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This paper is the first of a series in which the formulation of the general theory of
relativity in terms of the Lorentz principle is attempted. In this first part the Lorentz trans-
formation is generalized so as to be applicable to parts of space where light is propagated
homogeneously but possibly unisotropically. It is shown that the Lorentz principle in its
ordinary form remains valid for such regions.

Introduction

§ 1. In the present article we show that the Lorentz principle which
we have formulated in a number of papers [1]—[4] can be generalized so as
to apply to the problems of general relativity. Just as in the case of the special
theory, in the generalized form the principle leads to a mathematical formalism
equivalent to that of the general theory of relativity. The approach through
the generalized Lorentz principle gives, however, new physical aspect to the
problems. In particular although the mathematical formalism of Riemann
geometry is made use of the concept of curved space is left out of the con-
siderations. We hope to come back to the philosophical aspects of the problem
elsewhere, here we try to restrict ourselves to such an extent as possible to
physical considerations only.

§ 2. Our considerations start from the fact that the mode of propagation
of light is affected by gravitational fields. In a gravitational field the propaga-
tion of light can thus not any more be regarded to be isotropic and the velocity
of propagation may vary both in time and with Jocation.

So as to be able to generalize the Lorentz principle to the case of
inhomogeneous mode of propagation of light we shall, as a first step, generalize
the Lorentz transformation to regions with homogeneous mode of propaga-
tion. In the present Part I of this work we shall give the generalization of the
Lorentz transformation to the case of unisotropic but what we shall call
homogeneous mode of propagation of light. In Part IT we shall further generalize
the Lorentz transformation to the case of inhomogeneous propagation of light.

It will be seen that the Lorentz principle when interpreted in terms of
the Lorentz transformation thus generalized yields essential parts of the
formalism of general theory of relativity.
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2 L. JANOSSY

In Part IIT we shall re-interpret the considerations of Einstein giving
the connection between gravitational field and its sources. We shall thus give
the connection between the mode of propagation of light and the sources of
gravitation.

With the considerations of Part III we shall arrive from our approach
at the whole of the mathematical formalism of the general theory of relativity.

§ 3. Let us consider part of space in which light is propagated uniso-
tropically so that the velocity of light in different directions should be different.
Let us suppose, however, that the directional distribution is the same in
different points and that it does not vary in time. Thus suppose that the
velocity of propagation of light can be written as

independent of r,¢
e(x) = xa(x) for fny direction % (1)
where ® is a unit vector.

Furthermore we shall restrict the function a(x). Supposing that light
is propagated unisotropically in the manner as we know light to be pro-
pagated in a homogeneous but unisotropic medium, we may suppose the
following connection between the vector r pointing from a point P to  and

the measure of time ¢ in which a signal starting from P reaches Q,

rGr — 32 =0, (2)

where G is a symmetric positive definite tensor with components Gy = Gy,
i,k =1,2,3 and ¢, is a velocity. The particularcase G = 1, ¢; = ¢, i.e. Gy =
= by corresponds to the isotropic propagation of light.

§ 4. So as to generalize (2) a little further, we may suppose that
the carrier of light moves with the constant velocity v relative to our sys-
tem. If we describe the propagation of light with respect to a system K’
in which the carrier of light is at rest, then we find for the coordinates of
the two points P and Q which are at rest with respect to the system K:

rp(t) = a — vt, (3)
ro(ty =a—vt+rf.

If a signal starts at t = ¢, from P and arrives at ¢t = 1, in  we have to write

(rp(t;) — rolt)) G (xp(t)) — xo(ts)) — €3, — t,)2 = 0.

Rewriting the above relation and writing ¢, — t; = ¢t we find with the help
of (3)
tGr + 2rVi — 22 = 0,
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THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, 1. 3

where we wrote Gv = V and ¢ = ¢ — vV. The above relation can also be
written

xgx =0, 4)
where we suppose x to be a four-vector with components

x=r,t
and g is a symmetric tensor of the fourth order with components

{6V

s=ly o 5)

In the following we shall ‘say that light is propagated homogeneously
in a region if the propagation inside all parts of this region can be described
by relation (4) and the tensor g has the form (5).

