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The generalization of the Lorentz transformation to regions where light is propagated
inhomogeneously is given and it is shown that the Lorentz principle can be maintained in
its ordinary form provided the Lorentz transformation is taken in its more general form
formulated for such regions. The well-known equations for the geodetic lines in a gravitational
field are obtained from the Lorentz principle thus generalized.

Generalized definition of the Lorentz transfermation

§ 1. In this section we shall formulate the Lorentz principle for regions
of space where light is propagated inhomogeneously. We shall assume, however,
that even if the propagation at large is inhomogeneous still in sufficiently
small regions the propagation remains homogeneous. Thus we suppose that a
light signal starting from a point P with coordinates r at the time ¢ arrives
in a point @ with coordinate vector r 4 p at the time ¢ 4 7 so that

Eg(x)E=0, (1)
where
x=r,t and E=op,T

provided the components of § are sufficiently small so that the change of
g(x) while x changes by & should be negligible.

As a first step we generalize the Lorentz transformation to the case of
inhomogeneous propagation of light.

Let us consider to start with an arbitrary transformation of coordinates.
Suppose the coordinates x and § refer to a system K. We introduce a system K’
in which the four coordinate vectors are given by

x' +8 =f(x+E§), )

where f has four components f,, » = 1,2, 3,4 and all four components are
supposed to be slowly varying functions of their argument. More precisely
we shall consider only such values of § for which we can write in a good
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approximation
of(x
f(x+8) = (9 + )
X
Writing more explicitly
—%’(}—):SW u=12,3,4.
ox,

The transformation (2) can also be written as

g = S§ and X' =x+4+pu, 3)
where

p = f(x) — x. (3a)

The transformation (2) should possess a unique inverse and therefore we

suppose

det S 0. (4)

§ 2. The propagation of light in the vicinity of the point P can thus
be expressed relative to K’ expressing (1) in terms of the transformed variables.
Neglecting small terms we find thus

Eg'(x)g =0, (5)
where

g/(x') =S g(x) S, (6)

There exist coordinate transformations which leave the components of g(x)
unchanged. We consider these transformations as the generalized Lorentz
transformations. Thus a generalized Lorentz transformation # (x,y) is
expressed with the help of a shift @ and a matrix M such that

X =x+p (Ta)
and

Mg(x + 1) M = g(x). (7b)

It must be emphasized that the transformation .# does not change the
components of g(x) in the fixed point x but it may change the values g (x + &)
in the vicinity of x and therefore it may change the derivatives of g(x) in x
(see Parts IVand V)

The transformations defined by (7a) and (7b) form a structure with
the following properties. Consider two transformations -#(x + ;) and
A" (x 4 1, hy), we have thus

Mg(x +-p )M =g, (a)
Ng(x + o, + w)N=gx +p,). (b)

(8)
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Multiplying (8b) from the left by M and from the right by M we find

(NM) g(x + &, + 1) NM = g(x) .

Thus NM and @, + @, define a transformation <#(x, @, + () and NM is
thus itself a Lorentz matrix.

Thus Lorentz transformations consecutively applied give again Lorentz
ransformations, howaver, a given Lorentz transformation refers to the fixed
point, say x and produces a shift to another point, say x’. Therefore applying
a Lorentz transformation which produces a shift x — x’ we can apply on the
transformed quantities only such further transformations which produce
shifts from x’ — x’’. Therefore, if x 5= x’, then the two transformations are
of different categories. These transformations fulfill the postulates of a partial
algebraic structure and may be denoted a semi-group.* In the case of a
homogeneous propagation of light the dependence of the transformation on
the coordinates of the points upon which it is to be applied disappears and
so the semi-group degenerates into an ordinary group — in this way the
semi-groups of Lorentz transformations defined for the inhomogeneous case
degenerate into the Lorentz group if the inhomogeneity disappears.

§ 3. The generalized Lorentz transformation can also be interpreted
(like the more special transformation) to give not a coordinate transformation
but to describe a deformation of some physical system £. Suppose thus £
to be a physical system in the vicinity of x = r, #; various points B,, B,, ...
of £ can be described by four vectors

x+§ =x=12,....

Thus the point B, as represented in K moves along an orbit which at a time
t 4+ 7 has a distance p(7) from r.

