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It is shown that the LORENTZ group can be represented as the product of two sub- 
groups. The one subgroup is connected with rotation, the other with translation. The results 
of the negative relativistic experiments, like the MXCH~.T,SON--MoRLEY experiment, a r e  

connected with the invariance of laws with respect to the rotational subgroup, while the positive 
relativistie effects, like the ehange of mass with veloeity, ate connected with the invariance 
with respect to the translational subgroup. 

w 1. The  LORENTZ t r a n s f o r m a t i o n  can  be wr i t t en*  

x' = ~ ( x )  = A~) x + ;~, (1) 

where  A is a f o u r t h  o rde r  m a t r i x  o b e y i n g  

A(p) I'A(~) = O r 

w i t h O > 0 ,  F ~ ~ = 6 ~ ~ ? ~ ,  7 1 =  72 = 73 = 1 ,  

(2) 

T h e  index  p s t ands  fo r  the  p a r a m e t e r s  o f  t h e  t r a n s f o r m a t i o n .  The  p rope r  

LORENTZ t r a n s f o r m a t i o n s  ate  f u r t h e r  r e s t r i c t ed  as fol lows:  

O = 1 ,  d e t A ( P ) : + l ,  A ~ Ÿ  (3) 

The  m a t r i x  A (F) wh ich  we shall  c a l l a  LOI1ENTZ m a t r i x  depends  on  six pa ra -  

meters ,  expl ic i t ly  i t  can  be wr i t t e n  in t he  fo l lowing w a y :  

( L v B  ) (4) 
A ( r ) =  _ v , B / c  2 B ' 

where  v = vi, I)2, 1~3 is a t h r e e - c o m p o n e n t  r e c t o r  w i th  t he  d imens ion  o f  a velo-  

c i t y ;  f u r t he r  

L = 0 - -  (B - -  1) ( v ' o  v ) / v  2 , I 

1 v '  = - -  Ov, ] (5) 
B = V1 _ v2/c2 

* For notation see [1]. 
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and 0 is an orthogonal  matr ix ,  thus  O~ = 1. The relat ion (5) contains six 
parameters,  i.e. the three eomponents  of v and three parameters  in terms of 
which the orthogonal  t ransformat ion  O can be expressed. 

I t  can be seen easily t h a t  the  matr ix  A as given by  (4) and (5) obeys 
indeed (2) and  (3) and it can also be shown tha t  any  ma t r ix  obeying (2) and 
(3), i.e. any  proper LORENTZ matr ix ,  can be brought  into the form (4), (5). 

The ma t r ix  A ~r) can also be wri t ten 

where 

A~p) = OCa) Av, (6) 

O < l ) : / O 0  10}' (6a) 

{v ~,) 
Av = vBI  c2 and V = 1 -t- (B -- 1) (v o v)/v 2 . (6b) 

Thus any  LOREI~TZ mat r ix  can be writ ten as the produet  of an orthogonal 
t ransformat ion  matr ix  of the type  O r a n d a  t ransformat ion  mat r ix  of the 
type  A v which does not  ehange the directions of the axes but  changes the 
translat ional  velocity of the sys tem of reference by  ah amoun t  v. 

w 2. The LORENTZ mat r ix  (4) can be taken  as par t  of a coordinate trans- 
formation (1); this t ransformat ion  leads from a sys tem K to a system K '  
which moves with a velocity v '  relat ive to K, the orthogonal  matr ix  defining 
the directions of the axes of K '  relative to K. 

Alternat ively,  a t ransformat ion  of the form (1) can be taken to describe 
a LORENTZ deformation.  Indeed,  eons idera  physieal system ~ .  Another system 
~*  can be produced by  replaeing the points ~1, ~~ , - .  ", ~ -  of ~ by  points 
~*,  ~* . . . .  , ~* making up ~* .  

Wr i t t en  more explicitly, at  the t ime t the point Un m a y  have coordinates 
rn(t), at  a t ime t* the corresponding point ~* then  has coordinates r*(t*), 
so t ha t  

r*(t*), t* = x* ,  

and 

x*, = L~(x.) = A~ x~ + Z. (7) 

In  the above consideration xn and Xn are the (four-eomponent) eoordinates 
of the points of  ~ and ~* both t aken  relative to one sys tem of eoordinates, K.  

We have  writ ten Aq in place of A (p) to signify t h a t  we are eonsidering 
a t r ans fo rmat ion  tha t  refers to one particular system o f  referenee, K,  and 
describes the ehange ~ - + ~ *  in terms of the eoordinates relative to this system 
of referenee. Thus Aq is the homogeneous part  of the t ransformat ion  (7) whieh 
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represents a deformation in terms of coordinates relative to K. Aq is a tensor 
and we shall call it the d e f o r m a t i o n  tensor .  