We suppose the components of g to be independent of x furthermore
we suppose —g,, = ¢ > 0.

A particular case of (4) and (5) is the case considered in previous
works, (see for instance [1]), i.e.

100 0
. 0100

x'x =0 with I' = 001 0 . (6)
00 0—c?

§ 5. Suppose relation (4) (with given elements of the tensor g) is valid
in the measures of a system of reference K. We can form transforms of the
coordinates, e.g.*

x' =81x, (7)

and inserting (7) into (4) we find

x'g'x' =0
~ . 8
e 5 | ®

ar

Thus taking the transformed coordinates to refer to a system K’ we see that
the propagation of light appears homogeneous also in the measures of K’
but the tensor g giving the detailed mode of propagation has in general
different elements in the representation relative to K’ than g representing

* The coordinate transformation itself may be an inhomogeneous transformation.

x as used in relation (4) expresses a four-distance, thus it can be taken as the difference between
two coordinate vectors e.g. x = Xp — Xg and thus its transformartion is homogeneous.
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4 L. JANOSSY

the propagation relative to K. (Here we denote by gothic symbols quan-
tities irrespective of their representation).

§ 6. In particular if we prescribe the elements of the matrix g’ we find
a transformation S which leads from g — g’ thus prescribed. Indeed, putting

S=g g 9)

(8) reduces to an identity. Thus the transformation with the matrix S as
defined by (9) seems to give one suitable transformation, however, the trans-
formation matrix S defined by (9) has in general complex elements. Writing
g as a hypermatrix in the form (5) and using an analogous notation for the
matrix g’ we find that a matrix S giving the transformation (8) can be
written
G%G"% G %G%HV —vi'/
0 c'fe )

S = (9a)

Since G and G’ are symmetric positive definite matrices, the matrix S as
defined by (9a) has real elements only. For v = v’ or more generally if

G%v' /e = Ghv/c
(9a) reduces to (9).*
Another transformation can be obtained as follows: denote by 0 and 0’
matrices with the help of which g respectively g’ can be brought into diagonal
form; thus suppose

0_1g 0= D, 0! g' 0 =D.

Thus remembering that O is an orthogonal matrix obeying 0 = 0~! we can
also put

S—=0'D'*%D-%0, (9hb)

and we find that (9b) also satisfies (8).
Both transformations (9a) and (9b) have the following features:
1) If g" -~ g then S —1.
2) The matrices thus defined are associative, i.e. if

§gS =g’ and S g'S =g
then we have also

g” — S\;Igsﬂ ,

* I amindebted to P. KIrRALY for drawing my attention to the fact that the definition (9)
leads to matrices § with complex elements and also for pointing out that the alternative
definition (9a) leads te transformation matrices with real elements only.
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THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, L 5

where S, 8§’ and S’’ are all three given either by expressions of the type (9a),
or all three are given by the expressions of the type (9b).
In particular we may put

g=r

and thus we find that in the measures of K’ the propagation appears isotropie.
Conversely even if the real propagation of light is isotropic we can construct
systems of references in which the propagation of light is characterized by an
arbitrarily given tensor g.

Thus from the fact that the propagation of light appears homogeneous
in one representation, it follows that it appears so in all other representations
which are obtained from the former by linear transformation. There exist
always among the possible representations such in which the propagation
appears isotropic.

§ 7. One infers from the above that it is impossible to determine the
elements of g from the result of measurement of the times of travels of signals
of light. That this is indeed impossible we show presently by a consideration
which is a generalization of considerations given earlier [4].

§ 8. We show presently that one can easily generalize the considerations
which we have given elsewhere [2] for the case of isotropic propagation of light.
Consider for this purpose a number of clocks near points Py, P, P,, ..., P,
We show that taking, say, the clock P, as standard, we can synchronize the
remaining clocks using light signals between the clocks and we can at the
same time express the components of the coordinate vectors ry, 7y, 7oy, . . ., T
of the position of the clocks in terms of the observed times of travels of
light signals.

§ 9. So as to carry out the above synchronization, suppose P, to be the
standard clock, we may synchronize the rates of the clocks P, k =1,2,...
by emitting signals with a period T from P, and adjust the rates of the clocks
P, k > 0 to the rythm of the signals thus received.

