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The suggestion is made there is an overlap among the information obtained from current 
algebra and from meson pole dominante prineiples. In simple modeh it is shown that current 
algebra results can be rederived from meson pole dominance principles alone, up to an unknown 
scale of the weak axial current. A non-compact alternative to the usual SU~XSU~ eurrent 
algebra is shown to be inconsistent with meson pole dominance. 

Introduetion 

In  this lec ture  I will r epor t  on work  in progress.  I t s  in te rpre ta t ion  is 
still t en ta t ive ,  its fu r the r  d e v e l o p m e n t  is ye t  uneer ta in .  Fo r  the  steps t aken  
so la r  in the  p resen t  p rog ram,  the  eredi t  is to be shared with  J .  ELLIS and J.  DE 
AZCARRAGA, who have  eon t r ibu ted  m a n y  of the a rgumen t s  I will present  in 
the  following. 

To m o t i v a t e  the  p rogram,  we recall  some steps in the  deve lopmen t  of  
cur ren t  a]gebra.  W h e n  the  theo ry  was proposed  by  GELL-MANN, ir was pre- 
sented in t e rms  of  basic q u a n t u m  meehaniea l  prineiples:  an a s sumpt ion  of  
s imple c o m m u t a t o r s  for simple observables .  Owing to a lack  of  exper imenta l  
da t a  on pho ton  and  neutr ino  reaet ions  it r emained  essent ial ly  un tes tab le  for 
over  two years ,  unt i l  ADLER and WEISnEaGEa uti l ized the  a p p r o x i m a t i o n  ofp ion  
pole dominanee  for  the  divergenee of  the  weak  axial  cu r ren t  to derive their  
ce lebra ted  sum rule. I n  the  subsequen t  deve lopments  whieh include in sueces- 
sive stages sof t -pion theorems,  ha rd  pion caleulat ions and  ehiral  Lagrangians ,  
the  principle of  p ion pole dominanee  gained a cent ra l  role, and  N a m b u ' s  ori- 
ginal i n t e rp re t a t i on  as par t i a l  eonserva t ion  of  the  weak  axia l  r e c t o r  eur ren t  
was rev ived  ind ica t ing  the p r o x i m i t y  of  a chiral SU 2X SU 2 s y m m e t r y  l imit  
as the  pion mass  is t aken  to zero. 

So far,  pion pole dominance  has  been used ma in ly  in an auxi l iary  ca- 
pac i ty  to t es t  the  cur ren t  a lgebra c o m m u t a t o r s .  To m y  knowledge,  it was MAN- 
D~.r,STAM who f i rs t  expl ici t ly  t u rned  the  a r g u m e n t  round  and  demons t r a t ed  
the  impl ica t ions  of  pion pole dominance  on cur rent  a lgebra.  In  some genera l i ty  
he showed t h a t  in the  zero p ion-mass  l imit  the  c o m m u t a t o r  of  two weak  axial  
cnrrents  A/~(x) 

[~A~(x) (ax) 3, A]](y)] = ie@ V~(y)  �89 

gives rise to a conserved vec tor  cur ren t  a s a  consequence of Adler  zeros. 
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242 B. RENNER 

This statement becomes trivial in theories where the limit of massless 
pions implies conservation of the axial current, because the c£ of a 
conserved charge with a conserved current necessarily produces a conserved 
current. Later, DASrIEN and DASHEN and WEINSTEIN argued that  ir is only in 
such theories with approximate chiral symmetry where the use of pion pole 
dominance is plausible. To illustrate their point of view, let us consider the 
Goldberger-Treiman relation 

(2mN) (gA/gv) ~ (1/2 F,,)(V2GNN~, (2) 

which connects the axial veetor coupling constant (gA/gv) in nucleon decay 
with the pion decay constant (V ~ F~) and the charged pion-nucleon Yukawa 
eoupling constant (V2 GNN=). The most popular, though perhaps not most 
considerate derivation starts by assuming an unsubtracted dispersion relation 
in momentum transfer for the form factor of the weak axial divergence 

with 

and 

<p IoAwI .> = i(2 mN)• 

G(O) = (gA/g,0 

(3) 

