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Using the equal-time current algebra and the divergence conditions, we calculate the
current commutators for small time differences. It is shown that the commutators are expli-
citly model-dependent and the contributions of the symmetry-breaking terms do not drop out.
The physical content of the current commutators of non-equal time is discussed in terms of
new sum rules. We point out that the disconnected contributions are necessary for the consis-
tency of the sum rules. The sum rules favour the field algebra.

I. Introduction

In spite of the enormous successes of the equal-time current algebra,
extension of the current commutators for non-equal times is an urgent and
difficult task. Up to now, the motivation for generalized current algebra is
twofold.” In order to clarify the meaning of the infinite momentum method,
attempts have been made for an extension of the current algebra near the light
cone [1, 2]. 2. The light cone commutators control the high energy behaviour,
therefore theories of generalized current algebras were developed on the light
cone [3, 4, 5] to study inelastic processes at high energies.

These generalized current algebras are, however, postulated with a cer-
tain arbitrariness, as far as the compatibility with the divergence conditions
(PCAC, CVC, etc.) and the presence of the symmetry-breaking terms are
concerned. In Section IT we show that the equal-time current algebra and the
divergence conditions determine the extension to non-equal times, at least in a
small strip along the space-axis. It is explicitly seen that the generalized
commutators are model-dependent and, in general, the contributions of the
symmetry-breaking terms do not drop out.

The next question concerns the physical content of the generalized
current commutators (Section III). In the case of conserved vector currents
we describe a simple method leading to sum rules. The new system of sum rules
becomes inconsistent if one neglects the disconnected contributions. The sum
rules favour the field algebra.
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II. Non-equal-time current commutators

We confine ourselves to SU;x SU; algebra and write [6]
[6()s T P lxomye = fase & --5) [FTTAx) +S(jor T ,) - (1)

Here j;, JZ are vector or axial vector currents, S(j, J) means possible gradient
terms and [j J] is a suitable vector or axial vector current, [VA] = [4V] =
= A, [AA] = [VV] = V. We suppose that the current divergences are given

(CVC, PCAC)
9, ji=d, 8,J4=D,. )

To calculate the current commutators at small time differences, we
subject ji(x) to a small time translation; then our task is reduced to the calcula-

[%jgd@’y‘)) s J”(y)-’
oys g

tion of

and this can be done for the first few derivatives.
Case n = 1. First, let us take x4 == 0 and substitute (1) and (2); we get

[8076(2» ¥0)» Jo(3)] = [d%(x, ¥o): Jo()] +
i fae [ 1) 8, 8(x — y) + 8, S(jin Jo), k= 1,2, 3.

(3)

The commutator on the right-hand side can be taken from the localized
version of GELL-MANN, OAKES and RENNER’s charge-current divergence
commutator [7], so, this term carries the symmetry breaking and it is not
compensated by other terms.

The case yu = k is more difficult because of the unknown (although small)

[4°, Ji) [8]: '
[805(x> Yo)s Jh(N)] = [d°(x> ¥o)» JR(¥)] +
+ i afone [ T1(7) 8, 8(x — ) + « 8, S(j; J o),

(4)

where & = 0 for field algebra and & = 1 for quark algebra. For conserved SU,
vector currents the term [d? J?] is absent.
Case n = 2. The corresponding commutator remains, in general, unknown
(except for special cases) due to the presence of the symmetry-breaking terms.
For y = 0 one gets [9]:

[3375(%, y0)> Jo(3)] = [8o A%, yo)- Jo ()1 —
— [08:j2(®, y0)» D()] +ifave 8 1T Tl y) 8k 0= — ¥) — (5)
— ixfope a%(ak o(x—y) []'J](c)(y)] +8x 89 S(jixs Jo) — @8} 8 S(jia J1) -
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The first two commutators on the right-hand side are absent in the case of
SU,-symmetric vector currents, d” = D = 0, while, in general, they are deter-
mined by

8,[d”, Jol — [d% D°]—[d*, B, Ji] — [8,Jf D'). (6)

We again take the first term from [7]; the second term vanishes in some
simple cases, for example, by requiring canonical equal-time commutation
relations for pion and kaon-field operators, etc.

In case of u =k

(85 j5(x> ¥o)» JE] = [Bed™(xs ¥o)» TR 4 880 jil(x, ¥0)» Jh(W)]- (7)

When d? >« 0, the first term of the right-hand side is non-vanishing [8];
the second term is known at present only in field algebra.

