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The  problem is investigated as to how far the wave equation representing a quantum- 
mechanieal system can be transformed by chang~ of variables into a system of equations 
which have the forro of the classical equation of mation of a d~formable medium. In the present 
paper we carry out this investigation in the case of a sin~le charged particle moving under 
the influence of an outside potential. 

I. Basic c o n c e p t i o n s  

w 1. The diff~culties connected with the physical in terpre ta t ion of the 

wave funct ion ~ have renewed interest  in the hydrodynamica l  model of wave 

mechanics,  i.e. in a model in which the fundamenta l  equations of mot ion 

refer to classical quanti t ies by  which ~v m ay  be replaeed. Summariz ing our con- 

siderations to be presented in a number  of papers, we shall analyse the problem 

of how far it is possible to replace the wave mechanical  description of a 
sys tem by  one mathemat ica l ly  equivalent  and of the form of the classical 

equations of mot ion of an elastic medium. 
Our a t t emp t  is not  new, similar considerations have been given a l ready 

e.g. by  MADELUI~G [1] and later  by  EHREI~FEST [2] and TAKABAYASI [3]. 

(See also our short  eommuniea t ion  [4].) Fur the r  a number  of papers  have  

been published in connect ion with the classical ana logy  of  q u a n t u m  mecha-  

nics which are to a certain degree similar to ours as regards the ma the -  

matical  formalism but  which are different as regards their  airo. (We men-  

t ion here e . g . L .  DE BROGLIE [5] and K. NOVOB�93165 [6].) On another  

occasion we sball summarize the wide l i terature on the subject .  
w 2. The simplest case, i.e. the motion of a particle of mass m and 

charge e under  the influence of forces which can be derived from a potent ia l  

V can be described by  the SCHrt6DI~GER wave equat ion 

~2 
- -  - -  V 2 ~ ~- V~v ---- i h  O'p , ( 1 )  

2m 0t 

where the wave function ~v is a funct ion of the coordinates and of the t ime.  

We may  write for short ~v (r, t) = ~v. Similarly V m a y  & p e n d  on both  r and 

t, thus we m a y  write V ( r , t )  --  V. 
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According to the generally accepted in terpre ta t ion  of the wave funct ion 
I~0 la is a probabil i ty densi ty,  i.e. [~o ]2 dr  is the probabil i ty  to f ind the particle 
(which is supposed to be pointlike) inside the  votume element dr  [7].ScnR6- 
DINGER'S original idea [8] was tha t  I~v[2 repxesents a true density,  i.e. the 
particle is smeared over space with a mass densi ty  ~m and electric charge 
dens i ty  Qe so tha t  

Q m = m ~  ~ e = e ~  with o=l~oq (2) 

Later ,  re luctant ly ,  SCrlR(JDINGER had to give up his original idea and to 
accept BORN's probabil i ty  interpretat ion.  

The considerations connected with the hydrodynamica l  model auto- 
mat ica l ly  renew the question as to the in terpreta t ion of I ~ ]2.The densi ty  defined 
by  (2) appears as one of the variables of the hydrodynamica l  model, thus  
the classical picture of the sys tem described by  the wave function corresponds 
to a medium with densi ty  e = ~(r, t) spread out  over space and moving 
under  the influence of outer forces, the elastic stresses occurring inside the 
medium.  

w 3. SCrtR~Dtrr already pointed out t h a t  the velocity of f low can 
be expressed in terms of ~v as follows: 

9v -- (~v* grad ~ --  ~o grad ~*). (3) 
2m 

The quantit ies defined by (2) and (3) sat isfy together with (1) the 
following relation 

div (pt,) + a~_ = 0. (4) 
�91 

This is the so-called cont inu i ty  equation,  which can be derived from the 
Scrtl~6I~iNc, r,a equation.  Tbus v and e can be taken  to describe velocity and 
densi ty  distr ibution of a moving medium. 

