined  
b y  combin ing  a local t r a n s f o r m a t i o n  a n d a  paral lel  shift .  We m a y  pu t  

Mlk = Slk M k (16a) 

or inser t ing for  Mk the  expression (13), the  ident ical  re la t ion  

Mzk = M z Stk. (16b) 
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The t ransformat ions  M (xk; xi -- xk) possess matrices each of which can be 
writ ten in the forro (16a) respectively in the form (16b). We see thus  t ha t  any 
t ransformat ion Ivl (x, [�91 can be taken as to consist of a local t ransformat ion 
Mk at xk a n d a  parallel shift ~ -- but  it  can also be represented by  a parallel 
shift MI in the final position xt. The connection between the local t ransforma- 
tions M~ and Mi which lead to the same final result is given by relation (13). 

Small displaeements 

w 8. Let  us consider t ha t  approximat ion of the Lorentz t ransforma- 
t ion whieh is valid in the case of small shifts. We consider as a small shift 
one which might  be very  much larger t han  the dimensions of the system 
subjected to the shift,  bu t  which is small on a cosmical scale, i.e. a shift  I~ 
such tha t  we have in a good approximat ion 

g ( x ~ - ~ ) = g ( x ) ~ - ~ - -  Og(x) (17) 
0x 

A small shift in general can be expressed by a matr ix  

where we suppose 
S = 1 -4- a t e ,  ( 1 8 )  

o~. = ~va(~)/G. (19) 

Int roducing (18) into (7b) and neglecting terms of higher order we find for 
the condition tha t  S should be a Lorentz mat r ix  

Thus we find 

~(~)g § ga(~) -- ~g 
Ox u 

a(~) - 1 g-~{ ~~xg ) 2 -t- A (~) , (20) 

where A (~) (for any value of ~) is an arbi t rary  ant isymmetr ic  matr ix ,  i.e. a 
matr ix  obeying 

A(~) = - -  A(~).  ( 2 0 a )  

A small shift is thus produced by a t ransformat ion containing the matr ix  

S = 1 - - 1 g - 1 2  [ [Og~Ox ~-A)"  (21) 
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The paral lel  shift  is obta ined  for  A = 0. For  A =# 0 we ob ta in  a paral lel  shift  
super imposed  on a local t r a n s f o r m a t i o n  which differs f rom un i ty  only by  
t e rms  of the  order of ~. 

Geodetic orbits 

w 9. In  regions where the  p ropaga t ion  of l ight is inhomogeneous  there  
exists,  a p a r t  f rom the parallel  shif t  described above,  ano the r  t y p e  of t rans -  
fo rmat ion .  

Indeed ,  a physical  sys t em ~ even if no outside in ter ference  takes  place 
m a y  drift  a w a y  ir it has an init ial  ve loci ty  v and thus  it  moves  into regions 
in which the  tensor  g differs f rom t h a t  in the  original posi t ion.  The quest ion 
arises wha t  changes occur due to  the  changing e n v i r o n m e n t  of  the  s y s t e m ?  

I t  m a y  be supposed t h a t  the  changes which t a k e  place in the  course 
of  the  free mot ion  of a sys tem can be described also b y  Lorentz  t r ans fo rma-  
tions. We g i r e  present ly  ah a r g u m e n t  as the  result  of  which the  l a t t e r  t y p e  
of Loren tz  t r ans fo rma t ion  can be de termined.  

In  the  homogeneous  case a closed sys tem m a y  m o v e  with some cons tan t  
ve loc i ty  and  suffers no changes,  therefore  the  t r a n s f o r m a t i o n  describing this 
mot ion  corresponds  to  M = 1 a n d a  d isplacement  p~--~ m,  t wi th  m = vt. 

I f  we t r ans fo rm the coordina tes  as described in w 1, we obta in  in the  
new represen ta t ion  a tensor  g ' (x ' )  which depends on x '  and  thus the  p ropaga-  
t ion of l ight appears  relat ive to K '  inhomogeneous.  