Finally, let us remark that the commutator n = 3 is completely known in
field algebra for SU,-symmetric vector currents. At the same time, in the case
n = 4, only the commutator ¢ = 0 is known.

Summarizing, we see that the current commutator of non-equal time
depends on the model from which the equal-time commutator of the space
components is calculated, and, it depends also on the value of the divergence
of the current.

IIL. Sum rules
For the sake of simplicity we shall deal with SU,-symmetric vector

currents, d, = 0, and consider [Vi(x), V2(y)], 1l =1, 2, 3 for x, = ¥, small
enough. From Section II one writes

Aol s

- 1 .
+- ax, 8 6(x) [6k1fahc Vs [* —z—xJ — Vg, X (8)

2 . 1 1 )
X {V?éab Am (“ —2_x] +dabcA$n [ATx Js

Let us take (8) between spinless single particle states of the same mass
and show how one gets sum rules if an expansion like (8) is given.

provided x, is small.
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We introduce the following notation

1 1
'Py. = ? (P1p. +Ps)s Q[J. = ‘5‘ (91F+‘Izg) s

A;L:P‘Z,U._Plp.qup._qu.’ vaQ’ t—_—A2, (9>
ab R a 1 b 1 Yy
t57(P13 P23 Q) = el < ( p,l| V3 Ex}v Vi ‘"‘ "2“xJ p1)dt x (10)
and
eizo; 1
gz =-—, (11)
iz

where § is a small parameter, and we choose p; 5= p,. Assuming S(V,, V))is a
c-number, from (8) and (10) we arrive at the sum rule:

?In‘J‘:” dQo 157 (P13 P23 Q) g(ko— Qo) =

 ife P ) (ko -2 0] = 2 F) By X (12)
1) dez)
A1 483
X [Ql 2 1] dz ik, — 34,

The axial vectors A;,, A5, and S(V,, V}) could not give any contributions to
Eq. (12).
The form factor F°(t) is defined by the equation

(P2 Vi0) | p1 > = F@)P,. (13)

Since in (8) we have kept only the first derivative, the sum rule (12)
contains terms of order § and &2, everything else has to be neglected. It is,
however, important that this must be done after having calculated the integral
(12), otherwise extra convergence problems could appear.

The matrix element tzz (P13 p2; Q) can be decomposed into its invariant
parts in the following way:

tzg (Pl;P2; Q) =aq IJ‘u, ‘Pv+a‘l 1::;, Av +a3 %Qv+a4 Ay. ‘Pv+a5 Ap, Av+ (14)
+ ] Ay Qv+a7QyR+aSQyAv+aQQpQv+a10gy,v
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with invariants a; dependent on 7, t, q;, ¢5. Substituting (14) into (12) we get:

S| d0u@Pot a2+ 4,00 (o — Q) =
- (15)

ol Laf]

_1— i dQy(a, B+4-a;5dg+ag5 Q) (ko —Qp) =
27— (16)

1 1
= ?“fabcpo Fc(t) _2_ 02,

Elem dQy(ayPy + ag 4y -+ agQ0) glko — Qo) =
) e (17)

= ot fpe FE(1) P, % 5.

As we have remarked, the left-hand sides of Eqs. (15)—(17) must be considered
in the order §* after integration. If we would expand g(k, — Q,) in 6, the sum
rules obtained immediately from the equal-time commutators [8775, J%]
would be exactly recovered. Keeping the terms of order x} in (8), even the terms
of order 2 would be exact in Eqgs. (15)—(17).

The advantage of the equations such as (15)—(17) is that they include
information coming from the usual current algebra and the time derivatives
(in the present example n = 1, see Eq. (4) ). At the same time, they show the
usual dependence on the reference system {10, 11] and also a model-dependence
through «.

In what follows we derive the P, — oo sum rules. First let us assume
that the limit P, — oo may be taken under the integrals (15)-(17); then we
are led to a contradiction. To see this, we first define the P, — oo system [11]

Pt = (V Vﬁ’ 09 07 4 VITZ)a A” = (07 Alv A27 0)9 (18)
dy
Q;L = (@3, 01> @y Q3), dQ, = V_r/lT{ s

'};a»oo,

45, g5 become independent of ». Then, we get from Eq. (15) in the limit P, — o

L ok, f dvay = ify Fe |6+ Liochy | ; (19)
27[ - 2 R
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since Q; == 0, this could be satisfied only by a vanishing form factor. In the
same way, Egs. (16) and (17) are consistent only if x ¢ = 0, that is in field
algebra.