I t  should be noted tha t  adding a te rm rot  Z (where Z is some arb i t ra ry  
rec tor  quant i ty)  to the definition (3) of v, the cont inui ty  equat ion (4) would 
also be satisfŸ In the present approximat ion we m a y  take this t e rm to 
be zero. We shall re turn to the exact determinat ion of the forro of Z when 
dealing with  the hydrodynamica l  model describing the electron having spin 
and magnetic  moment ,  i.e. when Z can be determined by comparison with 
the experimental  results. 

Multiplying (4) by  m and e, respectively, we obtain the cont inu i ty  

~ Q m  0 and tha t  for the electric equat ion for the flow of mass div p -4- St 
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O~ - - 0  we merely  have to suppose 
0t 

39 

p = m o v  = ~,, v ,  

i -= eo~v ~ ~ ~ v ,  (5) 

where p i s  the dens i ty  of m o m e n t u m  and i the densi ty  of electric current  
in suitable units .  

In tegra t ing  (4) over the whole of space (changing in the second t e rm 
the order  of in tegra t ion  and different ia t ion and supposing t h a t  Qv tends 
sufficiently s t rongly  to  zero at  inf ini ty) ,  we find 

d fea~=o 
dt 

Thus the dens i ty  in tegra ted  over  the whole space is cons tant  in t ime and 
- -  to be compat ible  with the wave equa t ion  - - h a s  to be given the value 1, i.e. 

,~ o d v  = 1. (6) 

Using the normal iza t ion (6) we obta in  for total  mass and to ta l  charge of the 
medium the ini t ial ly given values m a n d e .  

II. Equation of motion 

w 4. So as to obtain a dynamica l  descript ion of  our  sys tem ir is necessary 
to consider the accelerat ion of the  elements of the  medium.  According to  
hydrodynamics  the accelerat ion of an element  of a moving  medium is given 
by  the to ta l  der ivat ive  of the veloci ty,  i.e. 

d v  Ov 
a --  - -  -~ (v grad) v ,  (7) 

dt Ot 

where the part ial  d e r i v a t i v e - a t  expresses the ta te  of change of veloci ty  

in a f ixed point .  Ins tead of (7) we can also write, tak ing  into account  the 
con t inu i ty  equa t ion  (4): 

dv o (~v) 
Q --  - -  -~ Div (~VoV), (8) 

dt ~t 

where Div is the tensor  divergence and o designates the direct product .  
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Differentiat ing (3) wi th  respect to t ime and expressing the t ime derivat-  
ives of ~* and ~ in terms of their  spatial derivatives with help of the wave 
equ. (1), we get from (8): 

d v  
Qm - -  - -  ~ grad (V -}- Q) (9) 

d t  

with 

]�91 V2 Q1/2 
Q - (10) 

2m ~1/2 

In place of (9) and (10) one m a y  also write 

9m -- P grad V -- Div ~ ,  (9a) 
d t  

with the tensor given by the relation 

]�91 
--  O (V o V) In O (lOa) 

4m 

or writ ing down the i, k-th component  of the tensor 

~2 0 2 In Q 
Qik - -  - -  9 

4 m  Ox i Ox k 

We find tha t  equs. (9), (10) [or (9a) and (10a)] together  with the con t inu i ty  
equat ion (4) give a complete set of equations of motion.  Indeed,  if  we impose 
ah initial condition upon v and 

v ( r ,  0 ) = v  0(r) and Q(r, 0 ) = Q 0 ( r )  

their  t ime distr ibution can be determined uniquely  from the above sys tem 
of equations.  

w 5. The equs. (4), (9) and (10) are exact ly  of the form which is to be 
expected for the classical equations of motion of an elastic medium. Q plays  
the role of an inner potent ia l  and 

F i = -- grad Q (11) 

is the stress appearing as the resu]t of deformation.  
Tha t  F i a s  given by (11) can be regarded as classical stress can be seen 

from the following remarks:  
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1. If  ~--~ const., then Q - - c o n s t .  and Fi = 0 ,  thus stress appears 
only at places where the density of the medium is non-uniform. In a given 
point, Q d› only upon the density in this point and the spatial derivatives 
of the density, thus we may say that  Q in a given point is determined by  
the density distribution in the immediate vicinity of that  point, just as is 
to be expected in an elastic medium. 

