
Acta Physica Academiae Scientiarum Hungaricae, Tomus 31 (1-3),pp.  251--258 (1972~ 

CURRENT COMMUTATORS AT SMALL TIME 
DIFFERENCES 

By 

I. FARKAS and G. P£ 
INSTITUTE FOR THEORETICAL PHYSICS, ROLAND EOTVOS UNIVERSITY, BUDAPEST 

Using the equal-time current algebra and the divergence conditions, we calculate the 
current commutators for small time differences. It is shown that the eommutators are expli- 
citly model-dependent and the contributions of the symmetry-breaking terms do not drop out. 
The physical co~tent of the current commutators of non-equal time is discussed in terms of 
new sum rules. We point out that the disconneeted contributions ate necessary for the consis- 
tency of the sum rules. The sum rules favour the field algebra. 

I .  I n t r o d u e t i o n  

In  spite of the enormous successes of the equal-t ime current  algebra, 

extension of the current  commuta to r s  for non-equal  t imes is ah urgent  and 

difficult task. Up to now, the mot iva t ion  for generalized current  algebra is 
twofold. I In  order  to clarify the meaning of  the infinite m o m e n t u m  method,  

a t t empts  have been made for ah extension of the current  algebra near the ligbt 
cone [1, 2]. 2. The light cone commuta to r s  control the high energy behaviour,  

therefore theories of  generalized current  algebras were developed on the l ight  
cone [3, 4, 5] to s tudy  inelastic processes at  bigh energies. 

These generalized current  algebras ate, however,  pos tula ted  with a cer- 

tain arbitrariness, as far as the compat ib i l i ty  witb the divergenee condit ions 
(PCAC, CVC, etc.) and the presence of  the symmet ry -b reak ing  terms are 

eoncerned. In  Section I I  we show t h a t  the equal-t ime current  algebra and the 
divergence condit ions determine the extension to non-equal  times, at  least in a 

small strip aIong the space-axis. I t  is explicitly seen tha t  the  generalized 

commuta tors  are model-dependent  and, in general, the contr ibut ions of the 
symmet ry -b reak ing  terms do not  drop out.  

The next  question concerns the physical  content  of the generalized 
current  commuta to r s  (Section I I I ) .  In  the case of conserved vector  currents  

we describe a simple method leading to sum rules. The new sys tem of sum rules 
becomes inconsistent  if one neglects the disconnected contributions.  The sum 
rules favour  the field algebra. 
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II. Non-equal- t ime eurrent eommutators  

We eonfine ourselves to S U 3 •  3 a lgebra  and write [6] 

"a X ~ b  [ J0 ( ) ,  ~(Y)].~0=y0 = ifa£ 6(~--y) [j'J]~,(x) +S0"0, J~) (1) 

I - I  e r e  . a  a j~, J~ are vee tor  or axial  vee to r  eurrents ,  S(j, J) means  possible grad ien t  
t e rms  and [j J]  is a sui table  r e c t o r  or axial  r e c t o r  eurrent ,  [VA] = [-4 VI =-- 

: .4, [AA] : [VV] : V. We suppose t h a t  the eur ren t  divergenees are given 
(CVC, PCAC) 

~~ j~ = d~, 8~ J~ = Da.  (2) 

To ealculate the  cur ren t  c o m m u t a t o r s  at  small  t ime  differenees, we 
sub jec t  j£ to a small  t ime  t rans la t ion ;  then  our  t a s k  is reduced to the calcula- 
t ion of  

( 8n'a'= 1 
o Jo~~,Yo) , j~(y)  

oyg 

and this  ean  be done for the  f i rs t  few der ivat ives .  
Case n = 1. Firs t ,  let us t ake  q = 0 and subs t i tu te  (1) and (2); we get  

�9 a - -  

[Oolo(x, yo), J~(y)] = [d~ J~(y)] -~ 
(3) 

�9 + ifa�91 [ j J ] ~ ( y ) O k � 9 1  A- 8k S(jk, Jo), k = 1, 2, 3. 

The e o m m u t a t o r  on the  r i gh t -hand  side can be t aken  f rom the  loealized 
version of  GELL-MANN, OAKV, S and R E ~ N E a ' S  eharge-eur ren t  d ivergenee 
e o m m u t a t o r  [7], so, this t e r m  earries the s y m m e t r y  breaking  and i t i s  not  
e o m p e n s a t e d  b y  other  t e rms .  