We may also write symbolically 

~*  = Lq (5)  (Ta) 

and the representation of (7a) relative to K can be written in the forro (7). 
The representation of (7a) relative to another system of coordinates, K' ,  can 
be written 

! x*' = Aq, xn + ~',  (8) 
where 

x*' = A(P)x* -4- ),, } 
x~ = A(P)x,~ -k- ~,, (9) 

and A (P) is the homogeneous part  of the transformation leading from K to 
K'.  From (8) and (9) it follows, that  

Aq, = A(r) Aq A(P)-'. (10) 

Thus A~, A q , , . . ,  are the representations of the deformation tensor AQ relative 
to systems of reference K, K ' , . . .  

From (10) ir follows that  the representations of a deformation tensor 
A~ ate all proper LORENTZ matrices ir one of the representations is a proper 
LORENTZ matrix, regardless of whether or not the matrices A (~) ate proper 
LORENTZ matrices. 

w 3. The representations of a deformation tensor corresponding to the 
deformation ~ - + ~ *  in different systems of referenee are given by  matrices 
that  ate connected by relations of the forro (10). From (10) it may be seen 
that  the representations Aq, Aq, , . . .  of A~ ate matriees with the same eigen- 
values. It  was shown elsewhere [2], that  the eigenvalues of a LORENTZ matrix 
can be written 

ei~' e-iq~' V c-~- v ' V c -  v , (11) 

i.e. the eigenvalues are characterized by  an angle ~v and a velocity v. A LORS~TZ 
matrix can be brought into a standard forro, this means, that  in a suitable 
representation a matrix Aq with eigenvalues (11) obtains the forro 

( cosq sino0 0 0 

Aq0= - - s i n q  cos~0 0 0 ) 0 0 B B v  " 

0 0 Bv/e 2 B 

(12) 
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The deformation tensor represented by (12) describes turning through an angle 
around the x3-axis and acceleration by an amount v in the direction of the 

x3-axis .  

w 4. We note that  the transformation er I. (6a) has the eigenvalues 

e i~, e -i~~ 1, 1. (13) 

(We remark that  the eigenvalues of the third order orthogonal matrix O are 
eir e -ir , 1.) 

The representations of 0 (4) relative to various systems of reference will 
in general not appear in the forro (6a). However, all the representations of 
O (4) have eigenvalues of the form (13). 

By O C4) we may denote not only the deformation tensors that  appear in 
the form (6a) but all the deformation tensors with eigenvalues of the form (13). 
We may call these deformations rotational deformations. We see from (13) 
tha t  the produet of two rotational deformation tensors is also a rotational 
deformation tensor. Ir can thus be coneluded that  the rotational deformations 
forro a subgroup of the LOa~NTZ group. 

Similarly, the eigenvalues of the deformatŸ tensors A, are found to be 

1"1"V c+v  t / C - - V c - - v '  c + v "  (14) 

It  follows from the forro of the eigenvalues (14) tha t  the produet of two 
matrices with such eigenvalues has also eigenvalues of similar type and there- 
fore the matrices A, forro also a subgroup of the LORENTZ group. 

w 5. We see thus that  the proper Lorentz group can be built up of two 
subgroups: one subgroup with elements of the rotational type 0 (4), another 
subgroup with elements of the translational type A,. The elements of the 
proper Lorentz group can be represented as the products of a rotational 
element with a translational element. 

In order to make this representation unique, we may use the following 
convention. Of a given Lorentz matrix Aq with eigenvalues (11) we determine 
the normal representation (12) and from this normal forro we define the splitt- 
ing of Aq into its two components as follows. Let A (p) denote the coordinate 
transformation from the system of reference in whieh Aq appears in the normal 
form (12) into the system K relative to which we wish to represent Aq. We 
have thus 

Aq -~- A (P) Aq0 A (p)-x , (15) 

and also 
Aq ~-~ O (4) Av, (15a) 
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with  

and 

0 (4) = A(e) O(~O A(t)-I,  A. - -  A(P) A, A(e)-i 

cos sin 0~) 
- - s i n ~  co sq  0 

0 0 1 ' 
0 0 0 

A,  = ( i~176  i 
1 0 

B v  0 B " 

0 Bv/c  2 B 

(15b) 

(15c) 

Relations (15), (15a), (15b), (15e) give a unique procedure for the spli t t ing 
up  of a deformat ion  tensor  into its ro ta t iona l  and t ransla t ional  parts .  

As 0 (4) and A, ate commuta t ive ,  thei r  t ransforms 0 (4) and A, ate also 

commuta t ive  and we f ind 

Aq ----- 0 (a) A. = A, 0 (4; . 

