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This paper is the first of a series in which the formulation of the general theory of 
relativity in terms of the Lorentz principle is attempted. In this first part the Lorentz trans- 
formation is generalized so as to be applicable to parts of space where light is propagated 
homogeneously but possibly unisotropically. It is shown that the Lorentz principle in its 
ordinary form remains valid for such regions. 

Introduct ion 

w 1. In  the  presen t  art icle we show t h a t  the  Loren tz  principle which 
we have  f o r m u l a t e d  in a n u m b e r  of  papers  [1 ] - - [4 ]  can be general ized so as 
to  app ly  to the  p rob lems  of  general  re la t iv i ty .  J u s t a s  in the  case of  the  special 
t heo ry ,  in the  general ized fo rm the  principle leads to a m a t h e m a t i c a l  fo rmal i sm 
equiva len t  to t h a t  of the  general  t heo ry  of  re la t iv i ty .  The  app roach  th rough  
the  general ized Loren tz  principle gives, however ,  new physical  aspect  to the  
problems.  In  pa r t i cu la r  a l though the  m a t h e m a t i c a l  formal i sm of  R i e m a n n  
g e o m e t r y  is made  use of  the  concept  of  cu rved  space is left out  of  the  con- 
siderat ions.  We hope to  come back  to the  phi losophical  aspects  of  the  p rob lem 
elsewhere,  here we t r y  to  res t r ic t  ourselves to  such an ex ten t  as possible to 

phys ica l  considerat ions only.  
w 2. Our considerat ions  s t a r t  f rom the  fac t  t h a t  the  mode  of p ropaga t i on  

of l ight  is affected b y  g rav i t a t iona l  fields. In  a g rav i t a t iona l  field the  p ropaga -  
t ion of l ight can thus  not  any  more  be regarded  to be isotropic and the  veloci ty  
of  p ropaga t ion  m a y  v a r y  bo th  in t ime  and wi th  location.  

So as to be able to generalize the  Loren tz  principle to the  case of  
inhomogeneous  mode  of p ropaga t ion  of l ight we shall, as a first  s tep,  generalize 
the  Lorentz  t r a n s f o r m a t i o n  to regions wi th  homogeneous  mode of p ropaga-  
t ion.  I n  the  present  P a r t  I of  this work  we shall  give the  general izat ion of  the  
Loren tz  t r an s fo rma t ion  to the  case of unisot ropic  bu t  wha t  we shall call 
homogeneous  mode  of p ropaga t i on  of light. In  P a r t  I I  we shall fu r the r  generalize 
the  Lorentz  t r a n s f o r m a t i o n  to the case of  inhomogeneous  p ropaga t i on  of light. 

I t  will be seen t h a t  the  Lorentz  principle when in te rp re ted  in t e rms  of 
the  Lorentz  t r an s fo rma t ion  thus  general ized yields essential  pa r t s  of  the  

fo rmal i sm of general  t heo ry  of re la t iv i ty .  
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I n  P a r t  I I I  we shall r e - i n t e r p r e t  t he  cons ide ra t ions  of  E ins t e in  g iv ing  
the  c o n n e c t i o n  be tween  g r a v i t a t i o n a l  field and  its sources .  We shall  t hus  g ive  
t he  c o n n e c t i o n  be tween  the  m o d e  of  p r o p a g a t i o n  o f  l igh t  and  t he  sources  o f  

g r av i t a t i on .  
W i t h  t h e  cons idera t ions  o f  P a r t  I I I  we shall  a r r ive  f rom our  a p p r o a c h  

at  the  whole  o f  the  m a t h e m a t i c a l  fo rma l i sm of  the  genera l  t h e o r y  of  r e l a t iv i ty .  
w 3. L e t  us cons ider  p a r t  o f  space in which  l igh t  is p r o p a g a t e d  uniso-  

t rop ica l ly  so t h a t  the  ve loc i ty  o f l i g h t  in d i f ferent  d i rec t ions  should  be d i f ferent .  

Le t  us suppose ,  however ,  t h a t  t h e  d i rec t ional  d i s t r i bu t i on  is the  same  in 

d i f ferent  po in t s  and  t h a t  it does no t  v a r y  in t ime.  T h u s  suppose  t h a t  t he  

ve loc i ty  o f  p r o p a g a t i o n  of  l ight  c a n  be wr i t t en  as 

i n d e p e n d e n t  o f  r, t 
c(• = •215 for  a n y  d i rec t ion  • (1) 

where  • is a uni r  vec to r .  
F u r t h e r m o r e  we shall  r e s t r i c t  t he  f u n c t i o n  a(x). Suppos ing  t h a t  l ight  

is p r o p a g a t e d  un i so t rop ica l ly  in t he  m a n n e r  as we k n o w  l ight  to  be pro-  

p a g a t e d  in a h o m o g e n e o u s  b u t  un i so t rop ic  m e d i u m ,  we m a y  suppose  t h e  

fo l lowing c o n n e c t i o n  be tween  t he  v e c t o r  r po in t i ng  f r o m  a po in t  P to  Q and  
the  m e a s u r e  o f  t ime  t in wh ich  a s ignal  s t a r t i n g  f rom P reaches  Q, 

rGr - -  Co t2 -~ O, (2) 

where  G is a s y m m e t r i c  pos i t ive  def in i te  t enso r  w i th  c o m p o n e n t s  Gik = Gki, 

i, k = 1, 2, 3 and  c o is a ve loc i ty .  T h e  pa r t i cu l a r  case G -~ 1, c o = c, i.e. Gik = 