The deformed system ¥ consists of points Br, 5]3;‘, ... with coordinate
vectors

x* +HEF x=1,2,...,

# The expression semi-group is used somewhat loosely. In the usual sense the structure
we use is that known as a BRANDT gruppoid with unit element, i.e. a special type of partial
algebraic structure. If an algebraic structure is partial, then the product ab does not exist
for an arbitrary pair ab of its elements. In our case of the semi-group, if a, b, ¢ are any three
elements of it and ab = ¢ holds, then any of the elements a, b, ¢ is uniquely determined by the
other two. If @b and be exist, the product ebc may be written without parenthesis, thus the
associativity law holds. Although in the case of BRANDT gruppoid every element has uniquely
determined right and left unit elements, and conversely for two unit elements e, e, there
is an element whose right and left unit elements are e, and e,, in our case every element
in the gruppoid has the same left and right unit elements. The existence of the inverse element
is needed too. Gruppoid was iniroduced by BranoT. (H. Branpt: “Uber die Axiome des
Gruppoids”. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zirich, LXXXV
[1940], 95—104.)

I am greatly indebted to Mr. J. DENEs for having put at my dispesal the above inform-
ation.
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where
x*=x1tuy, (9a)

and

B =M, x=1,2,3,... (9b)

and M and p are the parameters of a transformation M (x, ) which gives
the deformation £ — £* in terms of representation in K.

The Lorentz principle can now be formulated for regions with inho-
mogeneous propagation of light as follows. The laws of nature possess such
Jorms that provided L. is a real system obeying certain laws, then any Lorentz
deformed system O* obeys the same laws.

Furthermore we may add: if a system is accelerated adiabatically then
it changes its configuration as a result of the acceleration into a Lorentz deformed
configuration 0* = M(2).

The above formulation of the Lorentz principle is identic in form to
former formulation, however, its contents are enlarged as it is supposed to
be valid to the generalized family of Lorentz transformations M (x, ).
We show in the following that the latter form of the principle leads to results
which are obtained usually from the general theory of relativity.

§ 4. It may appear as a deficiency of the Lorentz transformation as
defined above, that it can be applied to small systems only, i.e. to systems
which occupy such parts of space in which effects of the inhomogeneity of
propagation of light can be neglected. However, this apparent deficiency is
not a real one, it simply reflects upon material properties of physical systems.

Indeed, considering a system which is so large that the propagation of
light inside the space occupied by the system is inhomogeneous to a noticeable
extent, then gravitational stresses will appear in the system and its state of
equilibrium will be determined partly by the gravitational field, but also by
the material properties (compressibility, rigidity, etc.) of the system. If we
shift such a system to different parts of space, then it will readjust itself to
the field of the new surroundings and the change of configuration which thus
arises depends very much on the actual physical properties of the system.
If the Lorentz transformation depends only upon the distribution of the
gravitational field, then it cannot possibly describe the material changes of
a large system the changes of which depend — apart from the gravitational
field — also upon the material properties of the system. We see thus, that
it would be unreasonable to expect the existence of a general transformation
which describes the changes of large physical systems when moved about in
gravitational fields — since changes thus arising depend very much on the
actual material properties of the system.

The fact that Lorentz transformations are suitable to express the changes
small physical systems suffer when transported adiabatically into regions in
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which the gravitational field differs, shows that the reaction of micro-structures
upon gravitational field obey general laws.

We have here an analogy of the circumstance that the Lorentz deform-
ations described by the special theory of relativity are independent of the
material properties of the systems provided the interferences causing the
deformations are adiabatic.

§ 5. The Lorentz transformations M (x,.) can be divided into two
kinds: 1) transformations with g = 0, the latter may be denoted local trans-
formations, as they produce no immediate shift of the system £. 2) We may
consider transformations M, (x, i) which produce a parallel shift, i.e. a shift,
with as little changes apart from the parallel displacement, as it is possible,

Concerning the local transformations we find from (9a, b) that they
contain matrices M obeying

Mg(x) M = g(x). (10)

Thus the matrices of the local transformations are exaetly those which are
obtained for the case of homogeneous propagation of light, these matrices
were considered in Part I — we explained there that the Lorentz principle
can be supposed to be valid for such transformations.

