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The suggestion is made there is an overlap among the information obtained from current
algebra and from meson pole dominance principles. In simple models it is shown that current
algebra results can be rederived from meson pole dominance principles alone, up to an unknown
scale of the weak axial current. A non-compact alternative to the usual SU,XSU, current
algebra is shown to be inconsistent with meson pole dominance.

Introduction

In this lecture I will report on work in progress. Its interpretation is
still tentative, its further development is yet uncertain. For the steps taken
so far in the present program, the credit is to be shared with J. Ervuis and J. pE
AzZCARRAGA, who have contributed many of the arguments I will present in
the following.

To meotivate the program, we recall some steps in the development of
current algebra. When the theory was proposed by GELL-MANN, it was pre-
sented in terms of basic quantum mechanical principles: an assumption of
simple commutators for simple observables. Owing to a lack of experimental
data on photon and neutrine reactions it remained essentially untestable for
overtwo years, until ADLER and WEISBERGER utilized the approximation of pion
pole dominance for the divergence of the weak axial current to derive their
celebrated sum rule. In the subsequent developments which include in succes-
sive stages soft-pion theorems, hard pion calculations and chiral Lagrangians,
the principle of pion pole dominance gained a central role, and Nambu’s ori-
ginal interpretation as partial conservation of the weak axial vector current
was revived indicating the proximity of a chiral SU,x SU, symmetry limit
as the pion mass is taken to zero.

So far, pion pole dominance has been used mainly in an auxiliary ca-
pacity to test the current algebra commutaters. To my knowledge, it was MAN-
DELSTAM who first explicitly turned the argument round and demonstrated
the implications of pion pole dominance on current algebra. In some generality
he showed that in the zero pion-mass limit the commutator of two weak axial

currents A’ (x)

[ Ai(x) [@dx)°, Al(y)] = ie¥* Vi(y) (1)

gives rise to a conserved vector current as a consequence of Adler zeros.
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This statement becomes trivial in theories where the limit of massless
pions implies conservation of the axial current, because the commutator of a
conserved charge with a conserved current necessarily produces a conserved
current. Later, DAsHEN and DAsHEN and WEINSTEIN argued that it is only in
such theories with approximate chiral symmetry where the use of pion pole
dominance is plausible. To illustrate their point of view, let us consider the
Goldberger—Treiman relation

(2my) (galgv) ~ — (V§ F)) (I/EGNNn » (2)

which connects the axial vector coupling constant (ga/gy) in nucleon decay
with the pion decay constant (}/2 F,) and the charged pion—nucleon Yukawa
coupling constant (}/2 Gyy,)- The most popular, though perhaps not most
considerate derivation starts by assuming an unsubtracted dispersion relation
in momentum transfer for the form factor of the weak axial divergence

(p 184¥| n) = (2 my)Upy, G(AN)U, (3)
with
G(0) = (g./8r)
and
2F_m2) (J2Gyn, 1 = disc G(s)
2my G(4?) = —(KA-*;T')LHE{JNA')— -+ E‘ﬁ?m, e (4)

and then retains only the pion pole contribution for 4% ~~ 0, disregarding the
three-pion and higher cuts (and any anomalous thresholds) which start at
4% = 9m?’ and above. The 10%, disagreement of the Goldberger-Treimann
relation is then sometimes quoted as an illustration of the principle that the
influence of singularities can be estimated by the inverse of their distance from
the point of comparisen. Such a principle, however, would entirely disregard
the possibility of the singularities having different strengths, i.e. different
sizes of pole residues and cut discontinuities. This is particularly relevant in
the present case, as the pion pole residue contains the factor m2 which is to
be considered small to the same extent as the pole denominator is considered
small. To maintain pole dominance, we require that the cut discontinuity be
similarly small, i.e. of the order 0(m2) like the pole residue. To see how stringent
a requirement this is, we consider a model for some typical cut contributions
to the Goldberger-Treiman relation.
From among the contributions to the three-pion cut

disc G(s) ~ X 8(my, —s) << 0 [84Y| N) (V| np) (5)
N

we select the intermediate states |pzr). Just to estimate orders of magnitude,
let us suppose that the strong interaction matrix element {px | np) is adequat-
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ely characterized as being of the same order of magnitude as the pion—nucleon
coupling constant Gy ,; we then have to demand that <0 | 64 | pa) should
be of order O(m2), to make the Goldberger-Treiman relation plausible. To
illustrate that this is not obvious, we rewrite

0]64 | en)= () (p°+ p"), <0 | 4" | o7} (6)-

and we make a simple model for the terms (0 | 4* | px) of two Feynman graphs

(Fig. 1):
9: Q:
A T o7 A, AT

M 1

Substituting contemporary estimates for the coupling constants, we find
that each one of the contributions exceeds considerably the required order
0(m2), and the Goldberger-Treiman relation can only be plausibly maintained
if there is a near-cancellation among them. The only understood mechanism —
to our present knowledge — to provide such a cancellation is the proximity
of our world to a chiral symmetry limit with all matrix elements of 64 being
proportional to m2. Indeed, we find the required cancellation if we substitute
the coupling constants and their signs as prescribed by the appropriate chiral
Lagrangians. The details are presented in [8].