= �91 eo r re sponds  to  the  i so t rop ic  p r o p a g a t i o n  o f  l ight .  
w 4. So as to  general ize  (2) a l i t t le  fu r the r ,  we  m a y  suppose  t h a t  

t he  carr ier  o f  l ight  moves  wi th  t he  c o n s t a n t  ve loc i t y  v re la t ive  to  our  sys-  
te ta .  I f  we descr ibe  t he  p r o p a g a t i o n  of  l ight  wi th  r e spec t  to  a s y s t e m  K '  

in wh ich  t h e  carr ier  o f  l ight  is a t  rest ,  t h e n  we f ind  for  the  coord ina tes  o f  

the  two  po in t s  P and  Q wh ich  a te  a t  t es t  w i th  r e spec t  t o  the  s y s t e m  K :  

rŸ = a - -  vt, I 

r~(t) = a - -  vt ~- t i  �9 
(3) 

I f  a signa] s t a r t s  at  t = t 1 f rom P and  arr ives  at  t = t 2 in Q we b a v e  to  wr i t e  

(rŸ - -  r~(t2) ) G (rŸ - -  r ~ ( t 2 )  ) - -  c~)(t 1 - -  t 2 ) 2  = 0. 

R e w r i t i n g  t he  above  re la t ion  a nd  wr i t ing  t 2 ~ t 1 --~ t we f ind  wi th  the  help 

o f  (3) 
rGr A- 2 rV t - -  c2 t  2 ~ O,  
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w h e r e  we w r o t e  Gv = V a n d  c 2 = - c  2 - - v u  T h e  a b o v e  r e l a t i o n  can  a lso  be  

w r i t t e n  

xgx  = 0, (4) 

w h e r e  we s u p p o s e  x to  be  a f o u r - v e c t o r  w i t h  c o m p o n e n t s  

x = r , t  

a n d  g is a s y m m e t r i c  t e n s o r  o f  t h e  f o u r t h  o r d e r  w i t h  c o m p o n e n t s  

tG v) (5) 
g = [V - -  c 2 " 

I n  t h e  fo l l owing  we  sha l l  s a y  t h a t  l i g h t  is p r o p a g a t e d  h o m o g e n e o u s l y  

in  a r eg ion  i r  t h e  p r o p a g a t i o n  ins ide  al l  p a r t s  o f  t h i s  r eg ion  c a n  b e  d e s c r i b e d  

b y  r e l a t i o n  (4) a n d  t h e  t e n s o r  g has  t h e  f o r m  (5). 

W e  s u p p o s e  t h e  c o m p o n e n t s  of  g t o  be  i n d e p e n d e n t  o f  x f u r t h e r m o r e  

we  s u p p o s e  --g4~ = c2 > 0. 

A p a r t i c u l a r  case  o f  (4) a n d  (5) is t h e  case  e o n s i d e r e d  in  p r e v i o u s  

works ,  (see for  i n s t a n e e  [1]) ,  i .e .  

1 0 0  0 (Oo~O OoI x r x  = 0 w i t h  P = 0 1  " (6) 

0 0  0 - - c  2 

w 5. S u p p o s e  r e l a t i o n  (4) ( w i t h  g i v e n  e l e m e n t s  o f  t h e  t e n s o r  g) is v a l i d  

in  t h e  m e a s u r e s  o f  a s y s t e m  of  r e f e r ence  K .  W e  can  f o r m  t r a n s f o r m s  o f  t h e  

c o o r d i n a t e s ,  e.g.* 

x '  = S -1  x, (7)  

a n d  i n s e r t i n g  (7) i n t o  (4) we f i n d  

g ' = S g S  / 

T h u s  t a k i n g  t h e  t r a n s f o r m e d  c o o r d i n a t e s  t o  r e f e r  t o  a s y s t e m  K '  w e  see  t h a t  

t h e  p r o p a g a t i o n  o f  l i g h t  a p p e a r s  h o m o g e n e o u s  also in  t h e  m e a s u r e s  o f  K '  

b u t  t h e  t e n s o r  $ g i v i n g  t h e  d e t a i l e d  m o d e  o f  p r o p a g a t i o n  h a s  in  g e n e r a l  

d i f f e r e n t  e l e m e n t s  in  t h e  r e p r e s e n t a t i o n  r e l a t i v e  to  K '  t h a n  g r e p r e s e n t i n g  

* The coordinate transformation itself may be an inhomogeneous transformation. 
x as used in relation (4) expresses a four-distance, thus ir can be taken as the difference between 
two coordinate vectors e.g. x = x p -  xQ and thus its transformation is homogeneous. 