Conversely,  if in the represen ta t ion  K the  p ropaga t i on  appears  inhomo-  
geneous the  question arises w h e t b e r  it is possible b y  means  of a sui table  
coordinate  t r ans fo rma t ions  to ob ta in  a new represen ta t ion  in which the  
p ropaga t i on  appears  to be homogeneous .  

Considering thus  the  v ic in i ty  of  a f ixed four  r e c t o r  x we ask whe ther  
it is possible to  f ind a t r a n s f o r m a t i o n  

such t ha t  

x '§  V =f(x+~) 

S(x § ~)g' S(x + ~) = g(x § ~), 

(22) 

(23a) 

where g '  has cons tan t  componen t s  and describes the  homogeneous  p ropaga t ion  
of light re la t ive  to K ' ,  fu r the r  

S~~(x + ~) - -  ~f~(x + ~) (23b) 

In  the  above  relat ions we have  not  neglected the  t e rms  of h igher  order  
in ~ as we wan ted  to define the  t r ans fo rma t ion  which leads f rom the repre-  
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sentation oran apparently inhomogeneous region to a representation in which 
the region appears homogeneous. 

Equations (23a) and (23b) give a system of ten partial differential 
equations to the four unknown functions f~ and thus the system is a s a  rule 
overdetermined. We may therefore consider those cases where the equations 
(23a) and (23b) have solutions as exceptional eases and we may regard them 
as representing the cases where ]ight is truly propagated homogeneously. 
Thus we may suppose that  a propagation tensor g(x) ir it possesses a representa- 
tion g' = constant, then g(x) represents homogeneous propagation, only the 
representation is given in terms of curved coordinates. We note ir in the 
above case we were to construct coordinates according to the methods described 
in Part  I the latter method would automatically lead to a representation in 
which the propagation appeared to be homogeneous. 

w 10. In general i t i s  impossible to "transform away" the inhomogeneity 
of propagation of light which appears in a given representation K. Ir is, 
however, possible to final by transformation of g(x) a representation g'(x') the 
first derivatives of which are zero, thus a representation in which 

O g ' ( x ' + ~ ' ) _ 0  for ~ ' = 0 .  (24) 
~~' 

In the latter reprcsentation the propagation of light appears as near as possible 
to homogeneous propagation. 

We note that  ir there exists a transformation of the form (23) which 
teads to a transformed g' satisfying (24), then there exists also a transformation 
such that the transformed quantities satisfying apart from (24) also 

x' = x ,  g' = g(x). (25) 

Relations (25) are satisfied if the transformation functions obey 

( Of~(x -~ ~)1 = 5~g. (26) f~(x)=x~ and S , ~ ( x ) =  ~~~ ~=o 

Differentiating (23c) into ~~ we Ÿ in the limit ~ = 0 using (24) and (25) 

�91 0S 0g for ~ = 0 .  (27) 05~ g ~ - g  0~~-- ~~~ 

The above equations admit solutions 

~S 1 ~ { Og A(~) 
0~~ = 2 - g -  /O~-~ + ~ = O, (28) 
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where A (~) for ~ = 1, 2, 3, 4 are ant i symmetr ic  matr ices  obeying 

A ( ~ ) = - -  A(~). (28a) 

The la t ter  t ransformat ion is of the  form given in w 7, equs. (20) and (20a), 
however,  in the present case the  matrices A (~) can be determined.  Indeed,  
differentiat ing (23b) into ,~~ we find 

~s~~ _ ~~L(,~ + ~) 

Thus we f ind interchanging tt and ~ in the above relat ion 

aS~~ = aS_~_~ (29) 
3x~ ~x~ 

Comparing (28a) and (29) we f ind 

Ox~ ~x. 