We see therefore  t h a t  any  e lement  of  the  Loren tz  group can be split  into the 
produc t  of  ah e lement  of  the ro ta t iona l  group and ah e lement  of  the t rans-  
lat ional  group in a manne r  in which the  factors  are commuta t ive .  

w 6. We m a y  make  here the following interes t ing r emark  on the con- 
nect ion of this spl i t t ing up of the Lorentz  group with physical  phenomena .  
The theory  of r e la t iv i ty  is based pa r t ly  on the  negat ive results of certain 
exper iments  like the MICHELSOI~--MORLEY or  the TROUTOI~I--NOBLE experi- 
ment .  In these negat ive exper iments  ah a r rangement  is tu rned  round  and no 
apparen t  effect is observed.  

The turn ing  round  of  ah appara tus  corresponds to  a LOREI~TZ deform- 
at ion of the  ro ta t iona l  type .  The negat ive outcome of these exper iments  can 
be predic ted  f rom the  LORENTZ invar iance of  the  laws of  na ture .  However ,  ir 
the  laws of na ture  were invar ian t  only with respeet  to the  ro ta t iona l  subgroup 
of  the LORENTZ t rans format ion  this would be sufficient to account  for  the 
negat ive results of  these exper iments .  

There exist  fu r the r  the so-ealled posi t ive relativist ie effects, like the 
change of  mass with veloci ty  of the perpendicular  DOPPLER effect.  The la t te r  
effects can be unders tood  by  supposing t ha t  the  laws of  na ture  are invar ian t  
wi th  respect  to the t rans la t ional  group. 

We see thus  t ha t  the invariance of  the laws of na tu re  with respect  of  the 
two subgroups of the  LORrNTZ group manifests  itself in two dist inct  groups 
of  exper iments .  Taking  these groups of  exper iments  together ,  we come to 
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eonclude t h a t  the  laws of na tu re  ate  inva r i an t  agains t  bo th  the t r ans la t iona l  
and the ro ta t iona l  subgroup,  and  therefore  against  the  whole proper  LORENTZ 
group,  as the  e lements  of the  whole group can be fo rmed  as products  o f  the  
e lements  t a k e n  f rom the two subgroups .  

F r o m  the  exper imenta l  po in t  of  view it  m a y  be added  t h a t  the  f irst  t y p e  
of exper iments ,  i.e. the  nega t ive  exper iments ,  has been  carr ied out  wi th  v e r y  
great  precision,  therefore  the invar iance  against  the  ro ta t iona l  group is v e r y  
precisely es tabl ished exper imenta l ly .  

The expe r imen t s  concerning the  change of mass  wi th  ve loc i ty  ate no t  
v e r y  accura te  (see e.g. [3]) howerer ,  ve ry  good evidenee for the  invar iance  
wi th  respec t  to the  t r ans la t iona l  sub-group was ob t a ined  b y  D. C. CrrAM- 
PrREy, G. R.  ISAAK and A. M. K u x N  [4] wi th  the  help of the  M8ssbvuer  
effect.  These  measu remen t s  seem to be the  mos t  precise carr ied out  so fa r  
suppor t ing  LORENTZ invar iance .  

Thus  the  measusements  of  CrrAMP~~Ey et al. t oge the r  wi th  the older 
m e a s u r e m e n t s  of the  Michelson t ype  provide  good evidence for the invar i -  
ance wi th  respec t  to bo th  sub-groups  and  therefore  prov ide  evidence for  
the invar iance  with  respect  to  the  whole group of p roper  LORE~TZ t rans -  
format ions .  
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~BE I10~FPYFII-IbI FPYFII-IbI JIOPEHL[A Id HX OH3HqECt(H171 CMBICJI 

dl. FI HOUJH 

P e 3 ~ o M e  

B pa£ HoKa3bIBaeTc~ B03M0)KHOCTb npeacTaBneHH~ rpynnb~ JI0peHila B BHae l'[poH3- 
Beaennn aByX no~trpynn. HepBa~ H3 noarpynn cB~i3aHa c p0TaUHe~, ~pyra¡ -- c TpaHcJ1~uHe~. 
OrpHttaTeSIbHbIf i  pe3yJIbTaT orI~IrOB [13 Teg0~IH orH9cHTeJIbH0CTH - -  Har lpHMep  OHbITa M a f i -  
K e J l b c 0 H a - - M 0 p J I H  - -  CB~I3aH C HHBapHaHTHOCTb}0 3aKOHOB) 0THOC~[I~HXC~[ K HoRFpyHHe B p a -  
[I~eHH~I, a IIOJIO>KHTeJIbHbI~ pe3yJ IbTaT 0HbITOB II0 Te0pHH 0THOCHTeJ'IbHOCTH - -  HaHpHMep ,  
aaBHcHMOTb MaCCbl 0T CK0p0CTH Tezla - -  CB~3aH C HHBapHaHTH0CTbIO II00THOme~IH~o TpaHcJ1~-  
tlnOHaOfi no/IrpynnbI. 
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