(V-2F=m])(V~G~,jN.~) 1 (~  dise G(s) 
2mlv G(A 2) = 2 -? ~ . I ~ m - ~  s -ZI 2 (4) 212 m~ 

and then retains only the pion pole contribution for A 2 ~-~ 0, disregarding the 
three-pion and higher cuts (and any anomalous thresholds) which start  at 
j2 = 9m~ and above. The 10% disagreement of the Goldberger-Treimann 
relation is then sometimes quoted as an illustration of the principle that  the 
influence of singularities can be estimated by the inverse of their distance from 
the point of comparison. Such a principle, however, would entirely disregard 
the possibility of the singularities having different strengths, i.e. different 
sizes of pole residues and cut discontinuities. This is particularly relevant in 
the present case, as the pion pole residue contains the factor m~ which is to 
be considered small to the same extent as the pole denominator is considered 
small. To maintain pole dominance, we require that  the cut discontinuity be 
similarly small, i.e. of the order 0(m 2) like the pole residue. To see how stringent 
a requirement tbis is, we considera model for some typical cut contributions 
to the Goldberger-Treiman relation. 

From among the contributions to the three-pion cut 

disc G(s) ,~ S �91 - -  s) < 0 la4wl N> <~ i n~> (5) 
N 

we select the intermediate states ]e~>. Just  to estimate orders of magnitude, 
let us suppose that the strong interaction matrix element (Q~ ] ny> is adequat- 

Acta Physica Acadcmiae Scientiarum Hungarirae 31, 1972 
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ely charaeter ized as being of the same order  of  magni tude  as the  p ion-nucleon 
coupling eons tant  GNN=; we then  have  to demand t h a t  <0[ �91 t Q~> should 
be of order  0(m~), to make the  Goldberger -Tre iman  relat ion plausible. To 
i l lustrate t ha t  this is not  obvious,  we rewri te  

<o I ~~ I Q.> = (i) (p~ + p~). <o I A .  1 ~.> (6) 

and we make a simple model for the terms (0 [ -4 g I ~~> o f t w o  F ey n m an  graphs 
(Fig. 1): 

Subs t i tu t ing  eon tempora ry  est imates  for the eoupling eonstants ,  we f ind 
t h a t  each one of  the  eontr ibut ions  exceeds eonsiderably the  required order 
0(m~), and the Goldberger -Tre iman  relat ion can only be plausibly mainta ined 
if  there  is a near-cancel la t ion among them.  The only unders tood  mechanism - -  
to our present  knowledge - -  to provide such a cancellat ion is the  p rox imi ty  
of our world to a chiral s y m m e t r y  l imit  with all ma t r ix  elements  of 0A being 
propor t ional  to m~. Indeed,  we f ind the required cancellat ion i f  we subst i tu te  
the coupling cons tants  and their  signs as prescribed b y  the  appropr ia te  ehiral 
Lagrangians.  The  details ate presented  in [8]. 

In summ ary  we f ind ah interes t ing si tuat ion:  pion-pole dominance may  
be exact ly  valid on ly  in the limit of chiral symmet ry .  The  same effects 'which 
ate responsible for  the  non-conservat ion  of the axial current ,  also limit the 
applicat ion of pion-pole dominance to its divergence, Turn ing  this axgument 
round,  we m a y  arr ive a t a  working hypothes is  which generalizes MANDELSTAM'S 
result (see above) to theories with f inite pion mass: To the same accuraey  as 
we accept  pion-pole dominance,  we ate bound  to find the  r e c t o r  eurrent  in the 
comm uta to r  of two axials [Eq. (1)] conserved,  or a l te rna t ive ly :  any  possible 
non-conservat ion  of  the  r e c t o r  cur ren t  in the c o m m u t a t o r  of  two axials is  
associated with correetions to pion-pole dominance and cannot  be seen in the 
tests where pion-pole dominance is used as an approximat ion .  