We may  write in place of (22) 

where 

aS 1 
_ g - 1  C ( ~ ) ,  

8�91 2 
(30) 

ag= ag,~ } (30a) 
1 (~g~~ _~_ 

C ~ , -  2 t Ox~ Ox~ Ox~ 

thus  the  C (~) _~~ ate equal to the  well-known Christoffel brackets  

Fur the rmore  using the usual nota t ion  

v,/~, u = 1, 2, 3, 4. (30b) 

aS.ga~~ _ {v/~}~ (30c) 

we shall also use the following nota t ion 

~S - -  @(~) x = 1, 2, 3, 4. (30d) 
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w 11. So as to r e tu rn  to the  t r a n s f o r m a t i o n  describing the  free dr if t  of 
a sys tem we r e m a r k  the  following. Consider some four r e c t o r  ~ wi th  a repre-  
sen ta t ion  B re la t ive  to  K which describes a fea ture  of  ~ .  The  four -vec to r  
m a y  be the  four  d is tance  ~k - -  ~~ be tweeu  two points  of  ~ - -  bu t  it migh t  
describe a l t e rna t ive ly  a veloci ty,  an e lec t romagnet ic  potent ia l ,  etc. 

I r  the  p ropaga t i on  tensor  ~ as represen ted  re la t ive  to K '  is cons tan t ,  
i.e. i f  g '  = cons tan t ,  t hen  in the  r ep resen ta t ion  K '  the  sys tem ~ drifts freely 
and  denot ing the  conf igura t ion  of ~ af ter  ir has dr i f ted some dis tance I~' 
b y  ~ *  we find 

B'* = B' (31) 

for  the  represen ta t ions  of  the four -vec to r  ~ appear ing  in ~ respec t ive ly  of 
~ *  appear ing  in ~ *  the  shif ted sys tem.  In  the  original r ep resen ta t ion  K 

we have ,  however ,  

B = S - l ( x  ') B',  B* = S - l ( x  ' + ~ ' )  B'*.  

F r o m  (26) we f ind 

0S 0S -1 
S(x')  = S--l(x ' )  = 1 and - -  for 

Ox Ox 
~=0  

and therefore  since neglect ing higher order  t e rms  we m a y  put  ~ '  = ~, B '  = B 

0S--i 
5 B =  B* - - B  = ~  

Ox 

Thus  with  the  help of  (30d) we find 

B .  

6B = --  Z/~~ ~(0 B ,  (32a) 

we m a y  also wri te  expl ic i t ly  

6B~ = -- Z ]~~~ B~~~.  (32b) 
Hx t v J  

w 12. Relat ions  (32a) or (32b) g i re  the  change of the measures  of  the 
componen t s  of a vec to r  B in the  course of  the  drift  in the  par t i cu la r  case 
where  the  sys t em ~ is dr if t ing in a homogeneous  region and therefore  in the  
p roper  represen ta t ion  K '  (where g '  = cons tan t )  the vec to r  ~ does not  change 
a t  all because of the  drift .  The change �91 reflects on changes of  measures  
of  the  componen t s  of  B wllich appea r  because  the  coordinates  in K mus t  be 
t a k e n  to be curved  coordinates .  

Thus relat ions (32a) or (32b) express only ttle result  of  a coordinate  
t r an s fo rma t ion  ir appl ied to a region in which the p ropaga t ion  is t ru ly  homo- 
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geneous in the  sense of  w 8. Following the idea of  EINSTEI1�9 we m a y  suppose 
t h a t  (32) remains valid whether  or not  the propagat ion  of  light is t ru ly  homo- 
geneous. Thus  it may  be assumed t h a t  the free drif t  of  a sys tem ~ is charac- 
ter ized so t h a t  in a represen ta t ion  K '  in which 

~g'(x'  -4- ~') _ 0 for ~' = 0, 

i.e. in the representa t ion K '  whcre the  propagat ion  appears  as near  to homo- 
geneous as possible - -  in tha t  representa t ion  the change of a vec tor  is charac- 
terized b y  

� 9 1  = 0 

of more precisely 

6B' = order of ti 2. 

