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It is shown that the LORENTZ group can be represented as the product of two sub-
groups. The one subgroup is connected with rotation, the other with translation. The results
of the negative relativistic experiments, like the MiCHELSON-—MORLEY experiment, are
connected with the invariance of laws with respect to the rotational subgroup, while the positive
relativistic effects, like the change of mass with velocity, are connected with the invariance
with respect to the translational subgroup.

§ 1. The LorENTZ transformation can be written*

x'=ZLx)=A®x | ], M

where A is a fourth order matrix obeying
A®TA® =OT (2)
with@ >0, I, =0,,9,, 1n=v=v;=1, y,=—

The index p stands for the parameters of the transformation. The proper
LorenNTz transformations are further restricted as follows:

O =1, detA® = |1, AR > 0. (3)

The matrix A® which we shall call a LORENTZ matrix depends on six para-
meters, explicitly it can be written in the following way:

aw=| L vB ), (4)
—v' Bl B

where v = v;, v,, v, is a three-component vector with the dimension of a velo-

city; further
L=0—(B—1)(v ov)?,
1 / (5)

_ e, - — OV,
V1 — o?/c?

* For notation see [1].
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and O is an orthogonal matrix, thus 00 = 1. The relation (5) contains six
parameters, i.e. the three components of v and three parameters in terms of
which the orthogonal transformation O can be expressed.

It can be seen easily that the matrix A as given by (4) and (5) obeys
indeed (2) and (3) and it can alse be shown that any matrix obeying (2) and
(3), i.e. any proper LORENTZ matrix, can be brought into the form (4), (5).

The matrix A® can also be written

A® = QW A, , (6)
where
0(4)=(0 0}, (6a)
01
Vv vB
Ay = vB/c2 B and V=14 (B — 1)(vov)/?. (6b)

Thus any LORENTZ matrix can be written as the product of an orthogonal
transformation matrix of the type 0 and a transformation matrix of the
type A, which does not change the directions of the axes but changes the
translational velocity of the system of reference by an amount v,

§ 2. The LOoRENTZ matrix (4) can be taken as part of a coordinate trans-
formation (1); this transformation leads from a system K to a system K’
which moves with a velocity v’ relative to K, the orthogonal matrix defining
the directions of the axes of K’ relative to K.

Alternatively, a transformation of the form (1) can be taken to describe
a LorENTZ deformation. Indeed, consider a physical system £.. Another system
$* can be produced by replacing the points B,, B,, ..., B, of O by points
%T» S:B,Zk’ CEEIRYS SBﬁ making up 0.

Written more explicitly, at the time ¢ the point B, may have coordinates
ra(t), at a time ¢* the corresponding point Py then has coordinates rj(t*),
so that

ra(t*), t* = xu,
and

x% = Ly(%a) = Ay Xz + 2. (7

In the above consideration x, and x}; are the (four-component) coordinates
of the points of £ and O* both taken relative to one system of coordinates, K.

We have written A_ in place of A® to signify that we are considering
a transformation that refers to one particular system of reference, K, and
describes the change O,—* in terms of the coordinates relative to this system
of reference. Thus A, is the homogeneous part of the transformation (7) which
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represents a deformation in terms of coordinates relative to K. A, is a tensor
and we shall call it the deformation tensor.
We may also write symbolically

Q* =L, (D) (7a)

and the representation of (7a) relative to K can be written in the form (7).
The representation of (7a) relative to another system of coordinates, K’, can
be written
xp = Agx; + A, (8)
where
Xﬁ' = A® x¥ 4 A, 9)
x, =A®x, + A,

and A® is the homogeneous part of the transformation leading from K to

K'. From (8) and (9) it follows, that
/1.,' — A® A., A, (10 )

Thus Aq, Aq,, . . . are the representations of the deformation tensor Aq relative
to systems of reference K, K', ...

From (10) it follows that the representations of a deformation tensor
A, are all proper LORENTZ matrices if one of the representations is a proper
LoRENTZ matrix, regardless of whether or not the matrices A® are proper
LoRENTZ matrices.

§ 3. The representations of a deformation tensor corresponding to the
deformation 0—0* in different systems of reference are given by matrices
that are connected by relations of the form (10). From (10) it may be seen
that the representations Aq, Aq,, ... of A are matrices with the same eigen-
values. It was shown elsewhere [2], that the eigenvalues of a LORENTZ matrix
can be written

i — i (o v c—v
e®, e v, v, , 1)
c— v c+v

i.e. the eigenvalues are characterized by an angle ¢ and a velocity v. A LorENTZ
matrix can be brought into a standard form, this means, that in a suitable
representation a matrix A, with eigenvalues (11) obtains the form

cosg sing 0 O

A | singp cosp 0 O
L 0 0 B Bv

0 0 Bv/ec*B

(12)
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The deformation tensor represented by (12) describes turning through an angle
p around the x;-axis and acceleration by an amount v in the direction of the
xg-axis.

§ 4. We note that the transformation eq. (6a) has the eigenvalues

eiv, e, 1, 1. (13)

(We remark that the eigenvalues of the third order orthogonal matrix O are
€?, e, 1 J)

The representations of 0 relative to various systems of reference will
in general not appear in the form (6a). However, all the representations of
0® have eigenvalues of the form (13).