1. Acta Physica Academiae Scir Hungaricae 21, 1966 



4 L. J�93 

the  p ropaga t ion  relat ive to K.  (Here  we denote  b y  gothic symbols quan-  
ti t ies i r respect ive of  their  representat ion) .  

w 6. In  par t icular  ir we prescribe the elements of  the  ma t r ix  g '  we f ind 
a t r ans format ion  S which leads f rom g -+ g '  thus  prescribed.  Indeed,  pu t t ing  

S = g -1/2 g,'/2 (9) 

(8) reduces to  an ident i ty .  Thus  the t rans format ion  with the ma t r ix  S as 
defined by  (9) sectas to give one suitable t r ans fo rmat ion ,  however,  the t rans-  
fo rmat ion  ma t r ix  S defined by  (9) has in general complex  elements.  Wri t ing 
g a s a  h y p e r m a t r i x  in the form (5) and using ah analogous no ta t ion  for the  
ma t r ix  g '  we find t ha t  a ma t r i x  S giving the t rans format ion  (8) can be 
wr i t ten  

s : ( G - ~ G ' ~  G - ~ G ' ~ v ' - - v c ' / c l .  (9a) 
~ o c'/c J 

Since G and G' are symmetr ic  posit ive definite matr ices ,  the  ma t r ix  S as 
defined by  (9a) has real elements only. For  v = v '  or more generally if 

f;'~ v'/c' = C,~ v/c 
(9a) reduces to (9).* 

Ano the r  t ransformat ion  can be obta ined  as follows: denote  by  O and O' 
matr ices wi th  the help of which g respect ively  g '  can be brought  into diagonal  
forro; thus  suppose 

0 - 1 g  0 ---: D, 0 ' - - l g '  0 ' : D ' .  

Thus remember ing  t ha t  O is ah or thogonal  ma t r ix  obeying ~ = O-  1 we can 
also pu t  

S = O' D ' ~ D - ~  O, (9b) 

and we f ind t ha t  (9b) also satisfies (8). 

Bo th  t ransformat ions  (ga) and  (9b) have the following features:  
1) I f g ' - + g  then  S - - ~ l .  
2) The  matriees thus defined are associative, i.e. ir  

then  we have  also 

S g S = g '  and S ' g ' S ' = g "  

g" = ~ ' g S " ,  

* I aro indebted to P. KIR�93 for drawing my attention to the fact that the definition (9) 
leads to matrices S with complex elements and also for pointing out that the alternative 
definition (9a) leads to transformatioxt matrices witla real e]ements only. 
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where S, S' and S "  are all three  given ei ther  by  expressions of  the  type  (9a), 
or all three are given by  the expressions of  the type  (9b). 

In par t icu lar  we may  pu t  

g ' ~ F  

and thus we f ind t ha t  in the measures of K '  the  propagat ion  appears  isotropic. 
Conversely even ir the  real p ropagat ion  of l ight is isotropic we can const ruct  
systems of references in which the  propaga t ion  of l ight is character ized b y  ah 
arbi t rar i ly  given tensor  g. 

Thus f rom the  fac t  t ha t  the  propaga t ion  of l ight appears homogeneous  
in one representa t ion,  ir follows t ha t  it appears  so in all other  representa t ions  
which are obta ined f rom the former  by  l inear  t ransformat ion .  There  exist 
always among the possible representa t ions  such in which the  propagat ion  

appears  isotropic. 
w 7. One infers f rom the  above t ha t  ir is impossible to de te rmine  the 

elements of g f rom the  result  of measuremen t  of the t imes of t ravels  of signals 
of  light. Tha t  this is indeed impossible we show present ly  by  a considerat ion 
which is a general izat ion of considerat ions given earlier [4]. 

w 8. We show present ly  t h a t  one can easily generalize the  considerat ions 
which we have given elsewhere [2] for the case of isotropic p ropaga t ion  of light. 
Consider for  this purpose a number  of clocks near  points Po, P i ,  P2 . . . . .  pn .  

We show tha t  taking,  say, the clock Po as s tandard ,  we can synchronize  the 
remaining clocks using light signals be tween the  clocks and we can at  the 
same t ime express the  components  of the eoordinate  vectors  ro, r 1, r 2 , . . . ,  rn 

of  the posit ion of the  elocks in terms of the  observed t imes of  t ravels  of 

l ight signals. 
w 9. So as to ca r ry  out  the  above synchroniza t ion ,  suppose Po to be the 

s t andard  clock, we m a y  synchronize  the rates of the  clocks Pk k = 1, 2 . . . .  
by  emit t ing signals wi th  a period T from Po and adjust  the rates  of the clocks 
Pk k > 0 to  the r y t h m  of  the signals thus  received.  

The procedure  of synchronizing the rates of the clocks can be repeated  
by  emit t ing in tu rn  periodic signals from the  points /)1, P2 . . . .  , etc. and i t i s  
to be expected tha t  the  signals thus emi t t ed  and received by  the  remaining 
clocks appear  to be  periodic when t imed  wi th  the receiving clocks. 