2. I t  follows from (11) and (10) [or (10a)] that  

~" o F t d~ = O, (12): 

i.e. the inner forces resulting from the stress have no resultant. Thus the 
rate of change of momentum of the system is given by the integral over the 
outcr forces only; of denoting by 

the coordinate rector of the centre of gravity of our system, we find 

where 

(13~ 

F o = -- grad V. (13a). 

Equation (13) expresses the law of EHI1EI~FEST. 
3. The moment of force produced by the inner forces can be written 

K, = I ~ Ir • Fil d~ = - -  J" Ir • Div ~ ]  dT 

Integrating by parts, we find, remembering that  ~ is a symmetric tensor 
[see (10a)]: 

K i ~  O.  

Thus the inner forces produce no moment of force. We find therefore for the 
total moment of force of the system in analogy to (13): 

K= Je[rxF~]dr, (14) 

i.e. the change of angular momentum is caused by the moment of the outer 
forces only. In particular, we note that  the angular momentum of the system 
will change continuously provided the outer forces produce a non-vanishing 
moment. 
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Tak ing  toge ther  the three  r emarks  made  above ,  we see t h a t  the  equs 
(4), (9) and (10) deseribing the  mot ion  of our  m e d i u m  ate indeed of the  t ype  
of  classical equat ions  of  mot ion .  The fact  t h a t  the  cons tan t  A appears  in the 
express ion  giving the po ten t i a l  Q does not  affect  the  classical na tu re  of  the 
e q u a t i o n .  Indeed,  /i m a y  be regarded  as a cons t an t  character is t ic  of  the 
elast ic  proper t ies  of  ah a tomic  sys tem.  Obvious ly  no descr ip t ion can be 
successful  which does not  make  use o f / i  . 

III. Connection between hydrodynamieal equations and the wave equation 

w 6. In  the following we discuss how far  it is possible to  es tabl ish  a 
one to one correspondence  be tween  the  descr ip t ions  of  a sy s t em by  a wave  
func t ion  on the one hand  and the  h y d r o d y n a m i c a l  var iables  e and v on 
the  otller.  

For  this purpose  ir is convenient  to express  the  wave  funct ion ~v with  
help  of  two real  funet ions  R = R (r, t) and  S : S (r, t) in the  forro 

~v : R e  is . (15) 

I n t r o d u c i n g  (15) in to  the  expressions for the dens i ty  (2) we find 

0 = R2 (16a) 

a n d  fu r the r  f rom equ. (3) for the ve loe i ty  of  f low 

v = - -  grad S.  (16b) 
m 

( I t  should be no ted  t h a t  the  above  express ion for v i s  valid only for points  
in which ~ =/: 0; a t  points  where e = 0 ,  v m a y  have  singularit ies.)  

If ,  however ,  we w a n t  to de te rmine  f rom given dis t r ibut ions  of  ~ and 
v the  wave  funct ion ~v sat is fying the wave  equa t ion ,  we have  to express  R 
a n d  S th rough  ~ and  v .  Revers ing  (16) we obtain  

R = V~, 0 T a )  
+ 

r 

S _.  ___mh f v d r  + S O , (17b) 

re 

where  r o i s  a cons t an t  vec tor  and S O a funct ion  of t ime only.  Thus  f rom a 
g iven  d is t r ibut ion  of  Q and v funct ions R and S m a y  be de te rmined  on the 
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basis of (17), and fur ther  using (15) the corresponding ~v funct ion fulfilling 
the wave equa t ion  may  be buil t  up. I f  we require y to be a single-valued 
funet ion of the eoordinates  aeeording to (15) v m a y  still be mult i -valued 
having values differing by  integer  multiples of 2:r f rom eaeh other,  i.e. 