In summary we find an interesting situation: pion-pole dominance may
be exactly valid only in the limit of chiral symmetry. The same effects which
are responsible for the non-conservation of the axial current, also limit the
application of pion-pole dominance to its divergence, Turning this argument
round, we may arrive at a working hypothesis which generalizes MANDELSTAM S
result (see above) to theories with finite pion mass: To the same accuracy as
we accept pion-pole dominance, we are bound to find the vector current in the
commutator of two axials [Eq. (1)] conserved, or alternatively: any possible
non-conservation of the vector current in the commutator of two axials is
associated with corrections to pion-pole dominance and cannot be seen in the
tests where pion-pole dominance is used as an approximation.

This is an example of how statements on current algebra and meson-pole
dominance can become interrelated. We suggest that there is a certain overlap
of information. Although current algebra by itself may be formulated in a
variety of theories with or without pion-pole dominance, the principle of pion-
pole dominance for the axial divergence — which is not obvious by itself —
implies definite information on possible current algebra structures. Our objec-
tive will be to study this information in definite models and also to extract
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further constraints following from the related hypothesis of vector and axial
vector meson dominance for the transversal components of the currents.

There is one piece of information, however, characteristic of current al-
gebra, which we can never hope to extract from meson-pole dominance or
related dynamical principles: the specification of the scale of the weak axial
current. This is because we have always been treating weak interactions ex-
acty. Recalling that on this level weak couplings enter the unitarity relations
only in a linearized form, we see that we can never determine their scale.

The best we can, therefore, hope to deduce from meson-pole dominance
orl related principles is a statement that, within the model considered, we can
make the same deductions as if we had assumed the following current algebra:

[ di(x) (dx)2, {Ai(x) (dx)*] = iel*(o2) (Pk(x) (dw)?. (7)

We have denoted the currents of the model by a caret, to distinguish them
from the physical currents for which we have o = 1, according to GELL-MANN.
Obviously, once we have Eq. (7), we can always replace 4, by a4’ = A! by
merely rescaling weak coupling constants. To first order, this does not cause
any inconsistencies.

At present, we are unable to make any further statements on general
grounds, and we turn to the study of specific models.

1. Tree-graph model for pion amplitudes

Most of the credit for this Section is due to J. ELLis.

The prediction of pion scattering amplitudes has been a very fruitful
field of application for current algebra. Using chiral Lagrangians, we obtain
a tree graph model, with the one-pion irreducible parts taken to second order
in the momenta. This prediction is proposed to be valid for low energies:
pPP<<m,

We want to see to what extent we can reproduce such a model without
assuming current algebra. The only assumption we will make is the postulate
of ADLER zeros: a pion amplitude is required to vanish wherever we extrapolate
one pion to zero energy-momentum and leave to the others on mass-shell.
As itis well known, ADLER zeros are a consequence of pion-pole dominance for
the divergence of the axial current.

. 2 . 2
(fl(P), iy = %ML) (flodjiy = —‘—’},%) GPF(flA i, (8)
—0 as p—0.
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As a preliminary, we study the four-pion amplitude. To second order in the
momenta, on and off-shell, its most general form has been given by WEINBERG

(gl sy = 84gb,6(4 + B(po+ ps)* + C ((p. — p»)? + (p. — P3) + o)

- (permutations in isospin indices).
ADLER zeros give the constraint
A+ (B + 2C)m? = 0. (10)
From the scale of the axial current [Eq. (1)], WEINBERG deduces
(C— B)=1/F.. (11)

To fully determine the amplitude, yet another input is needed: an assumption
on the mode of chiral symmetry breaking. Excluding o terms of isospin two from
the four-pion amplitude, WEINBERG derives C = 0. This, however, is not a
deduction from current algebra alone, and any value of C can in fact be re-
produced from a standard chiral Lagrangian by making a suitable assumption
on the mode of chiral symmetry breaking.