The  ease / t  = k is more  d i f f ieuh beeause of  the  unknown  ( ahhough  small) 

Id ~, J~] [8]: 

[ad£ y0), Jk£ = [d~(~,yo), J~(y)] + 
(4) 

+ i ~fab~ [jJ]£ Ok �91 - - y )  + ~: O~ S(j~Jk), 

where ~ = 0 for field a lgebra  and ~ = 1 for qua rk  algebra.  For  eonserved SU 3 
r e c t o r  eur rents  the t e r m  [d a, J~] is absent .  

Case n = 2. The cor responding  e o m m u t a t o r  remains ,  in general ,  unknown  
(exeept  for  speeial eases) due to the  presenee of the  s y m m e t r y - b r e a k i n g  te rms .  

Fo r  # = 0 one gets [9]: 

[8o2j£ ~, Yo), Jo~(Y)] = [80 da( yo, Yo), J0b(Y)] - -  

- -  [g/j�91 Yo), Db(Y)] + ifa~c 9o [JJ]~(Y) 8h 6(Yo --7) -- (5) 

-- i~fa£ O~(Og 6(Yo - y ) [JJ]£ q-ok Do S(Jk, do) - ~ O[ ok S(j , ,  J,) . 
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The  first  two commuta to r s  on the r ight -hand side ate absent  in the case of 
SU3-symmetric  vec tor  currents ,  d a = D a = 0, while, in general,  t h ey  are deter- 
mined by  

Oo[a a, J£ - -  [d o, D ~] - -  Id a, a~ JŸ - -  [o~j~,  D~].  (6) 

We again take  the first t e rm from [7]; the second te rm vanishes in some 
simple cases, for example,  by  requir ing canonical equal- t ime commuta t ion  
relations for pion and kaon-field operators ,  etc. 

In  case o f # = k  

[002 j£ Yo), J~(Y)] = [~0da(x, Yo), J~(Y)] -4- ~~[00 jŸ Yo), J~(Y)]- (7) 

When d a ~ 0, the first t e rm of the r ight-hand side is non-vanishing [8]; 
the second te rm is known at  present  only  in field algebra. 

FinaIly, let  us remark  tha t  the c o m m u t a t o r  n : 3 is complete ly  known in 
field algebra for SU3-symmetric  r e c t o r  currents .  At the same t ime, in the case 
n = 4, only the  c o m m u t a t o r  # = 0 is known. 

Summarizing,  we see tha t  the cur rent  c o m m u t a t o r  of non-equal  t ime 
depends on the model  from which the equal- t ime c o m m u t a t o r  of the space 
components  is calculated,  and, it depends also on the value of the  divergence 
of the current .  

III. Sum rules 

For  the sake o f  simplicity we shall deal with SU3-symmetric  r e c t o r  
eurrents ,  da : 0, and consider [V£ V~(y)], l = 1, 2, 3 for x o = Yo small 
enough. F rom Section I I  one writes 

, V~ ( -- --~ xI ] = i fa£ 6(~) VŸ ( - ~- x) S(Vo, E) § 

(V~ o( 11  [ 1  ))j X 6ab A m - -  ~ x  -~ da~ c Acn - -  ~ x , 

(8) 

provided x o is small. 
Le t  us take  (8) between spinless single part icle states of the same mass 

and show how one gets sum rules if  an expansion like (8) is given. 
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We introduce the following notation 

1 + , 1 + 
P = -~- (Plt, P2~) Q~ = -~- (q~t, qz~), 

A~ = P2~,- P,~ -~- qlt,--q2~,, v = PQ, t = A 2 , 

t~b(pl;P2;Q) = ~  eiQX~2[~q243 ~/b[--- l x l ]P l  > 

and 

e iz~ 1 
g ( ~ )  - _ _ ,  

iz 

(9) 

d ~ x (10) 

(11) 

where ~is  a small parameter, and we choose Pl  ~ P2" Assuming S(V 0, Vt) is a 
r-number, from (8) and (10) we arrive at the sum rule: 

-~~ f~ |  dQo '£ (Pi; P2; Q) g(ko-Qo) = 

--ifa£ (ko-- 1 A - g T o) i~fabc Fe(t) Po >( 

( 11".,~,1 X Q l - - ~ A l  
�9 ~ z=k,--�89 

(12) 

The axial vectors A~ Ac and S(V 0, V~) could not gire any contributions to 
Eq. (12). 