The procedure of synchronizing the rates of the clocks can be repeated
by emitting in turn periodic signals from the points P,, P,, ..., etc. and it is
to be expected that the signals thus emitted and received by the remaining
clocks appear to be periodic when timed with the receiving clocks.

The latter procedure can be taken as a test of the assumption that the
velocity of propagation of light is indeed constant in time and also a test of
the assumption that the clocks Py, k = 0, 1,2 are in positions at constant
distances from each other. Furthermore the possibility of synchronizing the
rates of the clocks in a consistent manner supports the assumption that the
rates of the clocks are constant indeed. We shall come back elsewhere to the
analysis of this problem in greater detail.
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6 L. JANOSSY

We suppose thus that the rates of the clocks Py, k= 0,1,2,... have
been successfully synchronized. We show how the coordinate vectors r, of the
positions of the clocks can be determined in terms of the times of travels of
signals between the clocks so synchronized.

§ 10. So as to obtain definite values for the coordinates we define a
system of reference with the help of the positions of four of the clocks. Let
us suppose that Py, P,, P,, P; lie on the corners of a non degenerated tetra-
hedron. We can take P, to fix the origin of K while the points P,, P,, P, fix
the direction of the axis of the system of reference K. In the system thus defi-
ned the coordinate vectors of the positions of the four clocks can be written

rp=0 r,=4,00, r,=0,a,,0; 1r,=0,0,a,. (10)

The numerical values of the components of the coordinate vectorry, k= 1,2, 3
can be determined from the times of travels of light signals provided the com-
ponents of g relative to K are known. This determination can be carried out
in the following manner.

Denote the time of travel of a signal from P, to P, by thm; denote
the return time from P, to P,, and back by

Iy m + pon = 2t (11)

further denote the difference

¢ - tm,n =2 Atnm (12)

n,m

(in the case of isotropic propagation of light we have of course A t,, — 0).
Writing for the moment

by =1, b=,

n,m 1 m,n 2 (13)

r, —r,=r,

then we have for the times of exchange of light signals between P, and P,

rGr+ 2Vry — c%2 =0, (a)} (14)

rGr — 2 Vrt, — ¢} = 0. (b)

Solving the above equations into #; and 1, we find using the notations (11),
(12) and remembering (13)

tim = (rGr)/c? + (Vr)¥/ct, (a)
At,,, = Vr/e2, (b) (15)

r=r, —r, (c)
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THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, L 7

In place of (15a) we may also write

3)
Czt%m = (l‘m - rn) g (rm - rn)’ (a)
where (16)

g=G+(VoVye  (b)

Observing the times t,,, nm = 0, 1,2, ... we are in a position to determine
the components of the coordinate vectors r,, n =1,2,3,.... In particular
forn=0,m=k=1,2,3 we find from (16) and (10)

)
a, = ctok/l/gkk, E=1,2,3. (17)

Further introducing a vector D™ with components

t2 . t2 —t2
D — 2 tn = fon 7 ok k=1,2,3. (18)
We find from (16a)
©)
r, =g 1D n=20,1,2,... (18a)

However, (18a) gives only a necessary condition which the coordinates r,
have to satisfly. Whether the coordinates as given by (18a) in terms of the
return times indeed satisfy the relations (16) has to be ascertained separately.

We consider the procedure in some more detail. Considering the four
points Py, k = 0, 1, 2, 3 and a fifth point P;, I > 3, we may observe twenty
return times between the various pairs of the five points. It follows from (16)
that we must expeect

tam = ton- nm=0,1,2,3,1. (19)
Equ. (19) gives thus ten conditions which have to be fulfilled by the observed
return times if our assumptions about the mode of propagation of light is
to be correct. .

Supposing (19) to be fulfilled by the observed values, equ. (16a) pro-
vides us with further ten conditions. However, inserting (18) into (16a) re-
membering (17) nine out of the ten relations reduce to identities and we are
left with one non trivial relation, i.e.

