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The problem is investigated as to how far the wave equation representing a quantum-
mechanical system can be transformed by change of variables into a system of equations
which have the form of the classical equation of motion of a dzformable medium. In the present
paper we carry out this investigation in the case of a single charged particle moving under
the influence of an outside potential.

1. Basic conceptions

§ 1. The difficulties connected with the physical interpretation of the
wave function p have renewed interest in the hydrodynamiecal model of wave
mechanics, i.e. in a model in which the fundamental equations of motion
refer to classical quantities by which » may be replaced. Summarizing our con-
siderations to be presented in a number of papers, we shall analyse the problem
of how far it is possible to replace the wave mechanical description of a
system by one mathematically equivalent and of the form of the classical
equations of motion of an elastic medium.

Our attempt is not new, similar considerations have been given already
e.g. by MapELUNG [1] and later by ErBRENFEST [2] and TAxABAYASI [3].
(See also our short communication [4].) Further a number of papers have
been published in connection with the classical analogy of quantum mecha-
nics which are to a certain degree similar to ours as regards the mathe-
matical formalism but which are different as regards their aim. (We men-
tion here e.g. L. pe Brocrie [5] and K. NovoBArzKY [6].) On another
occasion we shall summarize the wide literature on the subject.

§ 2. The simplest case, i.e. the motion of a particle of mass m and
charge e under the influence of forces which can be derived from a potential
V can be described by the SCHRODINGER wave equation

2

. ., 0
Vip+Vyp=ifi 0, (1)

2m ot

where the wave function p is a function of the coordinates and of the time.
We may write for short v (1, t) =y . Similarly ¥ may depend on both » and
t, thus we may write V (r,t) == V.
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According to the generally accepted interpretation of the wave function
Izp\z is a probability density, i.e. ’1,0 |2 d7 is the probability to find the particle
(which is supposed to be pointlike) inside the volume element dv [7].ScHRO-
DINGER’s original idea [8] was that ’w}z represents a true density, i.e. the
particle is smeared over space with a mass density pn, and electric charge
density g, so that

O, =mg, o,=e0 with o=y 2)

Later, reluctantly, SCHRODINGER had to give up his original idea and to
accept BorN’s probability interpretation.

The considerations connected with the hydrodynamical model auto-
matically renew the question as to the interpretation of| Y ‘2.The density defined
by (2) appears as one of the variables of the hydrodynamical model, thus
the classical picture of the system described by the wave function corresponds
to a medium with density ¢ = o(r, t) spread out over space and moving
under the influence of outer forces, the elastic stresses occurring inside the
medium.

§ 3. ScHrRODINGER already pointed ocut that the velocity of flow can
be expressed in terms of y as follows:

it
== (y*grady — pgrady*). (3)

The quantities defined by (2) and (3) satisfy together with (1) the
following relation

div (ov) + B _ 0. 4)
o

This is the so-called continuity equation, which can be derived from the
ScHRODINGER equation. Thus ¥ and p can be taken to describe velocity and
density distribution of a moving medium.

It should be noted that adding a term rot ) (where y is some arbitrary
vector quantity) to the definition (3) of v, the continuity equation (4) would
also be satisfied. In the present approximation we may take this term to
be zero. We shall return to the exact determination of the form of y when
dealing with the hydrodynamical model describing the electron having spin
and magnetic moment, i.e. when ¥ can be determined by comparison with
the experimental results.

Multiplying (4) by m and e, respectively, we obtain the continuity
02m

equation for the flow of mass div p 4 -

el 0 and that for the electric

Acta Phys. Hung. Tom. XVI. Fasc. 1.



THE HYDRODYNAMICAL MODEL OF WAVE MECHANICS 39

. do
current div 7 + 5: =0, we merely have to suppose

i=ev =p,v, (5)

where p is the density of momentum and i the density of electric current

in suitable units.

Integrating (4) over the whole of space (changing in the second term
the order of integration and differentiation and supposing that gv tends
sufficiently strongly to zero at infinity), we find

d
- dt=0.
dt JQ

Thus the density integrated over the whole space is constant in time and
— to be compatible with the wave equation — has to be given the value 1, i.e.

{odr=1. (6)

Using the normalization (6) we obtain for total mass and total charge of the
medium the initially given values m and e.