This is an example  of  how s ta tements  on current  algebra and meson-pole 
dominanee can become interre la ted.  We suggest t ha t  there  is a certain overlap 
of information.  Al though current  algebra b y  itself m a y  be formula ted  in a 
var ie ty  of  theories wi th  of wi thout  pion-pole dominance,  the principle of pion- 
pole domŸ for the  axial divergence u which is no t  obvious by  i tself  - -  
implies definite in format ion  on possible cur ren t  algebra s t ructures .  Our objec- 
t i r e  will be to s tudy  this informat ion in definite models and also to ex t rac t  
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fu r the r  constra ints  following f rom the re la ted hypothes is  of  vec tor  and axial 
r e c t o r  meson dominanee  for the  t ransversal  eomponents  of the currents .  

There  is one pieee of informat ion,  however ,  character is t ic  of cur ren t  al- 
gebra,  whieh we can never  hope to ex t rac t  f rom meson-pole dominan te  or 
re la ted  dynamical  principles: the specification of the  scale of the weak axial  
current .  This is because we have  always been t rea t ing  weak in teract ions  ex- 
ac ty .  Reealling t ha t  on this  level  weak couplings enter  the un i t a r i ty  relat ions 
only in a l inearized form, we see t ha t  we can never  de termine  thei r  scale. 

The  best  we can, therefore ,  hope to deduce f rom meson-pole dominanee  
orl rc la ted  principles is a s t a t emen t  tha t ,  wi thin the  model  considered, we can 
make  the  same deduct ions as ir  we had assumed the  following cur ren t  algebra:  

[S~~(x) (dx) 3, S~~(x)(dx) 3] = ieqk(~2)SV~(x ) (dx) 3 . (7) 

We have  denoted  the eurrents  of the model  b y  a earet ,  to distinguish t h e m  
f rom the  physical  eurrents  for  which we have  ~ = 1, aecording to GELL-MAr~N. 
Obviously,  once we have  Eq.  (7), we can always replace .~i~ b y  ~~/~ = A~i b y  
mere ly  resealing weak coupling constants.  To f irs t  order,  this does not  cause 
any  inconsistencies. 

At  present ,  we ate unable  to make an y  fu r the r  s ta tements  on general 
grounds,  and we tu rn  to  the  s t udy  of specific models. 

1. Tree-graph model for pion amplitudes 

Most of the credi t  for  this Section is due to J .  ELLIS. 
The  predict ion of  pion scat ter ing ampli tudes  has been a ve ry  frui tfuI  

field of  applicat ion for cur ren t  algebra. Using chiral Lagrangians,  we obta in  
a t rce  graph model,  wi th  the  one-pion irreducible par ts  t aken  to second order  
in the  momenta .  This predict ion is proposed to be valid for  low energies: 
p ~ ~  m e. 

We want  to see to  wha t  ex ten t  we can reproduce  such a model  w i thou t  
assuming current  algebra. The only assumption we will make is the pos tu la te  
of  ADLER zeros: a pion ampl i tude  is required to vanish wherever  we ex t rapo la t e  
one pion to  zero ene rgy -momen tum and leave to the  others on mass-shell. 
As i t  is well known, ADLER zeros ate a eonsequence of  pion-pole dominance for  
the  divcrgence of  the axial  current .  

<flor(P), i> _ ( p ~ _ m  2) ( p 2 _ m  2) . (iP)" <fiAr, li>, (8) 
Fa  m~ <flSAIi> --  F a  m 2 

-+0  as p -+O.  
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A s a  preliminary, we study the four-pion amplitude. To second order in the 
momenta, on and off-shell, its most general forro has been given by WEIr~BER~ 

<Tl~Tg~l~~,Y~d> = ~afl~~,�91 -~- B(p~"~- pfl)2 -4- C ((Pot _ _ p ? ) 2  _~_ (pa __ p2))  .31_ 

(permutations in isospin indices). 
(9) 

ADLER z e r o s  give the eonstraint 

A -b (B + 2C)m 2 = O. (10) 

From the scale of the axial current [Eq. (1)], WEINBERG deduces 

( C -  B) = l/F2=. (11) 

To fully determine the amplitude, yet  another input is needed: an assumption 
on the mode of chiral symmetry breaking. Excluding a terms of isospin two from 
the four-pion amplitude, W~INBrRr derives C ~- 0. This, however, is not a 
deduction from current algebra alone, and any value of C can in fact be re- 
produced from a standard chiral Lagrangian by making a suitable assumption 
on the mode of chiral symmetry breaking. 