3
Ay =rgr;. (20)

The above relation gives thus a further check of consistency of our assumptions.
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8 L. JANOSSY

One further check is obtained if we consider the time a signal takes
to go round a triangle formed of three points. Writing thus

Yo = B0+ bym bk

we find with the help of (12)

tiam — b = 2(4ty - Aty 4 Aty,)

and with the help of (15b) and (15¢) we obtain

tam = Tyt - (21)

The above relation can be checked directly by experiment.

If all the checks described above lead to satisfactory results then we
may conclude: The fact that the rates of the clocks can be synchronized
consistently, further the facts that (19), (20), and (21) are obeyed by the
observed times of travels of signals support the hypothesis that in the region
considered light is propagated homogeneously with a propagation tensor g.

However, the checks do not really prove that the propagation tensor
has indeed the value g used for the determination of the coordinates r,.
Indeed, had we supposed that the propagation was not given by g but by

a tensor

g :§gS,

where S is a matrix with constant elements and det S 5= 0, then the procedure
described above would have led to coordinate vectors

r, =81r,. (22)

It is verified easily that provided the r, obtained assuming the propagation
to be given by g satisfy the checks described above, then automatically the
coordinate vectors r; satisfy the corresponding relations involving the ten-
sor g’'. We see therefore that the analysis of times of travel of light signals can
be used to ascertain whether or not light is propagated homogeneously, but no
information can be obtained as to the components of the propagation tensor g
Jrom such measurements.

It is interesting to note that it is usually strongly emphasized that
observing the return times of light signals one cannot determine the velocity
of the observer relative to the carrier of light.

We see from the above considerations that the latter statement con-
tains only part of the real facts. The velocity of the observer relative to the
carrier of light is contained in the components Vj = gy, k= 1,2,3 of g.
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THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, I. 9

As, however, none of the components of g can be determined by the exchange
of light signals, it follows that the observation of times of travels of signals are
also unsuitable to determine whether or not light is propagated isotropically
relative to its carrier. Thus the ambiguity of the interpretation of the results
is considerably larger than it is usually supposed to be.

§ 11. We may define as the measure r,, of the distance between the
points P, and P, as

)
Tnm = Cloy = (T gl‘nm)%- (23)

The above relation in itself is a mere definition and has no physical contents.
So as to obtain a physical statement we may take a solid rod 4B, fix one of
its ends A in the point P, and turn it round into different directions. The
end B of the rod thus will take up points upon a surface given by coordinate
vectors

r(0) =1, + 109), (24)

where % is a two-component parameter defining the various orientations of
the rod. Determining the 1(x) by observing the behaviour of a real rod, we
conclude from (23) and (24)

@3
16) = (166) g 1)

where 1(x) is the measure of the length the rod takes up when is pointed into
the direction defined by x.

From experiments of the Michelson—Morley type it follows that the
return time of a light signal travelling between the ends of a solid rod is not
affected if the rod is turned round. This experimental result may be expressed
by stating that for a solid rod turned round adiabatically we have

I(x) =1 = independent of x (25)

The latter relation implies that when it is turned round physical processes
take place which make the solid rod to adapt itself to the measures obtained
from light signals and defined by (23).

The observed relation (25) can be taken as the first step in formulating
the Lorentz principle in its generalized form.

The Lorentz principle in the case of homogeneous propagation of light

§ 12. Let us consider a system of reference in which the propagation
of light can be described by
xgx =0, (26)

with a given tensor g. We may change the system of reference and thus
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10 L. JANOSSY

obtain new coordinates so that
x' = Mx. (27)

(The transformation must be taken in the homogeneous form as x and x’
represent four-distances.)
Introducing (27) into (26) we find

xﬁg Mx =x"gx’. (28)
We see thus that if the matrix M is such as to obey relation
MgM—=0g 0@-+0, (29)
then relation (26) written in terms of the coordinates x’ reduces to
x'gx' =0. (30)

We see therefore that there exists a set of systems of references K,
K’,... in all of which the propagation of light is expressed by the same
algebraic expression of the form (26), i.e. by the same propagation tensor g.

Relation (29) is the generalization of the definition of the Lorentz
matrices [1], [4], ie. of

ATA=or. (31)

In the following we shall restrict ourselves to consider transformations
with @ = 1.