The la t ter  procedure  can be taken  a s a  tes t  of the  assumption tha t  the 
veloci ty  of p ropaga t ion  of light is indeed cons tant  in t ime and also a tes t  of 
the  assumption t ha t  the  clocks Pk, k = 0, 1, 2 are in positions at  cons tant  
distances f rom each other .  Fu r the rmore  the  possibili ty of synchronizing the 
rates of the  clocks in a eonsistent  manner  supports  the  assumption t h a t  the  
rates  of the clocks ate cons tant  indeed. We shall come back elsewhere to the 
analysis of this problem in greater  detail. 
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W e  suppose  t h u s  t h a t  t he  r a t e s  of  the  clocks Pk, k = 0, 1, 2 . . . .  h a v e  

been  suecessfu l ly  synchron ized .  W e  show how the  c o o r d i n a t e  vec to r s  rk of  t he  

pos i t ions  o f  t h e  clocks can be d e t e r m i n e d  in t e rms  of  t h e  t imes  o f  t rave ls  o f  
signals b e t w e e n  the  clocks so s y n c h r o n i z e d .  

w 10. So as to  ob ta in  def in i te  values  for  the  coo rd ina t e s  we define a 
s y s t e m  of  reference  wi th  the  help  o f  the  posi t ions  o f  f o u r  of  t he  clocks.  Le t  

us suppose  t h a t  Po, P1, P2 , / ' 3  lie on  the  corners  o f  a n o n  d e g e n e r a t e d  t e t r a -  
hedron .  W e  can  t a k e  Po to  f ix t h e  origin of  K while t h e  po in t s  P1, P2, Pa f ix  
t he  d i ree t ion  o f  the  axis of  the  s y s t e m  of  reference  K.  I n  t h e  s y s t e m  thus  defi- 

ned  t he  c o o r d i n a t e  vec to r s  o f  t h e  pos i t ions  of  the  f o u r  clocks can  be wr i t t en  

r o = 0; r I = a 1, 0, 0; r 2 ~ 0, a2, 0; r 3 ~ 0,  0, a 3 . (1 0) 

T h e  n u m e r i c a l  va lues  o f  the  c o m p o n e n t s  o f  the  c o o r d i n a t e  r e c t o r  rk, k ----- 1, 2, 3 

can  be d e t e r m i n e d  f r o m  the  t imes  o f  t rave ls  of  l ight  s ignals  p r o v i d e d  the  com-  

p o n e n t s  o f  g re la t ive  t o  K are k n o w n .  This  d e t e r m i n a t i o n  can  be car r ied  ou t  
in t he  fo l lowing  m a nne r .  

D e n o t e  t he  t ime  of  t r a v e l  o f  a s ignal  f r o m  P n  t o  P m  b y  tn,m; deno te  
t he  r e t u r n  t i m e  f rom P n  to  Pro a n d  b a c k  b y  

tn, m -+- tm, ~ = 2 tnm (11) 

f u r t h e r  d e n o t e  the  difference 

tn, m - -  tm, n = 2 Atnm (12) 

(in the  case o f  i so t ropic  p r o p a g a t i o n  of  l ight  we h a v e  o f  course  z] tn m 

W r i t i n g  fo r  t h e  m o m e n t  

tn, m ~-  t i ,  tm, n ~ t2, 

r m :-- r n = r, 

= 0). 

(13) 

t h e n  we h a v e  for  t he  t imes  o f  e x c h a n g e  of  l ight  s ignals  be tween  P n  and  Pro 

rGr + 2 Vrt,  - -  c2t 2 = 0, (a)] (14) 

rGr - -  2 Vrt  2 - -  c2t 2 = 0. (b)} 

Solv ing  t h e  a b o v e  equa t ions  in to  t 1 a nd  t 2 we f ind  us ing  the  n o t a t i o n s  (11), 
(12) and  r e m e m b e r i n g  (13) 

t2m = (rGr)/c 2 ~- (Vr)2/c 4, (a)} 
/ 

~tnm = Vr/c2, ( b ) [  

r = r,n - -  rn. ( e ) ]  

(15) 
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I n  p lace  of  (15a) we m a y  also wr i t e  

w h e l - e  

(3) 
c2t2m = (rm - -  rn) g ( r m - -  r , ) ,  (a) 

(3) 

g = G + (Vo V)/c2. (b) 

(16) 

O b s e r v i n g  t h e  t imes  tnm, n m  ~- 0, 1, 2 . . . .  we  a te  in a pos i t ion  to  d e t e r m i n e  
t h e  c o m p o n e n t s  of  t h e  c o o r d i n a t e  v e c t o r s  rn, n = 1, 2, 3 , . . . .  I n  p a r t i c u l a r  
fo r  n = 0, m = k = 1, 2, 3 we f ind  f r o m  (16) and  (10) 

ak = Ctok/l~ gkk, k = I ,  2, 3. 

F u r t h e r  i n t r o d u c i n g  a v e c t o r  D (n) w i th  c o m p o n e n t s  

(17) 

D(n) = c2 t~n - -  t~n - -  t2k k = 1, 2, 3. (18) 
2 ak 

W e  f ind  f r o m  (16a) 
(3) 

rn = g -1  D(n) n = 0, 1, 2 , . . .  (18a) 

H o w e v e r ,  ( 1 8 a ) g i v e s  o n l y  a n e c e s s a r y  cond i t i on  wh ich  the  c o o r d i n a t e s  rn 
h a v e  to  satiss W h e t h e r  t he  c o o r d i n a t e s  as g iven  b y  (18a) in t e r m s  o f  the  
r e t u r n  t imes  indeed  s a t i s fy  t he  r e l a t ions  (16) has  to  be  a s c e r t a i n e d  s e p a r a t e l y .  