I r  the la t te r  assumption is made  then  we are led to re la t ion (32) i rrespective 
of the t rue  mode of propagat ion  of light. 

As we suppose tha t  the inhomogene i ty  of p ropaga t ion  of l ight is con- 
nected with the  gravi ta t ional  field, we may  thus  suppose t h a t  (32) describes 
the changes which occur in a sys tem moving freely in a gravi ta t ional  field, 
i.e. the  changes occurring in a free falling system. 

w 13. I t  is very  impor t an t  t ha t  the change a l though spontaneous should 
take  place adiabatical ly.  I f  a sys tem would be subjected  to a sudden impact  
through some sudden change of gravi ta t ional  field, t h en  ir might  ve ry  well 
deform non-adiabat ical ly .  Thus relat ion (32) can be t aken  only to be valid 
for suff icient ly slow changes. We have h e r e a  complete  analogy with the 
l imitat ions of the adiabatic principle a t tached  to the Loren tz  principle in the  
case of homogeneous propagat ion  of light. 

Rela t ion (32) describes the  deformat ions  a free falling system suffers, 
while the parallel  shifts discussed in w 5 and which are given (in the case of  
small shifts) by  (18) arise ir a sys tem is shifted adiabat ica l ly  in such a manne r  
tha t  the gravi ta t ional  action is compensa ted  by  outside forces and thus the  
system is no t  allowed to fall bu t  is made to m o r e  with some small velocity.  

F rom the  abovc remark  it becomes clear t ha t  a system, which is not  
allowed to fall freely but  is b rough t  adiabat ical ly  with small veloci ty  f rom 
one posit ion into another ,  when thus  t rea ted  will take  up in its final posi t ion 
a conf igurat ion which is independen t  of the pa th  along which ir was b rough t  

there.  
On the  con t ra ry  if a sys tem ~ falls freely f rom xk --~ xm then  ir will 

arr ive in x m with a velocity which ir acquired in the course of its fall. t towever ,  
ir the  sys tem is made first  to  fall f rom xk ~ xi t hen  to  fall f rom xi ~ Xm 
then  it mus t  receive in x m the  in te rmedia te  position xi ah impact  which make  

Acta Physica Academiae Scientiarum Hungaricae 21 , 1966 



THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, II.  ~9  

i t  to change its direct ion so as to  proceed towards  Xm- Because of this i m p a c t  
the  sys tem will a r r ive  in x m wi th  a different  ve loc i ty  when it t rave l led  via 
xl t han  in the  case of  the  direct  journey .  The  difference of ve loci ty  of  ~ when  
it  arr ives  di rect ly  f rom xk of when ir arr ives  on a round  abou t  w a y  Xm can be 
represen ted  b y  a local Loren tz  t r ans fo rma t ion ,  n a m e l y  the  one which cor- 
responds  to the  change be tween  the  two velocities.  

F r o m  the above  considera t ion  we see c lear ly  t ha t  the  ana logy  to the  con- 
ven t iona l  paral lel  Shift of  a s y s t em  is no t  the  free fall bu t  the  paral lel  shift  
where  g rav i t a t iona l  effects  are c o m p e n s a t e d  b y  outside forces. 

We note,  t h a t  in the  usual re la t ivis t ic  t e rmino logy  the  shift  a s a  resul t  
of  free falling is deno ted  "para l l e l  sh i f t "  and  therefore  the  paral le l  shift  so 
def ined depends on the  pa th  in a m a n n e r  as expla ined  fu r the r  above.  I f  we 
define a I t e rna t ive ly  the  paral lel  shift  a s a  shif t  which takes  pIace while the  
g rav i t a t iona l  act ion is compensa t ed  b y  outs ide  forces, then  we ob ta in  a t y p e  
of  paral lel  shift  i ndependen t  of  the  orbit .  He re  we use this l a t t e r  definit ion. 