§ 13. The matrices M obeying (29) connect thus the systems of reference
relative to which the propagation of light appears in the same form. The
transformations M form (like the Lorentz transformations) a group. Indeed
from

MgM = g (32)
follows, since det g = 0
detM=41. (33)

Thus M possesses a reciprocal. We find thus from (32)

M~ =g Mg, (34)
and therefore

MigM—=g. (35)
Thus if M is a generalized Lorentz matrix, then M~ is also such a matrix,
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THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, L i1

Furthermore we find that if two matrices M and N obey

ﬁgM =g and NgN =g
then we have also

(MN)gMN = g.

Thus the matrices M obeying (32) form indeed a greup.

§ 14. The generalized Lorentz transformation, which was introduced as
giving transformation between the coordinates of different system of reference,
can — just like the ordinary Lorentz transformation — be given a new
meaning.

Considering the inhomogeneous transformation

X* =MX + m, (36)

where we write capital X for a coordinate four vector so as to distinguish it
from the four-distances for which we wrote x.

We may consider X and X* as four-coordinates of two events, say €
and €* both coordinates relative to one system of reference K. Thus the
transformation (36) can be taken as to refer to coordinates relative to one
system of reference only and thus the transformation orders to an event ¢
represented by X another event §* represented by the coordinate X*.

Considering instead of a single event € some physical system £ con-
taining a number of points which may be also moving relative to each other,
then transforming the coordinates of the points B, By, ..., B of O we
obtain new points Pf, BF, ..., By forming a new physical system O*. The
system O* is obtained from £ by generalized Lorentz transformation. We may
write symbolically

(D)= D, (37)

where . #, is the operator describing the change from £, into £* and p stands
for the parameter characterizing the transformation. Relation (37) expressed
in its representation relative to a system K of reference may be written

(@) = Q* (38)
where

p=K(), Q=K(®), Q=KD"

are the representations of the various quantities relative to K.
Written more explicitly, if we denote the representation of the four-
coordinate vectors of a point B, of £ by x,

x; =M,x, + m y=1,2,..., 1. (39)
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12 L. JANOSSY

where M, is a matrix obeying the relation (32), the components of p are the
parameters specifying the transformation and m is a four-vector with constant
components.

§ 15. Considering the transition £ — *, i.e. the Lorentz deformation
with parameter g relative to a new system of reference, then we find

x,*=M,x, + m’ (40)
where we have

M, = M®©@ M, M@~ (41)

here M@ is the matrix of the coordinate transformation leading from K — K’
Thus the Iatter coordinate transformation written explicitly

x, = MWx, | p vr=12,..., n (42)
in place of the above relation we may also write
K’:L///(q)(K),

where we have denoted by M the inhomogeneous operator containing the
matrix M@ and the vector .

§ 16. From relation (41) we see how the deformation £ — Q* is re-
presented relative to various systems of references in which the propagation
tensor g has the same representation.

More precisely, we may state that the propagation of light in a certain
region of space is given by a tensor g. The representation of g relative to a
number of systems of references K, K’, ..., K'’ is the same, e.g.

K(g)= K'(g)=K"(g)=...=g.

Considering a coordinate transformation of the type

X =8X +s,
where
S8 =g+¢g.

We obtain from a system of reference K another system of reference K so
that in the latter the propagation of light is described by a tensor g.

From the system of reference K we can form a group of systems of
references K, K’,K’’, ... in each of which the tensor g has the same repre-
sentation g. The latter are connected by matrices M obeying the relation

ﬁgﬁzg.
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THE LORENTZ PRINCIPLE AND THE GENERAL THEORY OF RELATIVITY, I. 13

A Lorentz deformation £, — O* can be expressed by an operator of
the set M if we consider it in one of the representations K, K',K'',.. ..
We find easily that the connection between the operators M.and M is given by

M, =S-1M,S. (43)
Thus a Lorentz deformation £, = O* can be represented by a set of operators
M, .M, M,...

relative to systems of references K, K’, K’’, . . . in all of which g is represented
by a tensor g.
The same Lorentz deformation can also be represented by operators

1‘_Iq » ﬁq’ ’ ﬁq” 1)

relative to systems of references K, K’, K'’,... in which g appears to be
represented by a tensor g different from g.