II. Equation of metion

§ 4. So as to obtain a dynamical description of our system it is necessary
to consider the acceleration of the elements of the medium. According to
hydrodynamics the acceleration of an element of a moving medium is given
by the total derivative of the velocity, i.e.

dv gv

a:;: o + (vgrad)v, {7)

. .. ov
where the partial derlvatlve-a—expresses the rate of change of velocity
11

in a fixed point. Instead of (7) we can also write, taking into account the
continuity equation (4):
dv 8 (pr
0% _ (ev)

o or + Div (pvov), 8)

where Div is the tensor divergence and o designates the direct product.
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Differentiating (3) with respect to time and expressing the time derivat-
ives of p* and p in terms of their spatial derivatives with help of the wave
equ. (1), we get from (8):

dv
om = —ograd(V + Q) 9
with
B2 \2gli?
S ; 10
0 m (10)

In place of (9) and (10) one may also write

gmid'iz—ggradV_Diva, (9a)
i

with the tensor given by the relation

72
Q=———p((Veov)lnpg (10a)
4im
or writing down the i, k-th component of the tensor

n? o 8%Inp
4m = 9x, ox,

Qik: -

We find that equs. (9), (10) [or (9a) and (10a)] together with the continuity
equation (4) give a complete set of equations of motion. Indeed, if we impose
an initial condition upon ¥ and g

0(r,0) =vy(r) and ¢(r,0) =0 (r)

their time distribution can be determined uniquely from the above system
of equations.

§ 5. The equs. (4), (9) and (10) are exactly of the form which is to be
expected for the classical equations of motion of an elastic medium. @ plays
the role of an inner potential and

F,= — grad (11)

is the stress appearing as the result of deformation.
That F; as given by (11) can be regarded as classical stress can be seen
from the following remarks:

Acta Phys. Hung. Tom. XVI. Fase. 1.



THE HYDRODYNAMICAL MODEL OF WAVE MECHANICS 4%

1. If o =const., then Q =const. and F; =0, thus stress appears
only at places where the density of the medium is non-uniform. In a given
point, ¢ depends only upon the density in this point and the spatial derivatives
of the density, thus we may say that @ in a given point is determined by
the density distribution in the immediate vicinity of that point, just as is

to be expected in an elastic medium.
2. It follows from (11) and (10) [or (10a)] that

{oF,dv=0, (12)

Le. the inner forces resulting from the stress have no resultant. Thus the
rate of change of momentum of the system is given by the integral over the
outer forces omnly; or denoting by

R= {ordr
the coordinate vector of the centre of gravity of our system, we find

miR =P = | oF,dv, (13)
where

F,= —gradV. (13a)

Equation (13) expresses the law of ERRENFEST.
3. The moment of force produced by the inner forces can be written

K, = | o[rxF]dr=— [[rxDivQ]}dr.
Integrating by parts, we find, remembering that £ is a symmetric tensor

[see (10a)]:
K =0.

1

Thus the inner forces produce no moment of force. We find therefore for the
total moment of force of the system in analogy to (13):

K= (o[rxF,dr, (14)

i.e. the change of angular momentum is caused by the moment of the outer
forces only. In particular, we note that the angular momentum of the system
will change continuously provided the outer forces produce a non-vanishing
moment.
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Taking together the three remarks made above, we see that the equs
{4), (9) and (10) describing the motion of our medium are indeed of the type
of classical equations of motion. The fact that the constant 4 appears in the
expression giving the potential ( does not affect the classical nature of the
equation. Indeed, A may be regarded as a constant characteristic of the
elastic properties of an atomic system. Obviously no description can be
successful which does not make use of 4 .

III. Connection between hydrodynamical equations and the wave equation

§ 6. In the following we discuss how far it is possible to establish a
one to one correspondence between the descriptions of asystem by a wave
function on the one hand and the hydrodynamical variables p and © on
the other.

For this purpose it is convenient to express the wave function y with
help of two real functions R =R (r,t) and S = S (r,¢t) in the form

yp = Re'S. (15)
Introducing (15) into the expressions for the density (2) we find
o=R? (16a)

and further from equ. (3) for the velocity of flow

= 2 grad S. (16b)
m

{It should be noted that the above expression for v is valid only for points
in which p == 0; at points where g =0, ¥ may have singularities.)