The local transformations in distant points have, however, different
forms. Consider a number of locations x,, X,, X3, . . .. Let us denote

g(xi) = g - (10a)

Further we write M, for the transformation matrix relating to transforma-
tions in x;. Thus we suppose

M, g M, =g, k=1,2,3. (11)

The matrices M;, M,, . .. define local transformations near x;, X,, ... A con-
nection hetween the matrices My, for different k can be found. Denote

g 8l = Sk (12)

or alternatively, if Sy thus defined possessed complex elements, then (12)
can be replaced by matrices defined in equations (9a), or by those defined
by (9b); the latter have real elements only and behave algebraically similar
to the matrices (12).
We may put
M, =SiiM,S,, . (13)

Introducing (13) into (11) we find with the help of (12)
ﬁl gaM =g.
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Thus relation (13) can be taken as the transformation formula between
matrices of local transformation in different locations.

§ 6. The matrices Sy can be takento define parallel shifts. The Sy, are
matrices corresponding to Lorentz transformations producing shifts from
x; — X;. Indeed with the help of (12) we obtain

§lk &S = g (14)

Remembering the definition (10a) and comparing (14) with (7b) we see that
Si is indeed a matrix producing the shift x, — x;.
We note that according to (12) the matrices S, obey the relation

Sic Sem = Sim (14a)
and also

Sl‘nlI =8,,. (14b)
If we make three parallel shifts which compensate each other, i.e. x, — x;,
X; — X, and finally x,, — x,, then the corresponding matrix is found to be

Skl:Slm Smk =1. (15)

If instead of (12) alternative definitions of S in accordance with (9a) or (9b)
of Part I are taken, then relations (14a), (14b) and (15) remain valid. Thus
if we carry out a number of adiabatic parallel shifts with a system £ such
that we return in the end to the original positions, then the configuration of
the system £ also returns to its original form.

The latter statement in this form has, however, no real physical content.
Indeed, a shift x;, — x; takes some time to carry out and therefore we have
necessarily x4 < x4. When carrying out a series of shifts we cannot arrive
back to the first position x;, from which we started.

However, relation (14) expresses the real physical fact; it follows from
(14) that shifting  first from x; — x; and then from x; — x,, we obtain the
same result as if we had carried out directly a parallel shift x; — x;. L.e. the
parallel shift here defined is a true parallel shift and the result of such a shift
does not depend on the path along which the shift is carried out as long as the end
poinis are kept fixed.

§ 7. The most general form of the Lorentz transformation is obtained
by combining a local transformation and a parallel shift. We may put

M, =8, M, (16a)
or inserting for M the expression (13), the identical relation
M, =M,;5,. (16b)
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The transformations M (x;; x; — X;) possess matrices each of which can be
written in the form (16a) respectively in the form (16b). We see thus that any
transformation M (x, ) can be taken as to consist of a local transformation
M, at x, and a parallel shift . — but it can also be represented by a parallel
shift M; in the final position x;. The connection between the local transforma-
tions My, and M, which lead to the same final result is given by relation (13).

Small displacements

§ 8. Let us consider that approximation of the Lorentz transforma-
tion which is valid in the case of small shifts. We consider as a small shift
one which might be very much larger than the dimensions of the system
subjected to the shift, but which is small on a cosmical scale, i.e. a shift p
such that we have in a good approximation

og(x
gx + 1) = o)+ 5L ()
ox
A small shift in general can be expressed by a matrix

where we suppose
op =P pu,. (19)

Introducing (18) into (7b) and neglecting terms of higher order we find for
the condition that S should be a Lorentz matrix

e¥g | got) = — % .
ox,,
Thus we find
o — Lg—l 3 4+ A®f, (20)
2 ox,

where A% (for any value of ) is an arbitrary antisymmetric matrix, i.e. a
matrix obeying
A — _ AB), (20a)

A small shift is thus produced by a transformation containing the matrix

1 og
S=1——g1| = Al. 21
5 [ Bt J (21)
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The parallel shift is obtained for A = 0. For A =50 we obtain a parallel shift
superimposed on a local transformation which differs from unity only by
terms of the order of w.

Geodetic orbits

§ 9. In regions where the propagation of light is inhomogeneous there
exists, apart from the parallel shift described above, another type of trans-
formation.

Indeed, a physical system O even if no outside interference takes place
may drift away if it has an initial velocity v and thus it moves into regions
in which the tensor g differs from that in the original position. The question
arises what changes occur due to the changing environment of the system?

It may be supposed that the changes which take place in the course
of the free motion of a system can be described also by Lorentz transforma-
tions. We give presently an argument as the result of which the latter type
of Lorentz transformation can be determined.

In the homogeneous case a closed system may move with some constant
velocity and suffers no changes, therefore the transformation describing this
motion corresponds to M =1 and a displacement % = m,t with m = vz.