~ v d r = 2 ~ r $  k , k = 0 ,  : s  + 2  . . . .  , 
m 

(18) 

where the pa th  of in tegra t ion  must  avoid points for whieh Q = 0 ,  otherwise 
i t  ma y  be an a rb i t r a ry  elosed path.  The expression (18) re la t ing to the veloei ty,  
together  wi th  the  normal iza t ion  (6) of  the dens i ty  m a y  be regarded as initial 
condit ions.  Indeed  (as can be shown easily), if  t h ey  are fulfilled at a t ime 
t = 0 they  remain  so for all la ter  t imes. 

Equ.  (18) is equal  to Thomson ' s  law Of vort iees in a field. 
w 7. So as to eheek whether  ~ eonst rueted  f rom the distr ibutions of 

and v obeys indeed the wave equat ion,  we insert  the y funet ion thus obta ined 
into the  wave equat ion.  Doing so we f ind tha t  the wave equat ion  is indeed 
fulfilled, provided  we take r 0 to be an a rb i t r a ry  veetor  independen t  of t ime 
and pu t  

t 

S O 1 f E ( t )  d t  

O 

with 

E = [ 1 mv~ t V + Q +  2 ,=,.  

Thus the explici t  expression for ~v satisfying (1) can be wr i t ten  

t t {if~ ir = V~ exp ~ v d r  - -  - -  E (t) d t .  
+ h 

r 0 

We see thus  t ha t  owing to the a rb i t r a ry  value of ro,  ~o is de termined  
i; ,  

exeept  f o r a  eons tan t  phase factor ;  thus  ~o m a y  be replaced by  ~v' = y e  
(with V 7  = ~' = 0), ~v" eorresponding to the same hydrodynamica l  dis t r ibut ion 
as ~o. However ,  in the usual eonsiderat ions of wave meehanies  such a phase 
factor  is regarded  as un impor tan t ,  thus  we can eonelude t h a t  essentially there  
exists a one to one eorrespondenee between the solutions of the wave equat ion 
and the hydrodynamiea l  equat ions  (4), (9) provided only  solutions obeying 

initial eondit ions (6), (18) are eonsidered.  
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IV. Stationary states 

w 8. The SchrSdinger wave equat ion (1) admits  so-called s ta t ionary  
solutions of the forro 

i 
- -  - -  E t  

(r, t) = ~v (r) e ~ (19) 

when the potential  energy V ( r )  does not  depend on the t ime. 
The ampli tude of the n-th s ta t ionary  solution is determined by the 

equat ion 

~2 
- -  - - -  V 2 q2. ~, Vc fn  : E n q~n . (20) 

2 m  

where  the constants E n  are the energy eigenvalues and the functions qn 
are the normalized eigcnfunctions. 

The corresponding hydrodynamica l  variables are of coursc independent  
of t ime, i.e. introducing (19) into (2) and (3) we get for the densi ty  and 
velocity of flow, respectively:  

ih 

2m 

e = ~* (r) ~.  ( r ) ,  

[~* (r) V ~ .  (r) - -  V ~* (r) ~v n (r)] .  
(21) 

a) Let  us consider first  the case when the ampli tude of the s ta t ionary  
solution is real, i.e. q~n(r) = ~n*(r). (It should be noted tha t  a funct ion ~ o f  
real ampli tude multiplied by  a constant  phase factor  can also be regarded 
a s a  real solution in accordance with what  we have said above.) As can be 
seen f rom (21) in this case 

a~ _ 0 and v = 0 ,  
0t 

which means t ha t  the real s ta t ionary  solutions correspond to states in which 
the medium representing the particle considered is at  rest. The inner potent ia l  
can be expressed with help of the ampli tude function,  taking into account  
(2), (10) and (19) in the forro 

h 2 V -~ ~, (r) Q -  
2m qn (r) 

Using the ampli tude equat ion (20) we have 

Q = E n - - V  
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or forming the gradient  and taking  into account  (11), (13) 

Fo + Fi  = 0 ,  

i.e. the stress p roduced  by  the inner  forces exac t ly  balances the outer  forces 
arising f rom the potent ia l  V. 