So, we conclude that, in general, the infinite mass contributions are
necessary for the consistency of the Py — oo sum rules [11]. That is, inter-
changing the limit P; — oo and the integration over (), the contributions of
the disconnected diagrams must be separately taken into account. Let us
denote by a‘ii the disconnected contributions to the invariants a;; then the
contributions of the disconnected graphs to the integrals (15)—(17) in the
limit P, — oo are in turn:

Jim [ d0uat Bt 00 athy—0) = 410+ iy, (20)
Jim (" d0yaf By af 0 gk~ Q) = By + it By, (21)
Jim —— (" dQuaf B+af Q0)athy— 09 = C1+ -8 Cy, (22)
where
Qo= yv”ﬁ —BQ°, y =13t (23)

The functions A,, ..., C, are defined by Eqs. (20)—(22), their detailed
forms depend on the dynamics. In pole approximation we know that the
disconnected contributions are finite and we have seen that at least one of 4,
and A4, (B, and B,, C, and C, in the quark model) is non-vanishing.

Finally, comparing the coefficients of é and 6% in (15)-(17), we get the
following sum rules for Py — oco:

o | ety = if (24)

% J'" dva, +kod, = A, , (25)
1 oo

—zn— dra2+Bl = 0 ’ (26)

1.

(Q3—ko) B+ B, = ’2—"“R)fabc Fe, (27)
1 oo

—2; f d?’a3+ C]_ = 0 3y (28)

(Qa_ ko)C,y +Cy =—ia Pofabc Fe. (29)
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Here (24), (26), (28) correspond to the usual current algebra sum rules [12],
while the others are new ones. For & = 1 the right-hand sides of Egs. (27) and
(29) become infinite, since B, and C, cannot compensate these infinities; only
the field algebra (x = 0) is consistent with the P, — oo sum rules [13]. It is,
however, important to emphasize that at this conclusion we assume the
existence of the integrals of a, and ¢, in Eqs. (26) and (28).

IV. Discussion

In the present paper we have shown that the equal-time current algebra
and the divergence conditions determine the non-equal-time current commu-
tators in a small strip along the space-axis. The model-dependence and the
symmetry-breaking terms in the generalized current commutators were shown.
The purpose of Section III was to present such a method which expresses the
non-equal-time commutators in terms of sum rules. These generalized sum
rules contain also the information coming from the time derivatives [14] and
they are significant, for instance, in connection with the theory of high-energy
inelastic scattering.

In the specific example based on Eq. (8) we deal with conserved vector
currents and get the sum rules (15)—(17) and (24)—(29), respectively, as restric-
tions for the scattering of scalar and vector particles. Although they verify our
general statements above, their immediate evaluation cannot be carried out
because of the lack of the experimental data concerning the scattering of
spinless and spin-one octet particles. Nevertheless, it is important to establish
the crucial role of the disconnected diagrams in (24)—(29) and that the sum
rules are compatible with the field algebra provided (26) and (28) converge.
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KOMMYTATOPEI TOKA TIPH MAJIbIX MHTEPBAJIAX BPEMEHU
H. ®APKALL u I. [TOYUK

Pesiome

Hcnospsyst anrefpy TOKOB NPH PaBEHCTBE BPEMEH, M YCJIOBHSI PaCcX0AUMOCTH, PacCyH-
TaHbl KOMMYTATOPB! TOKA JJISI MaJIbIX MHTEPBAI0B BpemeHH. I10Ka3aHO, YTO KOMMYTATODEI 51B-
HO 3aBUCAT OT MOJENM, U BKJALb! OT YJIEHOB, HAPYLIAOLIMX CHMMETDHIO He OTHajawT. Pacc-
MOTPEHO (M3MUECKOe CONep)KaHHE KOMMYTATODOB TOKA B TEPMHHAX HOBBIX TPaBUJI CYMM.
Tlokasano, uT0 s NOCIENOBATENBHOCTH NPAaBHI CyMM HeOOXOJMMO HaNMyHe BKJA/0B He-
CBSI3AHHBIX Jarpamm. I1paBHia CYMM JaiT OpeanouTeHHe anrebpe moJisi.
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