If we transform the coordinates as described in § 1, we obtain in the
new representation a tensor g’(x’) which depends on x” and thus the propaga-
tion of light appears relative to K’ inhomogeneous.

Conversely, if in the representation K the propagation appears inhomo-
geneous the question arises whether it is possible by means of a suitable
coordinate transformations to obtain a new representation in which the
propagation appears to be homogeneous.

Considering thus the vicinity of a fixed four vector x we ask whether
it is possible to find a transformation

x'+ & =1(x+4§) (22)
such that

Sx +E)g’ S(x + E) = g(x + &), (23a)

where g’ has constant components and describes the homogeneous propagation
of light relative to K’, further

S,u(x+8) = ot

In the above relations we have not neglected the terms of higher order
in § as we wanted to define the transformation which leads from the repre-
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sentation of an apparently inhomogeneous region to a representation in which
the region appears homogeneous.

Equations (23a) and (23b) give a system of ten partial differential
equations to the four unknown functions f, and thus the system is as a rule
overdetermined. We may therefore consider those cases where the equations
(23a) and (23b) have solutions as exceptional cases and we may regard them
as representing the cases where light is truly propagated homogeneously.
Thus we may suppose that a propagation tensor g(x) if it possesses a representa-
tion g’ = constant, then g(x) represents homogeneous propagation, only the
representation is given in terms of curved coordinates. We note if in the
above case we were to construct coordinates according to the methods described
in Part I the latter method would automatically lead to a representation in
which the propagation appeared to be homogeneous.

§ 10. In general it is impossible to “transform away” the inhomogeneity
of propagation of light which appears in a given representation K. It is,
however, possible tofind by transformation of g(x) a representation g’(x’) the
first derivatives of which are zero, thus a representation in which

8 ! ! !
—gﬁj——g—):0 for & =0. (24)
oE’
In the latter representation the propagation of light appears as near as possible
to homogeneous propagation.
We note that if there exists a transformation of the form (23) which

leads to a transformed g’ satisfying (24), then there exists also a transformation
such that the transformed quantities satisfying apart from (24) also

I3

x'=x, g =g&) (25)
Relations (25) are satisfied if the transformation functions obey

%@+m} s (20)

f(x) = x, and %ms( -

n

Differentiating (23¢) into &, we find in the limit £ = 0 using (24) and (25)

3S 38 og
— —=—= fo = 0. 27
afngrgaf% . r§ (27)

The above equations admit solutions

Sh} 1 og }
= = T g1 28 L AW =0, 28)
e, 2% |ae, A : (
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26 L. JANOSSY
where A® for » = 1,2, 3,4 are antisymmetric matrices obeying

AW — — A( |

(28a)

The latter transformation is of the form given in § 7, equs. (20) and (20a),
however, in the present case the matrices A® can be determined. Indeed,

differentiating (23b) into &, we find

85,, _ @f(x+E)

8E, 8%, B¢,

Thus we find interchanging x4 and » in the above relation

8S,,  8S,

8x,  Ox
Comparing (28a) and (29) we find

w

A = 98 Oux

ox, ax,
We may write in place of (22)
e _ ig—lcm,
8¢, 2
where
o — 1%, B8 08
w2 ox, ox,, ox,,

thus the CZ are equal to the well-known Christoffel brackets

C6 = r’,u] v phy % =1,2,3, 4.
o

Furthermore using the usual notation

as,, Vi
8¢, | x

we shall also use the following notation

8 _ om x—1,2,3,4.

o9&,
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§ 11. So as to return to the transformation describing the free drift of
a system we remark the following. Consider some four vector & with a repre-
sentation B relative to K which describes a feature of L. The four-vector
may be the four distance §, — §; between two points of i — but it might
describe alternatively a velocity, an electromagnetic potential, etc.
If the propagation tensor g as represented relative to K’ is constant,
L.e. if g’ = constant, then in the representation K’ the system £ drifts freely
and denoting the configuration of O after it has drifted some distance .’
by £* we find
B'* =B’ (31)

for the representations of the four-vector B appearing in £ respectively of
B* appearing in £* the shifted system. In the original representation K
we have, however,

B=S-1x")B’, B* =8—(x" + ') B'*.
From (26) we find
88 087!