If, however, we want to determine from given distributions of ¢ and
v the wave function y satisfying the wave equation, we have to express R
and § through p and v. Reversing (16) we obtain

R = V@? (173)
+
r
sz-%Jverrso, (17b)

fo

where 7, is a constant vector and S, a function of time only. Thus from a
given distribution of g and » functions R and S may be determined on the
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basis of (17), and further using (15) the corresponding y function fulfilling
the wave equation may be built up. If we require y to be a single-valued
function of the coordinates according to (15) ® may still be multi-valued
having values differing by integer multiples of 27 from each other, i.e.

q)vdrzznh-k—, k=0, +1, £2,..., (18)

m

where the path of integration must avoid points for which ¢ =0, otherwise
it may be an arbitrary closed path. The expression (18) relating to the velocity,
together with the normalization (6) of the density may be regarded as initial
conditions. Indeed (as can be shown easily), if they are fulfilled at a time
t =0 they remain so for all later times.

Equ. (18) is equal to Thomson’s law of vortices in a field.

§ 7. So as to check whether y constructed from the distributions of
¢ and © obeys indeed the wave equation, we insert the y function thus obtained
into the wave equation. Doing so we find that the wave equation is indeed
fulfilled, provided we take 7| to be an arbitrary vector independent of time
and put

t
1
S, — — --{J E()dt
0

with

E:(V+Q+%mv2)

r=r,
Thus the explicit expression for y satisfying (1) can be written

r t
i i
= Yo — | vdr— — |\ E(t)dt.
Y IeeXP{hJ hj (¢
0

L)

We see thus that owing to the arbitrary value of 7, y is determined
except for a constant phase factor; thus y may be replaced by v’ :wer"
(with Vy =9 =0), y’ corresponding to the same hydrodynamical distribution
as p . However, in the usual considerations of wave mechanics such a phase
factor is regarded as unimportant, thus we can conclude that essentially there
exists a one to one correspondence between the solutions of the wave equation
and the hydrodynamical equations (4), (9) provided only solutions obeying
initial conditions (6), (18) are considered.
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IV. Stationary states

§ 8. The Schrodinger wave equation (1) admits so-called stationary
solutions of the form

Ly

p(r)=gp(re ' (19)

when the potential energy V(r) does not depend on the time.
The amplitude of the n-th stationary solution is determined by the
equation

2
—_h_ V2(pn+ Vq)n: n%Pnos (20)
2m
where the constants E, are the energy eigenvalues and the functions ¢,
are the normalized eigenfunctions.
The corresponding hydrodynamical variables are of course independent
of time, i.e. introducing (19) into (2) and (3) we get for the density and
velocity of flow, respectively:

o=k (r)g.(r),
in (21)
w=——— [7x () Ve, (r) — Vo (r) e, (r)] -

a) Let us consider first the case when the amplitude of the stationary
solution is real, i.e. ,(r) = @2(r). (It should be noted that a function y of
real amplitude multiplied by a constant phase factor can also be regarded
as a real solution in accordance with what we have said above.) As can be
seen from (21) in this case

B _y
ar

and ©=0,

which means that the real stationary solutions correspond to states in which
the medium representing the particle considered is at rest. The inner potential
can be expressed with help of the amplitude function, taking into account
(2), (10) and (19) in the form
0= — B Vienlr)
2m g, (r)

Using the amplitude equation (20) we have
Q—E,—V
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or forming the gradient and taking inte account (11), (13)

F0+Fi:0,

i.e. the stress produced by the inner forces exactly balances the outer forces
arising from the potential V.
A well-known example for this case is provided by the ground state

of the H-atom. The inner potential corresponding to the wave function
r

o, (r) = Ce 72 has the form

met

==

o2
+T’:E1"V(r)’

where E, is the energy constant of the ground state and ¥{(r) represents the
Coulomb potential. As can be seen @ obtained for this case produces a stress
which exactly compensates the Coulomb attraction of the nucleus. The medinm
is in a state of stress but does not move.

b) Essentially complex solutions of the amplitude equation (20) corres-
pond to states, where

_?_Q_:(), V= — gradIn ?n (r)
Bt 2m P (r)
8 -
In such a state v=£0, but S_tL =0, these are characteristic expressions

for a stationary flow.

As both the charge density g, and the current density i are constant
in time, such a configuration produces stationary electric and magnetic fields,
it does, however, not radiate.

For such a distribution grad (V -+ Q)= 0, i.e. the inner stress does
not compensate exactly the outer force. We find with help of (7) and (9):

m (v grad)v = — grad (V 4 Q).
As can be seen easily, the uncompensated stress produces forces which are
necessary to maintain the state of stationary flow.