We see that  for the four-pion amplitude, Eq. (11) is the only deduction 
from current algebra, not implied in meson pole dominance [Eq. (1)]. Through 
the size of the pion deeay constant F=, it fixes the scale of the weak axial cur- 
rent in terms of strong interaction parameters, as diseussed above, yet ir con- 
tains a further piece of information: the fact that  (C - -  B) is positive. This is 
necessary for a compact SU 2 X SU 2 current algebra to hold, rather than a non- 
compact SO (3, 1) or E a. As J. ELLIS has shown in detail, the construction of 
chiral Lagrangians can be performed without difficulties with these generalized 
current algebras, and ADLER zeros can be guaranteed by  a suitable choice o f  
the pion interpolating field 

8Al p~.,.2 ,~i (12) 

Nevertheless, there is a striking physieal difference between theories with 
compact and non-eompact current algebras, which cannot be removed just  
by rescaling pure weak-interaetion quantities. Consider, for instance, the AVLER 
WEISBE~r relation for (~~) scattering which would follow from a generalized 
eurrent algebra: 

[SA~(x) (dx) 3, yAJ(y) (dy)3l = ieilk.~. ~Vko(x) ( d x )  3 �9 

= ( F ) 2 f ;  as ma)' .(s -- m2~) 2" (cT~~-~-(s)- (q +_}_ (s)) 2Pkzt m= 

(13) 

(14) 
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Obviously ~ ~ 0 would demand _tot tot u=+=+ s > a=+=-, at Ieast in average, which is 
total ly at odds with our present understanding. By assuming absence of exo- 
tic states, the non-compaet current algebra can be excluded fairly trivially (since 
noncompact  algebras cannot have finite dimensional uni tary representations), 
but  we will see in the next  section that  we can also exclude them through vec- 
tot  meson dominance - -  whieh may be less trivial. 

To complete the diseussion of the pion model, we ought to see whether 
the present balance of information continues to hold for many-pion ampli- 
tudes: given any three-graph model for pion interactions with second order 
polynomials in the momenta to approximate the one-pion irreducible parts 
and with ADLE~ zeros, we can always find a generalized ehiral Lagrangian 
which reproduces the model, utilizing three sourees of indeterminacy: 

1. the scale of the axial current (~) in terms of Eq. (13); 
2. the compactness proper ty  of the algebra (sign ~ in terms of Eq. (13)); 
3. the mode of chiral symmetry  breaking. 
For the four-pion amplitude, this s tatement follows trivially from the 

proceding discussion: for the (2N) pion amplitude let us use ah inductive argu- 
ment to balance the degrees of freedom. 

Assuming that  we have chosen the amplitudes for ( 2 N - - 2 )  pions in 
accordance with ADLER zeros, we have no longer any freedom in constructing 
the reducible parts of the (2N) pion amplitudes, and new information may 
come only from an irreducible "con tac t "  contribution. Assuming that  there 
ate two possible choices, say C 1 and C2, for tkis contact  term, we realize tha t  
the difference (C 1 - -  C2) must have all the ADLER zeros by itself. As J. ELLIS 
has shown in detail, there is only one such form for (2N) ~ 6 pions: 

( c l  - -  c~) = yN p'; - -  ( 2 N - -  1)m~.) (15)  

with an unspeeified multiplieate eonstant ~'N. We now realize the restrictive 
power of the requirement of ADLER zeros: only Nconstants  ate left free in the 
construction of a (2N)-pion ampl!tude. 

The same can be seen to be the case for (generalized) ehiral Lagrangians. 
We concentrate here on the case of SU2• the tases of SO(2,2) and E a 
are similar. Let us recall some details in the eonstruction of chiral Lagrangians. 