We see that for the four-pion amplitude, Eq. (11) is the only deduction
from current algebra, not implied in meson pole dominance [Eq. (1)]. Through
the size of the pion decay constant F, it fixes the scale of the weak axial cur-
rent in terms of strong interaction parameters, as discussed above, yet it con-
tains a further piece of information: the fact that (C — B) is positive. This is
necessary for a compact SU, X SU, current algebra to hold, rather than a non-
compact SO (3, 1) or E,. As J. ErLis has shown in detail, the construction of
chiral Lagrangians can be performed without difficulties with these generalized
current algebras, and ADLER zeros can be guaranteed by a suitable choice of
the pion interpolating field

Al = Flm2¢l,. (12)

Nevertheless, there is a striking physical difference between theories with
compact and non-compact current algebras, which cannot be removed just
by rescaling pure weak-interaction quantities. Consider, for instance, the ADLER
WEISBERGER relation for (n7) scattering which would follow from a generalized
current algebra:

L A4(®) (@), [4i(y) (@] = ie- - (Vi) (@) (13)
_ o ds 10t () gt | (g 2Pim,
R e L U O e R
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Obviously « < 0 would demand ¢%5,; s > 0!, at least in average, which is
totally at odds with our present understanding. By assuming absence of exo-
tic states, the non-compact current algebra can be excluded fairly trivially (since
noncompact algebras cannot have finite dimensional unitary representations),
but we will see in the next section that we can also exclude them through vec-
tor meson dominance — which may be less trivial.

To complete the discussion of the pion model, we ought to see whether
the present balance of information continues to hold for many-pion ampli-
tudes: given any three-graph model for pion interactions with second order
polynomials in the momenta to approximate the one-pion irreducible parts
and with ADLER zeros, we can always find a generalized chiral Lagrangian
which reproduces the model, utilizing three sources of indeterminacy:

1. the scale of the axial current (x) in terms of Eq. (13);

2. the compactness property of the algebra (sign « in terms of Eq. (13) );

3. the mode of chiral symmetry breaking.

For the four-pion amplitude, this statement follows trivially from the
proceding discussion: for the (2IV) pion amplitude let us use an inductive argu-
ment to balance the degrees of freedom.

Assuming that we have chosen the amplitudes for (2N — 2) pions in
accordance with ADLER zeros, we have no longer any freedom in constructing
the reducible parts of the (2N) pion amplitudes, and new information may
come only from an irreducible “contact” contribution. Assuming that there
are two possible choices, say C, and C,, for this contact term, we realize that
the difference (C, — C,) must have all the ADLER zeros by itself. As J. ErLis
has shown in detail, there is only one such form for (2.N) > 6 pions:

2N R
(€= =[S 7] - @V —1md)] (15)

with an unspecified multiplicate constant yy. We now realize the restrictive
power of the requirement of ADLER zeros: only N constants are left free in the
construction of a (2N)-pion amplitude. '
The same can be seen to be the case for (generalized) chiral Lagrangians.
We concentrate here on the case of SU,x SU,; the cases of SO(2,2) and E,
are similar. Let us recall some details in the construction of chiral Lagrangians.
Once the pion ficld has been chosen according to Eq. (11) to guarantee
ADLER zeros, and the scale of the axial current has been set by identifying the
pion decay constant F,, the kinetic part of the chiral Lagrangian is uniquely
determined in terms of covariant derivatives, and the only freedom left is in
the construction of the chiral symmetry breaking generalized pion mass term

H® = jan Hn’ (16)
n=1
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where the operators H, are the isoscalar parts of the SU, x SU, operator mul-
tiplets (n/2, n/2). Their construction in terms of pion fields

H,= 3 b(¢") (17)

is uniquely fixed, once Eq. (11) has been imposed: however, their relative
weights are unconstrained.
Collecting terms of second order in the pion fields we set

m;,

2

a,bl. (18)

b

3
,IL

Terms of N' order give just one unspecified contact term
Cn = Zan by (19)
n=1

which can be given any value, to match the indeterminacy of y, in Eq. (15)
by suitably adjusting the parameters a,. This completes the present demonstra-
tion; more detailed arguments can be found in [8] and [9].

Before leaving the subject, let us recall that despite the indeterminacies
left after imposing ADLER zeros in pion amplitudes, MANDELSTAM’s suggestion
has been verified in the present model: the theory with meson-poles dominane
is always equivalent to one where the commutator of two axial currenaepro-
duces a conserved vector current.

2. The (A, A, V) vertex

As a first step to include effects of vector and axial vector meson domi-
nance, we investigate a classic object: the vertex of one vector and two axial
currents. After many attempts, its structure has been clarified by ScaNITZER
and WEINBERG with the joint use of current algebra and a specific form of
meson-pole dominance. As regards meson-pole dominance, we shall make
the same assumptions as SCENITZER and WEINBERG did: the only singularities
we allow will be poles of A, p and n-mesons and the irreducible vertices will be
constrained to be low-order polynomials in the momenta in the problem.