W e  cons ider  t he  p r o c e d u r e  in s o m e  m o r e  deta i l .  Cons ider ing  the  four  
p o i n t s  Pk, k = 0, 1, 2, 3 a n d  a f i f th  p o i n t  Pi,  l > 3, we  m a y  o b s e r v e  t w e n t y  
r e t u r n  t imes  b e t w e e n  t h e  va r i ous  pa i rs  o f  t he  f ive  po in t s .  I t  fol lows f r o m  (16) 
t h a t  we m u s t  e x p e e t  

tnm ~ tren. n, m = 0, 1, 2, 3, l. (19) 

E q u .  (19) gives  t hus  t e n  cond i t ions  wh ich  h a v e  to  be  fulf i l led b y  t h e  o b s e r v e d  
r e t u r n  t imes  ir our  a s s u m p t i o n s  a b o u t  t h e  m o d e  of  p r o p a g a t i o n  of  l ight  is 
t o  be  cor rec t .  

S u p p o s i n g  (19) to  be  fulf i l led b y  the  o b s e r v e d  va lues ,  equ .  (16a) p ro-  
v ides  us w i t h  f u r t h e r  t e n  condi t ions .  H o w e v e r ,  i n se r t i ng  (18) i n to  (16a) re- 
m e m b e r i n g  (17) n ine  ou t  o f  t he  t e n  r e l a t ions  r educe  to  iden t i t i e s  a n d  we are  
le f t  w i th  one n o n  t r i v i a l  r e la t ion ,  i.e. 

(3) 
c2t~l = r l g r~. (20) 

T h e  a b o v e  r e l a t i on  g ives  t h u s  a f u r t h e r  check  of  c o n s i s t e n c y  of  our  a s s u m p t i o n s .  
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One fu r the r  check is ob ta ined  if we consider the  t ime a signal takes  
to go round  a tr iangle formed of three  points.  Wri t ing thus  

tklm = tk, l -{- tt, m q- tm, k 

we find wi th  the help of (12) 

tklm - -  tkml = 2(At, l  + Atlm q- Atmk) 

and with the  help of  (15b) and (15c) we obtain 

tklm = tkm t �9 (21) 

The above relat ion can be checked direct ly  b y  exper iment .  
I f  all the  ehecks described above lead to sa t i s fac tory  results then  we 

m a y  conelude:  The fact  t ha t  the  rates  of the eloeks can be synchronized 
eonsistent ly,  fu r the r  the  facts t ha t  (19), (20), and (21) are obeyed b y  the  
observed t imes of t ravels  of signals suppor t  the  hypothes is  t ha t  in the  region 
eonsidered l ight  is p ropaga ted  homogeneously  with a p ropaga t ion  tensor  g. 

I-Iowever, the checks do no t  real ly  p rove  t h a t  t he  propaga t ion  tensor  
has indeed the  value g used for the  de te rmina t ion  of  the coordinates  r n. 
Indeed,  had  we supposed t ha t  the  propagat ion  was no t  given b y  g bu t  b y  
a tensor  

g' = SgS, 

where S is a ma t r ix  with cons tan t  elements and det  S =/= 0, then the procedure  
described above  would have led to  coordinate  vectors  

i 
rn ~ S -1 rn. (22) 

I t  is ver i f ied easily t ha t  p rovided  the  rn obta ined assuming the  p ropaga t ion  
to  be given by  g sat isfy the checks described above,  t h en  au tomat ica l ly  the  
eoordinate  vectors  r~ satisfy the  corresponding relat ions involving the ten-  
sor g' .  We see therefore  tha t  the analys i s  o f  t imes o f  travel o f  light signals can 
be used to ascertain whether or not light is propagated homogeneously,  but no 

in format ion  can be obtained as to the components  o f  the propagat ion  tensor g 
f r o m  such measurements .  

I t  is interest ing to no te  t h a t  it is usual ly s t rongly  emphasized t h a t  
observing the  re turn  t imes of l ight signals one cannot  de termine  the  ve loc i ty  
of the observer  re la t ive to  the  carr ier  of light. 