Once the pion field has beš chosen aceording to Eq. (11) to guarante› 
ADL~.R zeros, and the seale of the axial eurrent has been set by identifying the 
pion decay constant F~, the Kinetic part  of the chiral Lagrangian is uniquely 
determined in terms of eovariant derivatives, and the only freedom left i s i n  
the construetion of the ehiral symmetry breaking generalized pion mass term 

H (B) = ~ a~ H,,, (16) 
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where the operators  Hn are the isoscalar par ts  of the SU 2 X SU 2 opera tor  mul- 
t iplets (n/2, ni2). Their  construct ion in terms of pion fields 

H n = ~ '  b/n(~O2) i (17) 
i = 0  

is uniquely  f ixed,  once Eq.  (11) has been imposed: however,  their  relat ive 
weights are unconstra ined.  

Collecting terms of second order  in the pion fields we set 

m 2 
-- . ~  a~ b~n. (18) 

2 r l ~ l  

Terms of  N tn order  give jus t  one unspecified contac t  t e rm 

CN = ~ a n b ¡  (19) 
n = l  

which can be given any value,  to ma tch  the inde terminacy  of  ?N in Eq.  (15) 
by  sui tably adjust ing the parameters  ah. This completes the present  demonstra-  
t ion; more detai led arguments  can be found in [8] and [9]. 

Before leaving the subject ,  let  us recall t h a t  despite the indeterminaeies 
left  af ter  imposing ADLER zeros in pion ampli tudes,  MA~DELSTA~X'S suggestion 
has been verif ied in the present  model:  the theory  with meson-poles dominane 
is always equiva len t  to one where the com m u ta to r  of  two axial eurrenaepro- 

duces a conserved r ec to r  current .  

2. The <A, A, V> vertex 

As a first  step to inelude effeets of  r e c t o r  and axial r e c t o r  meson domi- 
nanee, we invest igate  a classie objeet :  the ve r t ex  of one vec tor  and two axial 
currents.  After  m a n y  a t tempts ,  its s t rue ture  has been clarified by  SCHmTZER 
and WEIr~BERG with the jo in t  use of  current  algebra a n d a  speeific forro o f  
meson-pole dominance.  As regards meson-pole dominance,  we shall make  
the same assumptions as SCH~ITZE~ and WEINBERr did: the only  singularities 
we allow will be poles of A 1, e and Jz-mesons and the irreducible vert ices will be  
constrained to be low-order polynomials  in the momenta  in the  problem. 

As regards current  algebra, we cont inue to assume the isospin algebra 
and the commuta to r s  of axial vec tor  currents  with r e c t o r  currents ,  b u t  we do 
not  make any specific assumption about  the co m m u ta to r  of  two axial cur ren ts  

[~~/�91 (dx) 3, AJ(y)]  aef = iX~(y). (20) 
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~~](y) is t aken  to be some unspecified rec tor  current;  only its isospin-one com- 
ponent  enters the problem. 

I t  can easily be seen t h a t  the eommuta to r  of two axial currents eontri- 
butes only in one Ward  ident i ty :  

0 = i p ~ .  SS(dx)4(dy)a e ivx e ;vy <0[T x {A~(x), A~(y), V~(0)}I0> + 

+ S,I(dx)4(dy) 4 e ipx eipy (O[T x (OAi (x ) ,  -,4Jv(y), V¡ -~ 
(21) 

-~- i .~y(dx) 4 e i(p+q)x <0]T x {X• V~(O)} I 0> 

_ i e• Sy(ay)4 e,~~ <01T ~ {A~(y), A~(0)}I0>. 

In t h e  thi rd  torro, only intcrmediate  states of to ta l  spin-one can contr ibute,  
since for all othcrs < 0 ]V~] s > would vanish. So only the transversal  compo- 
nents  of X Ÿ  cnter the calculation; longitudinal  componcnts,  if at  all possible, 
cannot  contributc.  So, within the framework of the present calculation, ~~1 
acts like a conserved current  of isospin one 

~ ij e ijk X ~ .  (22) 

Using now our specific meson pole structure,  we see t ha t  the Q-meson is the 
only possible intermediate  s ta te  in the third te rm of Eq. (21) to cause a sin- 
gular i ty  in (p + q)2. This has the effect of confining all the information about  
Xg to a single coupling constant :  

< 0 [ X ~ l ~ > = ~ < 0 1 V ~ l Q > = < 0 1 ~ v ~ i ~ >  (23) 

with the parameter  a being defined through Eq. (23). So, we f ind again the 
same predictions from meson pole dominance alone as if we had assumed in 
addit ion:  