As regards current algebra, we continue to assume the isospin algebra
and the commutators of axial vector currents with vector currents, but we do
not make any specific assumption about the commutator of two axial currents

[[4i(x) ()2, AL(5)]* = iXU(). (20)
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}~(Lj(y) is taken to be some unspecified vector current; only its isospin-one com-
ponent enters the problem.

It can easily be seen that the commutator of two axial currents contri-
butes only in one Ward identity:

0 = ip# - [[(dx)!(dy)*eP* &P CO|T* | Ai(x), 4i(y), V(0)}]0) +
+ [ [(dx)"(dy)* el e'Py (0| T* {8.4!(x), A)(y), V(0)}10> +
+ i ({(dx)t P+9x O T* {Xii(x), V%(0)}10) -
— g elk jj(dy ) ei® (0}T* {A 1), Aj( 0)}10}

(21)

In the third term, only intermediate states of total spin-one can contribute,
since for all others < 0 | F¥| s >> would vanish. So only the transversal compo-
nents of X7 enter the calculation; longitudinal components, if at all possible,
cannot contribute. So, within the framework of the present calculation, Xf,’
acts like a conserved current of isospin one

Xij = efik Xk, (22)

Using now our specific meson pole structure, we see that the p-meson is the
only possible intermediate state in the third term of Eq. (21) to cause a sin-
gularity in (p + ¢)2 This has the effect of confining all the information about
X, to a single coupling constant:

CO|XEle>=al0[Vile)=<0]aViie) (23)

with the parameter a being defined through Eq. (23). So, we find again the
same predictions from meson pole dominance alone as if we had assumed in
addition:

[f 4i(x) (dx), 4i(y)] = iel a Vi(y). (24)

The non-trivial aspect of this model is the fact that there we can demonstrate
that « has to be positive for consistency. The details of the algebra are un-
fortunately somewhat long; they have been presented in a paper by J. pE
AzcarRrRAGA and the present author. The important fact is that, for consistency
of the solution of the Ward identity in terms of reduced vertices, the first
Weinberg sum rule has to be satisfied, which reads in the present case:

mA m?

2

fA “ﬁ_ . (25)

Positivity requires « >> 0; a non-compact alternative to the usual SU,x SU,
current algebra is not compatible with vector meson dominance.
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3. Hopes and conclusions

It is fairly difficult to judge what has been achieved so far. The outcome
will lie somewhere between two extremes:

1. It may turn out that the systems studied so far have reproduced the
current algebra structures from meson pole dominance because of their limited
degrees of freedom. As soon as we study more complicated systems, new
sources of indeterminacy will open up. Even in this case we would attach some
value to the recognition that the examples so far studied, which have been
chosen from among the standard applications of current algebra, have not
tested the theory to any greater extent than to a scale factor. We would have
to call even more intensely for neutrino data to properly test its validity.

2. It may also turn out that a very considerable amount of current
algebra structures may be deduced from a dynamical hypothesis like meson
pole dominance. Dominance of single mesons in certain channels is not the
most realistic principle, however, in our contemporary understanding of strong-
interaction dynamics. Both the recent successes of duality theories with infinite
recurrences and the still unexplained dipole fits to nucleon electromagnetic
form factors clearly demonstrate the need for a different dynamics than based
on nearby singularities. The hope remains, however, that the present model
studies may lead to the formulation of new concepts which may eventually
allow us to search for relations between current algebra and more realistic
dynamical theories, like those based on duality.
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O BO3MOYXHBIX CBSI3SIX MEKIY AJIFEEPOI1 TOKOB U ATHIPAKCUMALIMEN
ME30HHbIMH TOJIIOCAMU

B. PEHHEP

Pesiome

Ipeanoyxena Uaesi, COruacHo KOTOPOH Mexay HHOOPMALMSAMH, NMOJYYAEMBIMH H3 ajl-
re0pel TOKOB H NPHHITMIIOB aNnPaKCHMALWH ME3OHHLIMH NOJIIOCAMH MMEETCST YaCTHYHOE COBNajle-
Hue. Ha npocTLiX MOAENsX MOKA3aHO, YTO PeaysabTaTsl anrefpsl TOKOB C TOYHOCTLIO 0 HEH3-
BeCTHOH Kau6poBKH €1a60r0 aKCHAJIBHOr0 TOKA MOTYT ObITh NMONYYeHbI AJs1 ME3OHOR U3 OJHHX
MIPHHIHNIOB aNNpPAKCHMAaUHH ME30HHBIMH NoacamH. I[0KasblBaeTCs, YTO HEKOMNAKTHbLINA Ba-
puaHT 06buHOH SU, X SU, anre6pel TOKOB SIBJIIETCSI HECOBMECTHMBIM € anmpaxcumauHeit
ME30HHBIMH [10JIIOCAMH,
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