We see from the  above considerat ions t h a t  the  l a t t e r  s t a t emen t  con- 
tains only par t  of the real facts.  The  veloci ty  of the  observer  re la t ive to  the  
carrier  of l ight  is contained in the  components  Vk ~ g4k, k ~ 1, 2, 3 of g. 
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As, however,  none of the  eomponents  of g can be de termined  b y  the  exehange 
of  light signals, it follows tha t  the observation o f  t imes o f  travels o f  signals ate 

also unsuitable to determine whether or not light is propagated isotropicaUy 

relative to its carrier. Thus the ambigui ty  of the  in te rpre ta t ion  of the results 
is considerably larger t han  it is usual ly supposed to be. 

w 11. We may  define as the  measure mm of the  distance between the 
points Pn and Pro as 

(3) 
rnr n = Ctnr n = (rnm grnrn) ~/2. (23) 

The above relat ion in i tself  is a mere defini t ion and has no physical  contents .  
So as to obtain a physical  s t a t emen t  we m a y  take  a solid rod A B,  f ix one of 
its ends A in the point  q and tu rn  it  round  into different  directions. The 
end B of the rod thus  will t ake  up points upon a surface given b y  coordinate  
vectors  

r(• = r n ~- l (x ) ,  (24) 

where x is a two-componen t  pa rame te r  defining the various or ienta t ions  of 
the  rod. Determining the  l(x) by  observing the  behaviour  of a real rod, we 
eonelnde f rom (23) and (24) 

(3) 
1(• = (1(• g l(x))~~ 

where l(x) is the measure  of the length the  rod takes up when is po in ted  into 
the  direct ion defined by  x. 

F rom exper iments  of the Michelson--Morley type  ir follows t h a t  the 
r e tu rn  t ime of a l ight signal t ravel l ing be tween the ends of a solid rod is not  
affected ir the  rod is t u rned  round.  This exper imenta l  result  m a y  be expressed 
by  stat ing tha t  for a solid rod tu rned  round  adiabat ical ly  we have  

l(x) = 1 = independent  of x (25) 

The la t te r  relat ion implies t ha t  when ir is tu rned  round  physical  processes 
t ake  place which make  the solid rod to  adap t  itself to  the measures obta ined 
f rom light signals and defined by  (23). 

The observed re la t ion (25) can be t aken  as the first  step in formula t ing  
the  Lorentz  principle in its generalized forro. 

The Lorentz principle in the case of homogeneous propagation of light 

w 12. Let  us consider a system of referenee in whieh the propagat ion  
of light can be deseribed by  

xgx = O, (26) 

with a given tensor  g. We may  ehange the  system of referenee and t h u s  
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obtain new coordinates so t ha t  
X t ~ M x .  (27) 

(The t rans format ion  must  be t aken  in the homogeneous  forro as x and x '  
represent  four-distances.)  

In t roduc ing  (27) into (26) we f ind 

xMg Mx = x' gx' .  (28) 

We see thus  tha t  ir the  ma t r ix  M i s  such as to  obey relat ion 

~IgM = Og 0 ~= 0, (29) 

then  re la t ion (26) wr i t ten  in t e rms  of the  coordinates x '  reduces to 

x 'gx '  = 0.  (30) 

We see therefore  t ha t  the re  exists a set of sys tems of references K,  
K ' , . . .  in all of which the propaga t ion  of light is expressed by  the same 
algebraic expression of the forro (26), i.e. b y  the  same propagat ion  tensor  g. 

Rela t ion  ( 2 9 ) i s  the general izat ion of the defini t ion of the  Lorentz  
matr ices [1], [4], i.e. of 

~,rA ~ o f .  (31) 

In  the  following we shall res t r ic t  ourselves to consider t ransformat ions  
with O = + 1. 

w 13. The  matrices M obeying (29) connect  thus the  systems of reference 
relat ive to which the propagat ion  of light appears in the  same form.  The  
t ransformat ions  M forro (like the  Lorentz  t ransformat ions)  a group. Indeed  
f rom 

l~gM = g (32) 

follows, since det g # 0 

d e t M  = ~ 1.  (33) 

Thus M possesses a reciprocal.  We find thus from (32) 

and therefore  

M--1 = g-1 ~ g ,  (34) 

~1-1 g M -1  = g .  (35) 

Thus if M i s  a generalized Loren tz  matr ix ,  then  M -1  is also such a mat r ix .  
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Fur the rmore  we find t ha t  ir two matr ices  M and N obey 

M g M = g  and � 9  

then  we have also 

( ~ N )  g MN = g .  

Thus the  matr ices  M obeying (32) forro indeed a group. 
w 14. The generalized Lorentz  t rans format ion ,  which was in t roduced  as 

giving t rans format ion  between the  coordinatcs  of different  sys tem of reference, 
can - -  jus t  ]ike the  ord inary  Lorentz  t r ans fo rmat ion  --  be given a new 
meaning.  

Considering the inhomogeneous t rans format ion  

X* = MX + m ,  (36) 

where we write capi ta l  X for a eoordinate  four  r e c t o r  so as to  distinguish it 
f rom the s for  which we wrote  x. 

We m a y  consider X and X* as four-coordinates  of two events,  say 5 
and 5 "  bo th  eoordinates  re la t ive to one sys tem of reference K. Thus  the 
t rans format ion  (36) can be t aken  as to refer  to  coordinates re la t ive  to  one 
sys tem of referenee only and thus  the  t r ans fo rmat ion  orders to  an event  5 
represented  by  X ano ther  event  5"  represented  by  the  coordinate  X*. 