Adiabatic orbits 

w 14. Wi th  the  help  of  re la t ion (32) it  is possible to de te rmine  the  orbi t  
of  a free falling sys tem.  Consider thus  a s y s t e m  the centre  of  which can be 
described b y  some r e c t o r  x(p),  i.e. we suppose  t h a t  a t  the  t ime  

t = x4(p) (33) 

its coordinates  are given b y  

r(t) = xt(p) ,  xz(p), x3(p). (34) 

The  mot ion  of the  cent re  of  the  sys t em is thus  given in a p a r a m e t e r  represen ta -  
t ion.  The ve loe i ty  of  the  sys t em can be wr i t t en  

v(p)  = i:(p)/~,(p), (35) 

where  the  dot  denotes  der iva t ion  into p .  F u r t h e r  the accelerat ion is given b y  

a (p)  - -  dv (p )  _ ~(P)/~4(P). (36) 
dt 

With  the  help of  (35) and  (36) we have  also 

a (p)  = ~(p) - -  v (p)  ~4(P) (37) 
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A sys tem left  on its own will thus  move  in first  approx imat ion  with a cons tant  
velocity.  In  a t ime 

it will shift  by  

St = ~4(P) 6/9, 

~r = ~(p) @ ,  

and we m a y  thus suppose t h a t  it  will shift b y  

/~ = 6r, 6t. (38) 

We m a y  in t roduce  (38) into (32) and int roducing ~(p) in place of B we f ind  

of writ ing x ( p )  for 6 ~(p)q we have 

~c~(p) + s ) :~~(p)icz(p)=- O. (39) 
, ,~/v / 

The above relat ion is the well-known equat ion of the  so-ealled four d imensionat  
geodetic line. We see tha t  supposing a sys tem if  left  on its own suffers Lorentz l  
deformat ions  of the par t icu lar  form (32) we are led to  equat ion  (39) for  the  
orbi t  of  a free part icle or of  a free closed system. 

Since relat ion (39) contains no specific quan t i t y  of the moving sys tem 
this leads to  the  conclusion t h a t  any  small closed sys tem left on its own, 
will m o r e  on the  same orbi t  (de te rmined  only by  initial  conditions).  Thus  
the  fact  t h a t  relat ion (39) contains only the coordinates of  the  moving sys tem 
and thei r  der ivat ives  reflects the  general law of the  equivalence of iner t ia l  
and gravi ta t ional  masses. 

w 15. I t  is well known tha t  the  equat ion  of mot ion  (39) can also be 
der ived f rom a var ia t ional  principle.  I t  can be shown t h a t  (39) are the  E u l e r  
equat ions  

where 

xz 

J(@J 
x i  

dp = 0, (40) 

[ ds ) 2 --- ;rg~. 
@J 
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Multiplying (40) with the  mass m o of the  par t ic le  we m a y  write if  we choose 
the  pa rame te r  p equal to  x 4 with the  help of  no ta t ion  used in P a r t  I ,  

I ds q 
m~ [-dpl m~ + V) G(v + V) -- m o ~ .  

The  first  t e rm can be regarded a s a  kind of  kinet ic  energy (the ve loc i ty  of  the 
part icle  being taken  to  the  aether  drif t ing wi th  a veloci ty  - -  V). The second 
t e rm  is a kind of negat ive  potent ia l  energy,  thus  relat ion (40) is reminiscent  
of  the  Lagrange equa t ion  

~ S L d t  = O, 
with  

L = - K - - U .  