The form factor FC(t) is defined by the equation 

< P2 t V~(O) ! Pi > = FC(t)P~ �9 (13) 

Since in (8) we have kept only the first derivative, the sum rule (12) 
contains terms of order �91 and �91 everything elsc has to be neglected. Ir is, 
however, important that  this must be done after having calculated the integral 
(12), otherwise extra convergence problems could appear. 

The matrix element t a~ (PI; P2; Q) can be decomposed into its invariant 
parts in the following way: 

t~n~ (Pa; P2; Q) = al P Pv Av az P A v ~-a a P Qv Av a4 A~ P~ A-a5 �91 A v q- 

Av a 8 As Q~ AvaTQr P~ AvasQ~, Av Avao Qt, Q, +alogs, v 
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with  invar iants  a i dependent  on v, t, q~, q]. Subs t i tu t ing  (14) into (12) we get: 

1 
| dQo(a~Po + a4 Ao -}- a7 Qo)g (ko - -  Qo) -- 

2~r .)_ 
(15) 

l f~ dQo(azPo-+-a£ Qo) = 
2~ 

-- -- 1~ ~fabc Po FC(t) ~ 62, 
2 2 

(16) 

1 
| dQo(a3Po A- a6 ~o A- a g Q o ) g ( k o -  Qo) = 

2~ J_ 

1 
= ~ f~bc F~(t) Po _2_ 62. 

2 

(17) 

As we have  remarked ,  the lef t -hand sides of Eqs. (15)-(17) mus t  be considered 
in the order  62 af ter  integrat ion.  I f  we would expand g(k o - -  Qo) in 6, the sum 
rules obta ined immedia te ly  f rom the  equal- t ime commuta to r s  [80nj£ J~] 
would be exac t ly  recovered.  Keeping the  terms of  order  x~ in (8), even the terms 
of order  6 a would be exact  in Eqs.  (15)-(17). 

The advan tage  of  the equat ions such as (15)-(17) is t h a t  t hey  include 
informat ion coming f rom the usual cu r ren t  algebra and the  t ime der ivat ives  
(in the present  example  n = 1, see Eq.  (4)) .  At the same time, t h ey  show the 
usual dependence on the reference system [10, 11] and also a model-dependence 
th rough  a. 

In  wha t  follows we de ¡  the  Po -+ ~ sum rules. Fi rs t  Iet us assume 
t h a t  the limit Po ~ ~ may  be t aken  under  the integrals (15)-(17); then  we 
ate  led to a contradic t ion.  To see this, we first  define the Po ~+ ~ system [11] 

P~-~ (7 V ~ ,  O, O , - - ~  ~r-~), A,, -= (0, Al, Z]2, 0), 

dv 
Q u = ( Q 3 ,  Q1, Q2, Qa) ,dQo-  7~/ -~ '  

(18) 

q~, q~ beeome independent  ofv.  Then,  we get from Eq. (15) in the l imit  Po ~ ~'  

F i1  1 1-~-g(ko-Q3 ) dva~=ifabcF c 6 + ~ q  ; (19) 
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since Q3 ~ 0, this could be satisfied only by a vanishing form factor.  In  the 
same way,  Eqs. (16) and (17) are consistent only ir :oF c = 0, t ha t  is in field 
algebra. 

So, we conclude tha t ,  in general, the infinite mass contributions ate 
necessary for the consistency of the Po ~ o~ sum rules [11]. Tha t  is, inter- 
changing the limit Po -+ ~ and the integrat ion over Q0, the contributions of 
the disconnected diagrams mus t  be separately taken  into account.  Let  us 

d the disconnected contributions to the invariants  at; then  the denote b y  a i 
contr ibutions of the disconnected graphs to the integrals (15)-(17) in the  
l imit  Po ~ ~ ate in turn:  

lim 1 f ~  dQo(aŸ = A~6-~ l i ( ~ 2 A 2 ,  (20) 
v~--  2~r _~ 2 

lim 1 f _  dQo(a d Po q- aas Qo) g(ko-- Qo) = B16 -4- 1 i62 B2 , (21) 
v . -~  2~r ~ 2 

lira 1 j~ dQo(adPo+adQo)g(ko-Qo ) = C i d  -{- 1 i ~ 2 C 2 ,  (22) 
_~ 2 

whcre 

Q 0 -  y V ~  - f l Q 3 ,  y = ( l _ f i 2 ) - � 8 9  (23) 

The functions A 1 . . . . .  C 2 are defined by  Eqs. (20)-(22), their  detailed 
forros depend on the dynamics.  In pole approximat ion we know t h a t  the 
diseonnected contributions ate finite and we have seen tha t  at  least one of A 1 
and A 2 (B 1 and B 2, C 1 and C 2 in the quark model) is non-vanishing. 