S(x')=8§x)=1 and — = for =0
ox ox

and therefore since neglecting higher order terms we may put o' =u, B’ =B

SB—B*—B—p > B,
ox
Thus with the help of (30d) we find
B= -2pu €c¥WB, (32a)
we may also write explicitly
B, — — 2{”"’ B, u,. (32b)
ue | VY

§ 12. Relations (32a) or (32b) give the change of the measures of the
components of a vector B in the course of the drift in the particular case
where the system £ is drifting in a homogeneous region and therefore in the
proper representation K’ (where g’ = constant) the vector 5 does not change
at all because of the drift. The change 6B reflects on changes of measures
of the components of B which appear because the coordinates in K must be
taken to be curved coordinates.

Thus relations (32a) or (32b) express only the result of a coordinate
transformation if applied to a region in which the propagation is truly homo-
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geneous in the sense of § 8. Following the idea of EINSTEIN, we may suppose
that (32) remains valid whether or not the propagation of light is truly homo-
geneous. Thus it may be assumed that the free drift of a system £ is charac-
terized so that in a representation K’ in which

ag’(x’ -+- E’) —0 for gl — 0
o’ ’

i.e. in the representation K’ where the propagation appears as near to homo-
geneous as possible — in that representation the change of a vector is charac-
terized by
0B’ =0
or more precisely
OB’ = order of p2.

If the latter assumption is made then we are led to relation (32) irrespective
of the true mode of propagation of light.

As we suppose that the inhomogeneity of propagation of light is con-
nected with the gravitational field, we may thus suppose that (32) describes
the changes which occur in a system moving freely in a gravitational field,
i.e. the changes occurring in a free falling system.

§ 13. It is very important that the change although spontaneous should
take place adiabatically. If a system would be subjected to a sudden impact
through some sudden change of gravitational field, then it might very well
deform non-adiabatically. Thus relation (32) can be taken only to be valid
for sufficiently slow changes. We have here a complete analogy with the
limitations of the adiabatic principle attached to the Lorentz principle in the
case of homogeneous propagation of light.

Relation (32) describes the deformations a free falling system suffers,
while the parallel shifts discussed in § 5 and which are given (in the case of
small shifts) by (18) arise if a system is shifted adiabatically in such a manner
that the gravitational action is compensated by outside forces and thus the
system is not allowed to fall but is made to move with some small velocity.

From the above remark it becomes clear that a system, which is not
allowed to fall freely but is brought adiabatically with small velocity from
one position into another, when thus treated will take up in its final position
a configuration which is independent of the path along which it was brought
there.

On the contrary if a system £ falls freely from x, — x, then it will
arrive in x,,, with a velocity which it acquired in the course of its fall. However,
if the system is made first to fall from x; — x; then to fall from x; — xj,
then it must receive in x,, the intermediate position x; an impact which make
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it to change its direction so as to proceed towards x,. Because of this impact
the system will arrive in x, with a different velocity when it travelled via
x; than in the case of the direct journey. The difference of velocity of £, when
it arrives directly from x; or when it arrives on a round about way x,, can be
represented by a local Lorentz transformation, namely the one which cor-
responds to the change between the two velocities.

From the above consideration we see clearly that the analogy to the con-
ventional parallel shift of a system is not the free fall but the parallel shift
where gravitational effects are compensated by outside forces.

We note, that in the usual relativistic terminology the shift as a result
of free falling is denoted ‘‘parallel shift” and therefore the parallel shift so
defined depends on the path in a manner as explained further above. If we
define alternatively the parallel shift as a shift which takes place while the
gravitational action is compensated by outside forces, then we obtain a type
of parallel shift independent of the orbit. Here we use this latter definition.

Adiabatic orbits
§ 14. With the help of relation (32) it is possible to determine the orbit

of a free falling system. Consider thus a system the centre of which can be
described by some vector x(p), i.e. we suppose that at the time

= x,(P) (33)
its coordinates are given by

x(t) = x,(p), %(Pp) x(p)- (34)

The motion of the centre of the system is thus given in a parameter representa-
tion. The velocity of the system can be written

v(p) = K(p)/x(P), (35)

where the dot denotes derivation into p. Further the acceleration is given by
dv . .

a(p) = ) = ¥(pi ) (36)

With the help of (35) and (36) we have also

i(p) - v(p) ,(p) . (37)
xi(p)

a(p) =
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A system left on its own will thus move in first approximation with a constant

velocity. In a time

ot = x,(p)op ,
it will shift by

or =1(p)dp,
and we may thus suppose that it will shift by
g =or,ot. (38)

We may introduce (38) into (32) and introducing x(p) in place of B we find
. %#A). .
()= = 2| iin) 4 v
or writing x (p) for 6 x,(p)/6p we have
.. %xA) . .
#(p)+ 21 1 8p) Ei(p) = 0. (39)

The above relation is the well-known equation of the so-called four dimensionat
geodetic line. We see that supposing a system if left on its own suffers Lorentzl
deformations of the particular form (32) we are led to equation (39) for the
orbit of a free particle or of a free closed system.