[yAg(x) (dx) 3, A~(y)] =- ie• ~ V ~ ( y ) .  (24) 

The non-trivial  aspect of this model is the fact  t ha t  there we can demonstra te  
t h a t  a has to be positive for consistency. The details of the algebra ate un- 
for tuna te ly  somewhat long; t hey  llave been presented in a paper by J. DE 
AZCARRAG& and the present author.  The impor tan t  fact  is tha t ,  for consistency 
of the solufion of the Ward  ident i ty  in terms of reduced vertices, the first  
Weinberg sum rule has to be satisfied, which reads in the present case: 

F ~ +  f ~  = a f~ (25) 
m~4 m 2 e 

Posi t ivi ty requires ~ ~ 0; a non-compact al ternat ive to the usual SU2xSU 2 
eurrent algebra is not  compatible with rec tor  meson dominance. 
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3. Hopes and conclusions 

I t  is fairly difficult to judge wha t  has been achieved so far. The outcome 
will lŸ somewbere between two extremes:  

1. I r  m a y  tu rn  out tha t  the systems studied so far  have reproduced the 

current  algebra s tructures  from meson pole dominance because of  their l imited 
degrees of freedom. As soon as we s tudy  more complicated systems, new 

sources of  inde te rminacy  will open up. Even  in this case we would a t tach  some 

value to the recognit ion tha t  the examples so far  studied,  which have been 

chosen from among the s tandard  applications of current  algebra, have not  

tested the theory  to any  greater extent  than to a scale factor.  We would have 

to call even more intensely for neutr ino da ta  to properly test its validity.  
2. I t  m a y  also turn  out  tha t  a ve ry  considerable a m o u n t  of current  

algebra structures m a y  be deduced f rom a dynamical  hypothesis  like meson 

pole dominance.  Dominance  of single mesons in certain channels is not  the 

most  realistic principle, however,  in our con tempora ry  unders tand ing  of strong- 
interact ion dynamics.  Both  the recent successes of dual i ty  theories with infinite 

recurrences and the still unexplained dipole fits to nucleon electromagnetie 

forro factors clearly demonst ra te  the need f o r a  different dynamies  than  based 
on nearby  singularities. The hope remains,  however,  t h a t  the present  model 

studies may  lead to the formulat ion of new concepts which m a y  eventual ly 
allow us to search for relations between current  algebra and more realistie 

dynamica l  theories, like those based on duali ty.  
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O B O 3 M O M { H b l X  C B f i 3 ~ I X  ME)~Ÿ AJ]FEBPOITI T O K O B  H AFII ' IPAKCHMAUPIEI~I  
M E 3 O H H b I M H  HOJ-IIOCAMH 

B. PEHHEP 

Pe3toMe 

FIpeAao>xeua n~e9,  co raacHo  KOT0p0~ Me>K~y HH~opMaI~HflMH, rt0J1yqaeMbIMH H3 a~ -  
re6pb~ TOKOB H IIpHHII~HIIOB annpaKcHMauHH Me3OHHblMH tl0J1toCaMH HMeeTCfl qacTMqH0e COBna~e- 
HHe. H a  IIp0CTbIX MOAeJI~IX iioKa3aHo~ qT0 peayabTaTb~ a~irefipu TOKOB C TOqHOCTbKI ,l~O HeH3- 
BeCTH0~ KaJIH6p0BKH cJIa60F0 aKCHaJIbHOF0 TOKa MOFyT 6bITb IlOJIyqeHbl ~Id1~I Me3OHOB H30~,HHX 
rlpHHI~HrlOB anI1paKcHMauHH Me3OHHbIMH noJliocaMH. ~0KaabIBaeTc~, qTO HeKOMIIaKTHbI~ Ba- 
pHaHT O‰ SU~ X SU 2 a~re6pbx TOKOB ~IB.qfleTC~l HeC0BMeCTHMbIM • annpat<cHMattHe~t 
Me3OHHbIMH nO.n~OCaMH, 

A~a Phy, ir Acadtmi~ ~i~nti4rum Hungarir 31, 1972 