Fur the rmore  it can be shown tha t  (39) can also be der ived f rom the 
following var ia t ional  principle 

X2 

S ds = 0 .  (41) 
xi 

The la t te r  principle requires t ha t  the orbi t  of the  sys tem should be a four 
dimensional  geodetic line: 

F rom the physical  point  of view, we prefer  the der ivat ion of the  equa- 
t ion  of mot ion  (39) th rough  the general izat ion of the  Lorentz  principle and 
thus  to consider the  tensor  g(x) as character is t ic  for the  propagat ion  of l ight 
in the v ic in i ty  of x. However ,  the  fact  t h a t  (39) gives ma themat i ca l ly  the 
solution of a var ia t ional  problem is ve ry  impor t an t  f rom ano ther  point  of 
view. In deriving (39) we have used approximat ions  and have  considered 
shifts /~ small on a cosmical scale. A larger  shift can be buil t  up f rom the 
succession of a n u m b e r  of small shifts, bu t  it  is not  immedia te ly  obvious 
t h a t  the small errors commi t t ed  considering the  small steps do no t  accumulate .  

F rom the fac t  t h a t  (39) is the solut ion of a var ia t ional  problem one 
concludes tha t  the  orbits  obta ined a s a  solut ion of (39) are independen t  of the 
par t icu la r  choice of coordinates.  Therefore  one is inclined to take  equat ion 
(39) to be exact  - -  or at  least to be s t r ic t ly  independent  of the  choice of 
coordinates.  

In the  case of homogeneous  propaga t ion  of l ight we have  dg/dx = 0 
and therefore  all the  Christoffel brackets  vanish.  In  the la t te r  case we f ind 
~/(p) = 0 and thus 

x = a p §  

or el iminating p we have  

r : vt  + b ,  (42 )  
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where v has  componen t s  vk = ak/a4, k =- 1, 2, 3. Thus  in a region wi th  homo-  
geneous p r o p a g a t i o n  of  l ight NEWTON'S f i rs t  law appea r s  to be val id.  I f  we 
consider the  same region in t e r m s  of t r a n s f o r m e d  coordinates  x ' =  x ' (x) ,  
t hen  in the  l a t t e r  the  Christoffel  b racke t s  will not  vanish ,  bu t  we obta in  
the  exact  r ep resen ta t ion  of the  t r ans la t iona l  mot ion  in t e rms  of the  t rans-  
fo rmed  coordinates .  This result ,  however ,  is only a check  of consis tency of 
one a s s u m p t i o n  as the  concept  o f  mo t ion  wi th  eons tan t  ve loc i ty  in the  space  
free of  g r av i t a t i on  was made  use of  in the  der iva t ion  of the  equat ions  of  
mot ion.  

Fo r  phys ica l  app l i ca t ion  i t  is of  course necessary  to  establ ish the  con- 
nect ion be tween  the  tensor  g(x) and  the  g rav i t a t iona l  f ield of more  exac t ly  
i t  is necessary  to obta in  g(x) f r o m  the dis t r ibut ion of g rav i t a t ing  ma t t e r .  
The  la t t e r  p rob lem was solved b y  Et~STEIN, we g i re  ce r ta in  aspects  of  the  
p rob lem in P a r t  I I I  of  this series. 

FIPHHIIHH JIOPEHI_[A H OBIIIA~I TEOPHfl OTHOCHTEJIbHOCTH 
qacTb II. 

.II. I:l HOII I  H 

P e 3 m ~ e  

)~aHo o6o£ npeo6pa30BaltH~ JlopeHaa ~~~ 06hacTefi r~e CSeT pacnpocTpaH~eTc~ 
neo~nopo~Ho, n noKa3aHo, qT0 npHHrmn YlopeHua M0~eT £ coxpaHSH B cBoe~ 06bIqH0~ 
qbopMe eczti npeo£ 2lopem~a B3~ITb B CB0eM 6ozee 06meM BH�91 dpopMyanpoBannoM 
~Ia~ TaKHx o£241 FI3BeCTHb~e ypaBHeHH~ reo~e3Hqecs3~x ~HHn¡ 8 rpaBHTarmOHHOM n o t e  
BbIB0,~qTC~I H3 o£ TaI<HM o£ n p n m m n a  flopeHua. 
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