Considering ins tead of a single even t  5 some physical  sys tem ~ con- 
ta ining a number  of points whieh may  be a]so moving relat ive to  each other,  
t hen  t ransforming the  eoordinates of the  points ~1, ~2 . . . . .  Un of  ~ we 
obta in  new points ~*,  ~* . . . . .  ~* forming a new physical  sys tem ~* .  The 
sys tem ~ *  is obta ined  f rom ~ by  generalized Lorentz  t ransformat ion .  We m ay  
write symbolical ly 

U ~ ~ ( ~ )  = ~ * ,  (37) 

where ~ ~  is the opera tor  describing the  change from ~ into ~ *  and p s tands 
for the pa rame te r  character iz ing the t ransformat ion .  Relat ion (37) expressed 
in its representa t ion  relat ive to a sys tem K of reference m ay  be wri t ten  

U/~~ (Q) = Q* (38) 

where 

p = K ( p ) ,  Q -~ K ( ~ ) ,  Q* --- K ( ~ * )  

are the representa t ions  of the various quant i t ies  re la t ive to K.  
Wr i t t en  more explicit ly,  ir we denote  the  representa t ion  of the four- 

coordinate  veetors  of  a point  ~v of ~ by  x~ 

x~* ~ M r x~  ~ m ~ ---- 1 ,  2 . . . . .  n .  ( 3 9 )  
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where M• is a ma t r i x  obeying  the  relat ion (32), the  componen t s  of  p a r e  the  
p a r a m e t e r s  specifying the t r a n s f o r m a t i o n  and m is a four -vec to r  wi th  cons tan t  
eomponen ts .  

w 15. Considering the  t r ans i t ion  ~ ~ ~ * ,  i.e. the  Lorentz  de fo rma t ion  
with  p a r a m e t e r  g re la t ive  to a new sys t em of reference,  then  we find 

x~'*= M,, x~' A- m '  (40) 

where we have  

M v, : M (q) Mp M(q)-z; (41)  

here M (q) is the  m a t r i x  of the  coord ina te  t r a n s fo rma t ion  leading f rom K -+ K '  
Thus  the  l a t t e r  coordinate  t r a n s f o r m a t i o n  wr i t ten  expl ic i t ly  

X~ = M (q) x,~ -4- ~ v = 1,  2 . . . .  , n (42) 

in place of  the  above  re la t ion we m a y  also wri te  

K '  : ~//f(q)(K), 

where we h a v e  denoted  b y  ~/~(q) the  inhomogeneous  ope ra to r  conta ining the  
ma t r i x  M (~) and  the  r e c t o r  I~. 

w 16. F r o m  relat ion (41) we see how the de fo rma t ion  ~ ~ ~ *  is re- 
presented  re la t ive  to var ious  sys t ems  of references in which the  p r o p a g a t i o n  
tensor  g has the  same  representa t ion .  

More preeisely,  we m a y  s t a t e  t h a t  the  p r o p a g a t i o n  of l ight in a cer ta in  
region of  space  is given b y  a t ensor  ~. The  r ep re sen ta t i on  of  ~ re la t ive  to  a 
n u m b e r  of  sys tems  of references K ,  K ' ,  . . . .  K "  is the  same,  e.g. 

K(~)  = K ' ( g )  = K " @  . . . . .  g.  

Considering a coordinate  t r a n s f o r m a t i o n  of the  t y p e  

X : SX-f- s ,  
w h e g e  

SgS : ~ : �91  

We obta in  f rom a sys tem of reference K ano the r  s y s t e m  of reference K so 
t h a t  in the  l a t t e r  the  p ropaga t i on  of l ight is described b y  a tensor  g. 

F rom the  sys tem of reference K we can form a group of sys tems  of  
references K ,  K ' ,  K " , . . .  in each of  which the  tensor  ~ has the same repre-  
sen ta t ion  g. The  la t t e r  are connected by  matr ices  M obeying  the  re la t ion  

M ~ M  = g .  
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A Loren tz  de fo rma t ion  ~ ~ - ~ *  can be expressed b y  ah ope ra to r  of 
the  set M ir we consider  ir in one of  the  represen ta t ions  K ,  K ' , K " , . . . .  
We find easily t h a t  the  connect ion be tween  the  opera tors  M and M i s  given by  

m 

Mq = S -1M~ S.  (43) 

Thus  a Loren tz  de fo rma t ion  ~ ~ ~ *  can be represen ted  b y  a set  of  opera tors  

Mq, Mq., Mq., . . . 

re la t ive  to sys tems  of references K,  K ' ,  K " ,  . . . in all of  which ~ is represen ted  
b y  a tensor  g. 

The same Loren tz  de format ion  can also be represen ted  b y  opera tors  

Mq, Mq,, Mq., 

re la t ive  to  sys t ems  of  references K, K ' , K " , . . .  in which 0 appears  to  be 
represen ted  b y  a t ensor  g different  f rom g. 