Finally,  comparing the coefficients of / t a n d  �91 in (15)-(17), we get the  
following sum rules for Po --* ~ : 

1 f ~  dva l -4 -Al=i fabcF c, (24) 
2zt 

Q~ j ~  dva~ +koA~ = A 2 , 
2~ 

(25) 

1 
(Q3 k0) BI+B~ = --ictPofabc Fe,  (27) 

2 

1 f~_ dva3~-C 1 = 0 ,  (28) 
2zr 

(Q3- k0)C1 q-C~ = --i~ P0 fabc Fe. (29) 
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I-Iere (24), (26), (28) correspond to the  usual  eur rent  a lgebra  sum rules [12], 
while the  others  are new ones. For  ~ = 1 the  r igh t -hand  sides of  Eqs.  (27) and 
(29) beeome infinite,  since B 2 and C 2 canno t  compensa te  these infinities;  only 
the field a lgebra  (~ = 0) is consis tent  wi th  the Po ~ ~ sum rules [13]. I t  is, 
however ,  i m p o r t a n t  to emphas ize  t h a t  a t  tllis conclusion we assume the  

existence of the  integrals  of  a 2 a n d a  3 in Eqs.  (26) aud  (28). 

IV. Discussion 

In  the presen t  pape r  we have  shown t h a t  the equal - t ime cur rent  a lgebra  

and the  divergence condit ions de te rmine  the  non-equa l - t ime  cur ren t  commu-  
ta to rs  in a small  s t r ip  along the  space-axis .  The  model -dependence  and  the  
s y m m e t r y - b r e a k i n g  t e rms  in the general ized cur ren t  c o m m u t a t o r s  were shown. 
The purpose  of Sect ion I I I  was  to p resen t  such a me thod  which expresses the  
non-equa l - t ime  c o m m u t a t o r s  in t e rms  of  sum rules. These general ized sum 
rules conta in  also the  in fo rmat ion  coming f rom the t ime  der iva t ives  [14] and 
they  are signif icant ,  for instance,  in connect ion with  the  t h e o r y  of highoenergy 
inelastie scat ter ing.  

In  the specific example  based on Eq.  (8) we deal wi th  conserved r e c t o r  
currents  and get the  sum rules (15)-(17) and  (24)-(29), respect ive ly ,  as restric-  
t ions for the sca t t e r ing  of scalar  and vec to r  part icles.  Al though  t h e y  ver i fy  our  
general s t a t e m e n t s  above,  thei r  immed ia t e  eva lua t ion  canno t  be  earr ied out  
because of the  lack  of the expe r imen ta l  da t a  concerning the  sca t te r ing  of 
spinless and  spin-one octe t  part icles.  Never theless ,  ir is i m p o r t a n t  to es tabl ish 
the crucial role of  the  disconnected d iagrams  in (24)-(29) and  t h a t  the  sum 
rules are compa t ib le  wi th  the  field a lgebra  p rov ided  (26) and (28) converge.  
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KOMMYTATOPbl  TOKA FIPH MAYlblX H H T E P B A J I A X  B P E M E H H  

H. OAPI-(ALLI ~ F. FIOLII4I-�91 

P~mMe 

I/Icrl0Yib3yŸ TOKOB npr~ paBeHCTBe BpeMeH, t i  yc.rlOBrla pacx0~rtM0CTri, pacCqrl- 
Tfll-IbI KOMMyTaT0pbl TOKa ~JI~ Ma~b~X rlHTepBa~0B BpeMeHl4. [IoKa3aHo, qT0 KOMMyTaTOpbl ~IB- 
HO 3aBI4C~IT 0T MojIeJlrl, 14 BK~allbi OT qJ]eHOB, Hapytuammr~x CnMMeTpmO He 0THaaamT. Pace -  
MoTpeHo d?H3aqecKoe c o a e p ~ a n a e  KoMMyTaT0p08 ToKa B TepMnnax HOB~X npaar~a cyMM. 
YIoKa3ano, ~T0 ~~~ n0cJ~e~0BaTe31bH0CTI4 npaBI431 CyMM He06x0jIVlM0 Han~yHe BK~a~oa He- 
CB,q3aHHbIX ~ n a r p a ~ .  FIpaBn~a CyMM ~a~T npe~InoqTeHrle aare£  no~9. 
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