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CALCULATION OF COMPLEX-CONJUGATE
PAIRS OF REGGE TRAJECTORIES WITH THE
SCALAR BETHE-SALPETER EQUATION
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The BETHE-SALPETER equation of scalar particles is reduced to a form which is tractable
numerically. This formalism is applied to the numerical calculation of Regge trajectories.
Particular attention is paid to the level mixing effects of the mass difference leading to comp-
lex-conjugate pairs of trajectories. The calculations include the imaginary part of the total
energy at real values of the angular momenta.

I. Introduction

Considerable interest has recently been attached to the properties of the
relativistic Bethe-Salpeter (BS) equations [1, 2] in the ladder approximation.
The numerical program initiated by ScawarTz [3] and ScEWARTZ and ZEMACH
[4] demonstrated that the classic work of Wick [5] and Curkosky [6] may be
extended by using conventional computational techniques. Following the first
calculations, many results have been obtained both in the bound [7] and
scattering regions [8]. This development has been exploited in detailed nume-
rical calculations of Regge trajectories for spinless particles [9-10]. CuTkoskY
and DEo [9] found surprising collision phenomena among the trajectories
which indicate the existence of complex branches in particular unequal mass
situations,

The calculations of CuTkosKY and DEo are limited to real angular mo-
menta at real values of s (s is the squared energy). This talk is concerned with
extending the numerical calculations to complex energies. The explicit compu-
tations were done below elastic threshold at real angular momenta. A detailed
report of this work will be published elsewhere [11].

II. Reduction of the BS equation

We consider the homogeneous BS equation of two scalar particles with
masses m; and m, which interact via the exchange of a third scalar particle
with nonzero mass x. The BS wave function y satisfies the differential equa-
tion [4]

(L-)y=0, 1)
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where 4 is the coupling strength and V denotes the ladder approximation of
the interaction. In the center-of-mass system the Wick-rotated operators L and

V are

=[ O +2m E— -ﬁHmﬂ{~D—%@E x#@+mﬂ, (2)
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where s = E2, E is the total c.m. energy, the 2’ s (i = 1, 2, ..., 4) denote the
components of the relative coordinate, and the parameters i, and y, are cons-
trained by the condition y; 4 u, = 1. For the K, function we used an approxi-
mation proposed by Vosko [12]:

yK(y) o X2 TTRETAYIE 7 6= 0.66746 . - (5)

We can make the usual separation
Y=y = q)l (Rv 6) Ylm(ﬂ7 (P)a (6)
where the angles 0, &, ¢ are defined by

x, = R sin § sin ¥ sin ¢, x, = R sin 0 sin & cos ¢, x, = R sin @ cos &,

%y = Rcos 0.

Our starting point is the expansion of y; in terms of the normalized four-
dimensional spherical harmonic functions Y, (8, 4, ¢):

H
ng

;: g Pighs (7
Pigh —flqh(R 1+, 1m0, %, @) .- (8)

ScawaRrTz [3] suggested the following basis functions:
fiR) = Ri+ath ==, ©)

where = is a nonlinear scale parameter.
Instead of the functions g,,, Curkosky and DEo used basis functions
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¢qn of the form

(p?qh = Pgn evR cos 0 (10)

where the parameter y = p(E) was chosen to incorporate the differences in the
asymptotic behaviour of the solution when cos § = 4 1. On the other hand,
it should be noted that the redefinition

fy = g + 0, Hy = ftg — 0 (11)
produces the transformation
1/)‘—>1/)66ER cos f (12)

in the wave function of the BS equation (1)—(2), but the eigenvalue J is inde-
pendent of 8. Thus, the use of the factor exp [yR cos 0] (see Eq. (10) ) may be
avoided by a transformation of the parameters u, and u,. In the present cal-
culations we choose the convention y; = u, = 1/2 and a mass scale in which
the external masses are

m; =14 4, my,=1—4. (13)
It is convenient to introduce a second set of basis-functions y,,,:
Xipk = glpk(R) Y1+p, m(0, D, @). (14)
In particular, we may choose
&p(R) = Ri+P+ke=rR, (15)
We now can formulate the BS problem (1)—(2) in the space of states defined by

the basis functions ¢, , and y,,,. One obtains the following system of inhomo-
geneous linear equations