Since relation (39) contains no specific quantity of the moving system
this leads to the conclusion that any small closed system left on its own,
will move on the same orbit (determined only by initial conditions). Thus
the fact that relation (39) contains only the coordinates of the moving system
and their derivatives reflects the general law of the equivalence of inertial
and gravitational masses.

§ 15. It is well known that the equation of motion (39) can also be
derived from a variational principle. It can be shown that (39) are the Euler
equations

X,

e

X

2
dp =0, (40)

where

[ds]z o
— = xgx.
dp &
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Multiplying (40) with the mass m, of the particle we may write if we choose
the parameter p equal to x, with the help of notation used in Part I,

- [-j—:z — my(v + V)G + V) — m, @

The first term can be regarded as a kind of kinetic energy (the velocity of the
particle being taken to the aether drifting with a velocity — V). The second
term is a kind of negative potential energy, thus relation (40) is reminiscent
of the Lagrange equation

6({Ldt=0,
with

L=K-U.

Furthermore it can be shown that (39) can also be derived from the
following variational principle

s{ds=o0. (41)

The latter principle requires that the orbit of the system should be a four
dimensional geodetic line.

From the physical point of view, we prefer the derivation of the equa-
tion of motion (39) through the generalization of the Lorentz principle and
thus to consider the tensor g(x) as characteristic for the propagation of light
in the vicinity of x. However, the fact that (39) gives mathematically the
solution of a variational problem is very important from another point of
view. In deriving (39) we have used approximations and have considered
shifts p small on a cosmical scale. A larger shift can be built up from the
succession of a number of small shifts, but it is not immediately obvious
that the small errors committed considering the small steps do not accumulate.

From the fact that (39) is the solution of a variational problem one
concludes that the orbits obtained as a solution of (39) are independent of the
particular choice of coordinates. Therefore one is inclined to take equation
(39) to be exact — or at least to be strictly independent of the choice of
coordinates.

In the case of homogeneous propagation of light we have dg/dx = 0
and therefore all the Christoffel brackets vanish. In the latter case we find
X(p) = 0 and thus

X:ap+pv

or eliminating p we have

r=vt+ b, (42)
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where v has components v, = ay/et,, K = 1, 2, 3. Thus in a region with homo-
geneous propagation of light NEwTon’s first law appears to be valid. If we
consider the same region in terms of transformed coordinates x’ = x'(x),
then in the latter the Christoffel brackets will not vanish, but we obtain
the exact representation of the translational motion in terms of the trans-
formed coordinates. This result, however, is only a check of consistency of
one assumption as the concept of motion with constant velocity in the space
free of gravitation was made use of in the derivation of the equations of
motion.

For physical application it is of course necessary to establish the con-
nection between the tensor g(x) and the gravitational field or more exactly
it is necessary to obtain g(x) from the distribution of gravitating matter.
The latter problem was solved by EINSTEIN, we give certain aspects of the
problem in Part IIT of this series.

IMPUHIYIT JIOPEHUA M OBHIAST TEOPUS OTHOCUTEJIbBHOCTU
Yacrs 1L

J1. STHOIIU
Peswme

Hano o6o6menne npeodpasosanrsi JlopeHua auist obaacTeil rae CBeT pacnpoCTpaHSIeTCst
HEOHOPOAHO, U II0KA3aHo, uTo npuHuun JlopeHna moyker ObITH COXpaHEH B CBOeil 0OBIUHOH
topme ecnu npeobpagosaHie JIopeHLA B3sTh B CBoeM Gosee o0uiem Buze, HOPMYIIHPOBAHHOM
111 Takux o0sacteil. VsBecTHblE ypaBHeHUsS] Fe0fie3HUeCKUX JIMHWH B rpaBUTALIHOHHOM ITOJIe
BBIBOASITCSI M3 0GOGINEHHOTO TaKuM o0pa3om mpuHUMNA Jlopedna.
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