A well-known example for this case is provided b y  the ground s ta te  
of  the H-a tom.  The inner potent ia l  corresponding to  the wave funct ion 

r 

9L( r )=Ce  ~B has the forro 

_ _  e 2  Q -  me4 + - -  ---- E 1 -  V ( r ) ,  
2h 2 r 

where E 1 is the energy  cons tant  of the ground s ta te  and V(r) represents  the 
Coulomb potent ia l .  As can be seen Q obta ined for this case produces a stress 
which exac t ly  compensates  the Coulomb a t t r ac t ion  of  the nucleus.  The medium 
is in a s ta te  of stress bu t  does not  move.  

b) Essent ia l ly  Complex solutions of the ampl i tude  equat ion  (20) corres- 
pond to states,  where 

i$ ~,  (r) 
ee - -  0 ,  v - grad In 
0t 2m ~* (r) 

0v 
In such a s ta te  v =/= 0, bu t  ~ - =  0 ,  these are character is t ic  expressions 

for a s t a t i ona ry  flow. 
As bo th  the  charge dens i ty  ee and the cur rent  dens i ty  i ate cons tant  

in t ime, such a configurat ion produces s t a t ionary  electric and magnet ic  fields, 
ir does, however ,  not  radiate .  

For  such a dis t r ibut ion grad (V + Q ) ' #  0, i.e. the inner  stress does 
not  compensate  exac t ly  the outer  force. We find with help of  (7) and (9): 

m (v grad) v = --  grad (V + Q). 

As can be seen easily, the uncompensa ted  stress produces  forces which are 
necessary to main ta in  the s ta te  of  s t a t iona ry  flow. 

A simple example  for this case is provided by  the 2 p i  s ta te  of the H-a tom 
to which belongs the wave funct ion 

r 
q~2 (r) = C --x + q e ~r~. 

2r n 

We find in this case 

V - f - Q  = E 2 
1~2 1 

2m x 2 -4- y2 
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( m e  4 ) 
with the  energy cons tant  of the 2 p i  s ta te :  E 2 --  8h 2 . Thus as can be 

seen easily from this equa t ion  the inner and outer  forces do not  compensate  
each o ther  and there remains an uncompensa ted  a t t rac t ive  force, which varies 
propor t iona l  to (x 2 + y2)-3/2. 

We find fur ther ,  in t roducing 902 (r) into (3), t ha t  the medium ro ta tes  
a round the z-axis. The angular  veloci ty in a point  r is given by  

h 1 
O) - -  

m x2 + yO 

The centr ipetal  force, which is needed to make the elements m o re  along 
circular  paths  with such velocities is provided by  t h a t  par t  of the stress which 
is not  compensa ted  by  the Coulomb a t t rac t ion  of the nucleus and which has 
the form 

he 
F c = m ~ o  2 ( x  2 -+ y2)1/2 = (x 2 + y 2 ) - 3 / 2 .  

m 

w 9. Solutions of the wave equat ion (1) can be represented  as l inear 
combinat ions  of s t a t ionary  solutions. Thus a solution ~p (r, t) can be wri t ten  
in the form:  

i 
ti Evt 

v/(r,  t) =~Y%90~(r)e , (22) 

where the  s ta t ionary  solutions f o r m a  normal ized set. The corresponding 
charge and current  densities can be obta ined when in t roducing (22) into (2) 
and (3); we get thus:  

---- ~ '  ov~ cos (~%~ t + a J ,  (2 3) 

where 

E .  - -  E_A ~ (24)  O)vf * = ~�91 

and q~~,, a , ,  are funct ions of  the coordinates only,  i.e. 

I Qv~ ---- q v c~ 90~ (r) q~ ( r ) [ ,  

1 c~ c* 90~ 90* 
a~.~ --  In 

2i c* c ~* bt v "r/* 90v 

Similarly we find 
ov = ~'p~g cos (c%~ t + flvg), (25) 

where the p~~ and fl~,, can be also expressed expl ic i t ly  in terms of the cv and 

9 0 v -  
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Equs. (23), (24) and (25) show that  the medium in the non-stationary 
state vibrates with frequencies r which ate exactly the Bohr frequencies. 
The terms with v = ~t represent a constant charge and current density. This 
stationary motion is superimposed by the oscillation. 