Considering re la t ions  (41) and (43) we f ind an i m p o r t a n t  c o m m o n  
fea tu re  of  all the  represen ta t ions  of  a de fo rma t ion  ~ - - >  ~ * .  Indeed ,  the 
matrices 

Mq, Mq,, . . . .  Mq, Mq,, . . . .  

have aU the same eigenvalues. 
The eigenvalues of  a Loren tz  m a t r i x  can be chosen to be  of  the  fo rm 

(see [3]) 

�9 . V e - - ~ - V  V r  elqJ, e - t~ ,  _ _  
c - - v  "~ e ~ - v  

we see thus  t h a t  any representation of  one Lorentz deformation has the same 
eigenvalues characterized by the parameters qD and v. The la t t e r  resul t  holds 
- -  as we see - -  also in the  case of  uniso t ropic  p ropaga t ion  of  l ight  and 
it  holds also ir we consider  sys t ems  of  references in which the  p ropaga t ion  
tensor  0 is represen ted  b y  different  mat r ices  g, g, . . . .  etc. 

w 17. We ate now in a posi t ion to  generalize the  Lorentz  principle to 
the  case of  homogeneous  bu t  poss ibly  unisot ropic  p ropaga t ion  of  light. 

We s ta te :  the laws of nature possess such symmetries that, provided 
is a real physical system, then any Lorentz deformed form ~* = ~/P/p (~)  of ~* 
is also a possible system obeying the same laws of as ~ .  

Fur the rmore ,  ir a system ,~ is adiabatically accelerated then it changes 
its configuration into a Lorentz deformed form of its original configuration. 

The above  fo rmula t ion  of  the  Loren tz  principle regarding  its form is 
ident ica!  wi th  the  fo rmer  fo rmula t ion  (see [2]). We have  ex tended  its con ten t  
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by  generalizing the Lorentz  t r ans fo rmat ion  to the case of unisotropic b u t  
homogeneous  propagat ion  of light.  

w 18. We make a concluding remark.  The formula t ion  of the  Lorentz  
principle in its restr ic ted f o r m a s  was done in a previous work is based on the  
failure of a series of exper iments  to  observe effects of t ransla t ional  motion.  
This failure is a t t r ibu ted  to a peculiar  s y m m e t r y  of laws of na tu re  which 
s y m m e t r y  causes tha t  to any  effect  which might  arise f rom the t rans la t ional  
motion re la t ive  to the  aether ,  o ther  effects appear  which exac t ly  compensa te  
the former.  This s y m m e t r y  i tself  could be described adequa te ly  b y  the  Loren tz  
principle. 

The earlier considerations are based on the assumption t h a t  l ight is 
p ropaga ted  isotropical ly re la t ive to  its carrier,  the  aether .  

The generalized considerat ions show th a t  supposing light was after  all 
not  carried isotropical ly in the ae ther  bu t  ir the p ropaga t ion  be of the more  
general t y p e  which we denoted  as homogeneous,  even then,  the  s y m m e t r y  
discussed above  might  persist and this s y m m e t r y  might  p reven t  us not  only  
to locate the  distinguished sys tem of reference K 0 which is at  rest  to  the carrier  
of the light, b u t  ir equally prevents  us to determine the  propagat ion  tensor  g0 
which describes the propagat ion  of  light relat ive to its carrier. 

The  extension of the s y m m e t r y  propert ies  of na tu re  in this fashion is 
based on pure  speculation. Expe r imen ta l ly  the  adequacy  of this extension 
could be checked ir we could car ry  out  exper iments ,  say with a Michelson 
in te r fe romete r  in a region of space where we have good reason to believe the  
propagat ion  of light to be unisotropic.  I f  ah exper iment  in such a region 
were to lead to a negat ive effect in spite of the uniso t ropy ,  then  this result  
would di rec t ly  jus t i fy  the extension of the  Lorentz  principle. 

At the  momen t  such exper iments  do not  exist. The  generalizat ion of the  
Lorentz  principle we have given here can be in spite of the lack of direct  
evidence be justif ied.  

Indeed ,  we shall show tha t  the  generalization of  the  Lorentz  principle 
we have given here is a necessary in te rmedia te  step to  its fu r ther  generaliza- 
t ion to the  case of inhomogeneous propagat ion  of light. In  the case of the  
inhomogeneous propagat ion  of l ight observable effects are found and the  
theory  of these effects can be obta ined  by  a s t ra ight forward  fur ther  generaliza- 
t ion which we discuss in the second par t  of this paper.  
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YIPHHL[HYI YlOPEHLIA H OBIIIAN TEOPH~I OTHOCHTEJIBHOCTH 
qacTb I. 

M, ytHOIII H 

P e 3 ~ o M e  

HacTo~uia~ pa6oTa ~B.n~eTc~ nepBo¡ H3 cepHH pa£ B i~0TOpblx npeRnaraeTc~ qb0p- 
J~y.nnpoBKa o6meª TeopH14 0TH0ClITeYlbH0CTH Ha OCHOBe npHnanna  s B 3T0fi nepBo¡ 
qacTri npeo6pa3oBaHHe 5lopeHaa o6o6maeTc~ Tar~, YTO OHO CTaHOBHTCYl npnMem~Mb~ra K O£ 
JIaCT~IM I lp0cTpaHCTBa,  P,~e CBeT pacYIp0cTpaH~eTC~[ 0~H0pO~H0,  H0 ‰ Mo)KeT H•H3OTpOI'IHO. 
I-[oKa3aHo, qT0 R31~ TaKHx o6J~acTe.~ npHHttHn f[opemla 0cTaeTcfl BepHbIM B cBoe'~ 06blqH0~ 
~opMe. 
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