Considering relations (41) and (43) we find an important common
feature of all the representations of a deformation £ — Q*. Indeed, the
matrices

M, M,,... .M, M., ...

have all the same eigenvalues.
The eigenvalues of a Lorentz matrix can be chosen to be of the form

(see [3])
P = [

c—v' | c+uw

we see thus that any representation of one Lorentz deformation has the same
eigenvalues characterized by the parameters ¢ and v. The latter result holds
— as we see — also in the case of wunisotropic propagation of light and
it holds also if we consider systems of references in which the propagation
tensor ¢ is represented by different matrices g, g, . . ., etc.

§ 17. We are now in a position to generalize the Lorentz principle to
the case of homogeneous but possibly unisotropic propagation of light.

We state: the laws of nature possess such symmetries that, provided £,
is a real physical system, then any Lorentz deformed form * = #p (D) of O*
is also a possible system obeying the same laws of as Q.

Furthermore, if a system £ is adiabatically accelerated then it changes
its configuration into a Lorentz deformed form of its original configuration.

The above formulation of the Lorentz principle regarding its form is
identical with the former formulation (see [2]). We have extended its content
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14 L. JANOSSY

by generalizing the Lorentz transformation to the case of unisotropic but
homogeneous propagation of light.

§ 18. We make a concluding remark. The formulation of the Lorentz
principle in its restricted form as was done in a previous work is based on the
failure of a series of experiments to observe effects of translational motion.
This failure is attributed to a peculiar symmetry of laws of nature which
symmetry causes that to any effect which might arise from the translational
motion relative to the aether, other effects appear which exactly compensate
the former. This symmetry itself could be described adequately by the Lorentz
principle.

The earlier considerations are based on the assumption that light is
propagated isotropically relative to its carrier, the aether.

The generalized considerations show that supposing light was after all
not carried isotropically in the aether but if the propagation be of the more
general type which we denoted as homogeneous, even then, the symmetry
discussed above might persist and this symmetry might prevent us not only
to locate the distinguished system of reference K, which is at rest to the carrier
of the light, but it equally prevents us to determine the propagation tensor g,
which describes the propagation of light relative to its carrier.

The extension of the symmetry properties of nature in this fashion is
based on pure speculation. Experimentally the adequacy of this extension
could be checked if we could carry out experiments, say with a Michelson
interferometer in a region of space where we have good reason to believe the
propagation of light to be unisotropic. If an experiment in such a region
were to lead to a negative effect in spite of the unisotropy, then this result
would directly justify the extension of the Lorentz principle.

At the moment such experiments do not exist. The generalization of the
Lorentz principle we have given here can be in spite of the lack of direct
evidence be justified.

Indeed, we shall show that the generalization of the Lorentz principle
we have given here is a necessary intermediate step to its further generaliza-
tion to the case of inhomogeneous propagation of light. In the case of the
inhomogeneous propagation of light observable effects are found and the
theory of these effects can be obtained by a straightforward further generaliza-
tion which we discuss in the second part of this paper.
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IMPUHLUIT JJOPEHIA Y OBUHIAY TEOPUS OTHOCUTEJIbBHOCTHU
Yacre L. )

JI, AHOWH

Peszwme

Hacrosimast paora siBsiercst nepBoit us Cepuu padoT, B KOTOPLIX Npefiaraercst ¢op-
MyJMpOBKa o0LeH TEOPUH OTHOCHTeNLHOCTH HA OCHOBE NpuHUMMa Jlopenua. B aToll nepeo#
yacTy npeobpasosanve JlopeHua ofofmaercst Taxk, Yro O0BO CTAHOBUTCS IPUMEHUMBIM K 00-
JIACTSIM MPOCTPAHCTRA, i€ CBET PacrpOoCTPaHsIeTCsl OZHOPOAHO, HO ObITh MOYKET HEUSOTPOIHO.
ITokasano, uTo 1Jist Takux obnacrel npuHimn JIopeHUA 0CTaeTCst BepHBIM B CBOEH 00bIMHOM
¢opme.
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