A simple example for this case is provided by the 2 plstate of the H-atom
to which belongs the wave function

o) = CETH it

2ry,
We find in this case
A2 1
V+Q@=E,—
2m x4 y?
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met
8h?

seen easily from this equation the inner and outer forces do not compensate

(with the energy constant of the 2 p! state: E, = — ).Thus as can be

each other and there remains an uncompensated attractive force, which varies
proportional to (x% + y2)~3/2,

We find further, introducing ¢, (r) into (3), that the medium rotates
around the z-axis. The angular velocity in a point » is given by

I3 1
0= —
m x2 +y2
The centripetal force, which is needed to make the elements move along
circular paths with such velocities is provided by that part of the stress which
is not compensated by the Coulomb attraction of the nucleus and which has
the form

FC = m w* (x% + y2)1/2 - i (%2 + y‘z)—a/z‘
m

§ 9. Solutions of the wave equation (1) can be represented as linear
combinations of stationary solutions. Thus a solution ¥ (r, t) can be written
in the form:

- ’7 Eyt
p(r, 1) =2'c,q,(r)e s (22)
where the stationary solutions form a normalized set. The corresponding
charge and current densities can be obtained when introducing (22) into (2)
and (3); we get thus:
e=2o,cos(w,t+a,), (23)
where

E —E
0, = (24)

and g, a,, are functions of the coordinates only, i.e.

gvp. = Ecv CI.L @y (r) (p,u. (r)l ?
_ 1, e

T N
* *
2i cke, ko,

Similarly we find

gv = vay. cos (wvy.t + ﬂvy.) * (25)

where the p,, and §,, can be also expressed explicitly in terms of the ¢, and
Py -
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Equs. (23), (24) and (25) show that the medium in the non-stationary
state vibrates with frequencies w,,, which are exactly the Bohr frequencies.
The terms with v = u represent a constant charge and current density. This
stationary motion is superimposed by the oscillation.

We see thus that the fluid representing the particle under investigation
has its equilibrium configurations given by the eigenfunctions of the stationary
states.

On the effect of some outer disturbance the medium starts to oscillate
with frequencies w,, around its equilibrium configuration and as the medium
is charged it emits electromagnetic radiation of those frequencies. The total
dipole moment which is responsible for the emitted radiation can be written
in the form:

d —2¢,c e S rote.dr.

V(.L:

Frequencies belonging to a vanishing dipole moment do not occur in first
approximation. Indeed, the current distribution inside the atom in a state
described by the wave function

- Et

X — L Et
y==c;p€ + e, p,e

in the case d,, = 0 is such that part of the medium oscillates with frequency
5, the phases of the oscillation being distributed in such a way that the
radiation emitted by one part of the charged medium is opposite in phase
to that emitted by the remaining part and in a first approximation the
radiations emitted by the two parts extinguich each other by interference.

Considering the second approximation we obtain the so-called quadru-
pole radiation. Such a quadrupole radiation with its characteristic distribution
of intensity and polarization is indeed observed in case of the forbidden lines
when d,, = 0.

We note that the hydrodynamical model accounts also for the “elas-
tically bound electron” which was postulated by HERTZ to explain the optical
properties of atoms.

The main difficulty encountered by HeRTz was to explain how it is
possible that an electron could be excited so as to vibrate with a series of
frequencies.

This difficulty is overcome by the hydrodynamical concept. It is seen
that the elastic forces derived from the inner potential @ together with the
outside potential ¥ provide a dynamical system, the characteristic frequencies
of which are exactly the optical frequencies. Further, the modes of vibration
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-of this system are in accordance with the polarization and intensity distri-
bution of the observed spectral lines.

In a later article we shall present our considerations for the case when
the electromagnetic field is also taken into account. Following on this we
shall deal with the hydrodynamical model of the electron with spin.
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R R T e S

'MAPONUHAMUYECKAST MOJEJIb BOJIHOBOM MEXAHHKH I
JI. AHOWIM u M, LIUI'JIEP

Peszwome

PaccmatpuBaercst npo0iemMa 0 BO3MOXHOCTSIX Npeo0pa3’oBanusi, NyTéM 3aMeHbl mepe-
MeHHBIX, BOJIHOBOI'0 YPAaBHEHHST KBAHTOBOMEXAHUYECKOM CHCTEMBI B CHCTEMY YypaBHeHHH, 00-
nagawmylo GopMod KJ1acCHYECKOro YpaBHeHHs1 ABI>KEHUsI Aedopmupyoweiicss cpennl. B npea-
CTaBJICHHOH pafoTe Mpl H3yyaem 3TOT BOMPOC AJist OAHOH 3apsDHKeHHOH YacTHIB, ABHKYyILeHcs
NOA BJMSIHUEM BHEUIHEro IOTEHLHANa.
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