By 0" we may denote not only the deformation tensors that appear in
the form (6a) but all the deformation tensors with eigenvalues of the form (13).
We may call these deformations rotational deformations. We see from (13)
that the product of two rotational deformation tensors is also a rotational
deformation tensor. It can thus be concluded that the rotational deformations
form a subgroup of the LORENTZ group.

Similarly, the eigenvalues of the deformation tensors A, are found to be

L —
1,1,1/“”’,‘/6 v, (14)
c— ctv

It follows from the form of the eigenvalues (14) that the product of tweo
matrices with such eigenvalues has also eigenvalues of similar type and there-
fore the matrices A, form also a subgroup of the LorRENTZ group.

§ 5. We see thus that the proper Lorentz group can be built up of two
subgroups: one subgroup with elements of the rotational type 0%, another
subgroup with elements of the translational type A,. The elements of the
proper Lorentz group can be represented as the products of a rotational
element with a translational element.

In order to make this representation unique, we may use the following
convention. Of a given Lorentz matrix A, with eigenvalues (11) we determine
the normal representation (12) and from this normal form we define the splitt-
ing of A, into its two components as follows. Let A denote the coordinate
transformation from the system of reference in which A, appears in the normal
form (12) into the system K relative to which we wish to represent A,. We

have thus

Ag = A® A, A®-1, (15)

and also
Ag=0WA,, (15a)
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with
00 = AP OWA®-1 | A = A® A, AP~ (15hb)
and
cosp sing 0 O°
0 — —sing cosep 0 0
¢ 0 0 10}
0 0 0 1,
(15¢)
1 0 0 0"
Av: 0 1 O O £}
00 B By
0 0 By B,

Relations (15), (15a), (15b), (15¢) give a unique procedure for the splitting
up of a deformation tensor into its rotational and translational parts.

As 0% and A, are commutative, their transforms O™ and A, are also
commutative and we find

Ag=OWA, = A, 0@,

We see therefore that any element of the Lorentz group can be split into the
product of an element of the rotational group and an element of the trans-
lational group in a manner in which the factors are commutative.

§ 6. We may make here the following interesting remark on the con-
nection of this splitting up of the Lorentz group with physical phenomena.
The theory of relativity is based partly on the negative results of certain
experiments like the MicHELSON—MORLEY or the TrRouToN—NOBLE experi-
ment. In these negative experiments an arrangement is turned round and no
apparent effect is observed.

The turning round of an apparatus corresponds to a LoRENTZ deform-
ation of the rotational type. The negative outcome of these experiments can
be predicted from the LoRENTZ invariance of the laws of nature. However, if
the laws of nature were invariant only with respect to the rotational subgroup
of the LORENTZ transformation this would be sufficient to account for the
negative results of these experiments.

There exist further the so-called positive relativistic effects, like the
change of mass with velocity or the perpendicular DorpLER effect. The latter
effects can be understood by supposing that the laws of nature are invariant
with respect to the translational group.

We see thus that the invariance of the laws of nature with respect of the
two subgroups of the LORENTZ group manifests itself in two distinct groups
of experiments. Taking these groups of experiments together, we come to
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conclude that the laws of nature are invariant against both the translational
and the rotational subgroup, and therefore against the whole proper LoRENTZ
group, as the elements of the whole group can be formed as products of the
elements taken from the two subgroups.

From the experimental point of view it may be added that the first type
of experiments, i.e. the negative experiments, has been carried out with very
great precision, therefore the invariance against the rotational group is very
precisely established experimentally.

The experiments concerning the change of mass with velocity are not
very accurate (see e.g. [3]) howerer, very good evidence for the invariance
with respect to the translational sub-group was obtained by D. C. CaAMm-
PEREY, G. R. Isaak and A. M. KeAN [4] with the help of the Mdssbeuer
effect. These measurements seem to be the most precise carried out so far
supporting LORENTZ invariance.

Thus the measusements of CHAMPENEY et al. together with the older
measurements of the Michelson type provide good evidence for the invari-
ance with respect to both sub-groups and therefore provide evidence for
the invariance with respect to the whole group of proper LoRENTZ trans-
formations,
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JBE IIOArPYIIIbI I'PYIIbLI JJIOPEHLA U UX ®U3UYECKUN CMBICJI
JI. AHOUIN

Peswome

B paboTe M0Ka3bIBAETCA BO3MOXKHOCTD NpencTaBieHyst rpynnsl JIopeHua B BUAe MPOU3-
BejieHus1 ABYX TNoArpyni. [lepsasi U3 NoArpynn cBsisaHa ¢ porauueil, Apyrasi — ¢ TpaHcisiuMel.
Orpuuaresbdulil pe3ysbTaT OMSII0B 13 TeJPAN OTHOCHUTENbHOCTH — HANpUMep Ombita Maii-
KeJIbcOHa—MOp/IM — CBSI3aH ¢ HHBAPUAHTHOCTBIO 3AKOHOB, OTHOCSILIMXCSI K MOATPYIINe Bpa-
IeHHs, @ MOJOXKUTENIbHbI PE3YJIbTAT OMBITOB [0 TEOPHH OTHOCHTENIbHOCTH — HANpUMeEp,
3aBHUCHMOTDH MACChl OT CKOPOCTH TeNla — CBsI3aH ¢ HUHBAPUAHTHOCTLIO MO0 OTHOUMIEHUIO TPAHCIISI-
IUOHHOM MOATPYIIIbL
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