We see thus that  the fluid representing the particle under investigation 
has its equilibrium configurations given by the eigenfunctions of the stationary 
states. 

On the effect of some outer disturbance the medium starts to oscillate 
with frequencies r around its equilibrium configuration a n d a s  the medium 
is eharged it emits eleetromagnetic radiation of those frequencies. The total 
dipole moment which is responsible for the emitted radiation can be written 
in the form: 

dvg~-- - -2c~c  e j ' r % * ~ v  dv. 

Frequencies belonging to a vanishing dipole moment do not occur in first 
approximation. Indeed, "the eurrent distribution inside the atom in a state 
described by the wave function 

i i 
h E~t ~ E~t W=cl~vle -~-c2q)2e 

in the case d12 = 0 is sueh that  part of the medium oscillates with frequency 
o)12, the phases of the oscillation being distributed in such a way that  the 
radiation emitted by one part of the charged medium is opposite in phase 
to that  emitted by the remaining part and in a first approximation the 
radiations emitted by the two parts extinguish each other by interference. 

Considering the second approximation we obtain the so-called quadru- 
pole radiation. Such a quadrupole radiation with its characteristic distribution 
of intensity and polarization is indeed observed in case of the forbidden lines 
when d~, ~-- 0 . 

We note that  the hydrodynamical model accounts also for the "elas- 
tically bound electron" which was postulated by HERTZ to explain the optical 
properties of atoms. 

The main difficulty encountered by HERTZ was to explain how it is 
possible that  an electron could be excited so as to vibrate with a series of 
frequencies. 

This difficulty is overcome by the hydrodynamical concept. It is seen 
that  the elastic forces derived from the inner potential Q together with the 
outside potential V provide a dynamical system, the characteristic frequencies 
of which are exactly the optical frequencies. Further, the modes of vibration 
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4 8  L. JANOSSY and M. ZIEGLER 

o f  t h i s  s y s t e m  a re  in  a c c o r d a n c e  w i t h  t h e  p o l a r i z a t i o n  a n d  i n t e n s i t y  d i s t r i -  

b u t i o n  o f  t h e  o b s e r v e d  s p e c t r a l  l ines .  

I n  a l a t e r  a r t i c l e  we sha l l  p r e s e n t  ou r  c o n s i d e r a t i o n s  for  t h e  case  w h e n  

t h e  e l e c t r o m a g n e t i c  f i e ld  is a lso  t a k e n  i n t o  a c c o u n t .  F o l l o w i n g  on  t h i s  we 

,shall  d e a l  w i t h  t h e  h y d r o d y n a m i c a l  m o d e l  o f  t h e  e l e c t r o n  w i t h  sp in .  
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FH~PO,~HHAMHqECKA~I MO~IE.FIb BOJIHOBOI~I MEXAHHKH I 

J'I. F[HOLI~H H M, L[HFTIEP 

P e 3 i o M e  

PaccMaTpHBaeTc~ npo£ o B03MOM<HOCT~IX npeo£ nyT~M 3aMeHbl nepe- 
MeHHbIX, BOJIHOBOF0 ypaBHeHH~ KBaHTOBOMeXaHHqecK0fi CHCTeMbl B CHCTeMy ypaBHeHHfi, O6- 
.~a~Iammym ~b0pM0fi K~accnqecKoro ypaBHeHH~ ~BH>t<eHt4FI ~eOopMHpymmefic~ cpe~bL B npe~l- 
,CTaBJleHH0~ paOoTe Mbi H3yqaeM 3TOT B0np0c ~10]~ 0~IH0fi 3apŸ qaCTHIIbl, ~IBI4)KyIIq 
~[IO}~ BJIH,qHHeM BHeIIIHeFO noTeHi~Ha:la. 
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