Q H 1
2 2 > <x1plepv;}‘I/;Lv| (plqh> Ay = 0 (16)
=0 h=0 y—0
for
p=0,1,...,0, k=0,1...., H p=0,1, (17)

and ¢ — oo, H — oo, The matrix elements can be written as

oo T T 27
lipr| Bl@igny =J0 dRR? jo dfsin20 jo dd sinﬂjo Aoy ior B pign.  (18)
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Voo=—Vu=V, Vy="V,=0, (19)
1 2 82
Doy =Dy =[O 41440 1 e B
Oy (20)
—44u ° (4~A2—|—Lu2 vz) ,
ox, 4

2
Dy =D,y = uv[AI:H—l—{—AZ———i—(uzfvz)j|+2u” :2 +44v ° > (2D)
Xy

o1,
with
w=1/2(E+ E*) v = ;_ (E — E®. (22)
In addition, we have t
Qg = % (aqh+fl’5h), gy = 2i (agn—agn), (23)

{

where the a,,’s are the coefficients in decomposition (7). The explicit evaluation
of the matrix elements is included in [11].

Equations (16)—(17) can be continued in the angular momentum plane,
the Regge trajectories correspond to the nontrivial solutions. Approximate
solutions of this problem may be calculated by setting finite values of Q and H
in Eqgs. (16)—(17). The corresponding secular equation is

Det |D — AV| = 0, (24)

where, of course, the matrix elements

<leleyv -2 Vp.v I (plqh>

depend on [, u and v. The solutions of this problem result in the Rayleigh-Ritz
approximations [3] by requiring y,,, = @;,,- On the other hand, we obtain
the method of moments if y,,, 5= ¢, [13-14]. We emphasize that in these
methods unpleasant difficulties may be encountered because the unequal-mass
BS problem involves nonhermitean or nondefinite matrices. Our calculations
have been carried out by using a generalized least-squares technique. Details
of this method can be found in [11].

III. Results and discussion

We computed some Regge trajectories in the region — 4 < Res 5 3.5»
— 0551515 =1*). All calculations were done for exchanged mass
x =1 and the coupling strength was adjusted as A = 16.38 to place the
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highest-lying (parent) trajectory of an equal-mass system (4 = 0) through
I =1 at zero energy. The trajectories were calculated by using 14 basis fune-
tions ¢,,;. Figs. 1-3 do not include results near the threshold and some
turning points where the convergence of the results is seen to be poor.
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Fig. 1. Regge trajectories for equal-mass systems. The parameters are 4 =0, 4 = 16.38,
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Fig. 2. Effect of the mass difference. The Regge trajectories were obtained for 4 = 0.3, A =

= 16.38, % = 1. Solid lines represent real trajectories at real squared energies. Dashed curves
are the complex branches
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Fig. 1 shows the equal-mass situation (4 = 0). We observe two inter-
secting trajectories which correspond to excited states with opposite time-
parity. The effects of the mass difference are summarized in Figs. 2-3 by
choosing A = 0.3. Consider first the region where trajectories of the equal-mass
system are seen to cross (s ~~ 0.75, I ~~ 0.03). Since the corresponding states
have opposite time parity, the mixing effect of the anti-Hermitean operator
44udfox, (see Eq. (20) ) leads to a complex-conjugate pair of trajectories which
connect two colliding real branches according to previous perturbation argu-
ments. Fig. 3 shows the details of this complex branch including the imagi-
nary part of the energy. In addition, Fig. 2 includes two other complex branches
of the type already seen.
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Fig. 3. Details of the first complex branch of Fig. 2 (4 = 0.3, 1 = 16.38, x = 1)

We conclude that the slopes of Regge trajectories are very model depend-
ent and detailed numerical calculations are necessary before any conclusion
can be drawn.
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PACYET KOMIUJIEKCHO-COTIPSKEHHBIX TMAP TPAEKTOPUN PEJDKE C
[TOMOIIIBIO CKAJISIPHOI'O YPABHEHMST BETE—COJITIUTEPA

K. JIAOAHHU

Pesiome

VYpaBHenue Bere— Connutepa At CKAJSIPDHBIX YacTHL NPUBEAEHO K YIPOLLEHHOMY

BHJYy, ONYCKAKOLIEMY YHCJIEHHOE peLieHHe. ITOT HOpMajiH3M NPHMEHEH K PacyeTy TPaeKTopHH
Pemre. Ocoboe BHUMaHHE yaeneHO aQdeKTamM CMEIIHBAHHS YPOBHEN NPH pas/AHUHBIX Maccax,
NPHBOAAIIMM K KOMIIJIEKCHO COMpPSDKEHHbIM Napam TpaekTopuil. TaroKe pacCuMTaHa MHHMask
4acTh TOJNHOH SHEPTHHM TNPH BEIIECTBEHHBIX 3HAYEHHSIX YIJIOBOIO MOMEHTA.
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