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REPRESENTATIONS
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After explaining the meaning of energy dependent representation, we sketch how it
can be obtained for the case of the SL(2, C) group. Some physical applications are also treated.

Some time ago we examined the problem how one can expand a general
two-particle—two-particle scattering amplitude in terms of Lorentz group
representations at any s and ¢ values [1]. To do this, first one has to define the
scattering amplitude as a function on the group in question. As we noticed
in [1], a possible and in some sense desirable way is the following:
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A is a Lorentz transformation acting on two-particle states, its detailed form
together with p,—p,, p,—p, can be found in [1], P' = P(1l ~ 3, 2 - 4).
If we now perform the expansion using the ordinary ) joojm > basis* of the
Lorentz group, we get

fulA) = Z D5 ) Tyy(s, joo . . ). (2)

For continuous variables, like o, integration is meant in Eq. (2). The expansion
coefficients, i.e. the T functions in Eq. (2) are quite complicated due to
<P....]jgjm....> type coefficients in it. The main problem with the

* In the | jojm > basis, j, and o characterize an irreducible representations. To label the
vectors of a representation space one chooses a suhgroup of the Lorentz group; generally it is

the rotation group. The |jm > states are representations of the rotation group. For further
details, see, e.g. [3].
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latter is that the little group of P is different from that chosen to label vectors
in irreducible Lorentz representation spaces. To simplify the expansion we
have to make the two groups identical. Since the little group is given, this is
what we want to introduce as “’basis labelling” group. This problem, together
with finding the representation matrix elements, was solved in [2].

As the first step, let us write P in the following way:
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P = f(s)

then P? = s = f%(s) v. Comparing Eq. (3) with Eq. (2):
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and a similar expression below the pseudothreshold, hence

v = s/f*(s) (5)
is a nice function of s.
Let M; and N; be the generators of the Lorentz group commuting as

[M,, M/] = igijkMk’ (M, Nj] = ieijkNm [N Nj] = —ieijk Kk

Here M, generates the rotations, IV; the boosts. It is not hard to find out that
the little group of P is generated by

S, = 1+o M,+ 1—v N, S,=-— 14w M, + 1—v N,
2 2 2 2
(6)
Sy = M,
commuting as
[81, So] = w8y, [S), Syl = —iSy, [Sy S3] =18 (7)

The Casimir operator of this subgroup, what we call sometimes interpolating
group, IG, is S} + S; + vSi. The structure of this interpolating group and
the corresponding algebra as well as its basis depend on the parameter v
which is proportional to s. One can check that in the s >> 0 region it is iso-
morphic to SU(2), at s = 0 to E(2), in the s < 0 region to SU(1, 1) — if the
masses are unequal. As s and, together with it, v vary, this group interpol-
ates between them smoothly.

However, if the masses are equal, v = s/ls], hence going to s = 0 from
above, we always have SU(2), and coming from below always SU(1, 1). Now,
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since at s = 0 both SU(2) and SU(1, 1) are little groups, their minimal exten-
sion is a little group too, which is SL(2, C). This fact is well-known, but it is
amusing to recover it in this way.

If we choose the interpolating group as basis labelling group, then the

basis of the Lorentz group will also depend on s, as well as its representations;
and in this sense we shall work with energy-dependent representations.
The need for energy dependent representations appears not only in this case.
Examination of the dynamical symmetries of a charged spinless harmonic
oscillator in a constant magnetic field presents a similar problem [4]. Such
representations are also useful when treating the H-atom problem [5].

In the following, we shall briefly sketch how one can find the explicit
basis functions. The details can be found in [2]. We start with the basic formula
for SL(2, C) representation [6]:

az+y

U, ®(z) = (Ba-+0)e+o=1 (Bato) S+~ ¢(m’ ’ @)

where @ (z) are infinitely differentiable functions of one complex variable,

g= ;6JESL(2, C), ad —fBy = 1.
Relation (8) does not specify the functions &(z}. To do this, we can set ad-
ditional equations.

First of all we derive from Eq. (8) the form of the generators as differen-
tial operators acting on @(z). If we form out of them the operators M;IV; and
M?2— N2, we get simple numbers, so the function space of @ is irreducible.

To define basis functions we form the S; operators and set

(S + S+ vSY) & = vj(j + 1) D, S,@ = m. )

If we require that @ should be one valued and regular at z = 0, we obtain @
uniquely. From Eq. (9) we can learn that the @ functions serve not only as
basis functions for SL(2, C) representations, but at the same time they are
representation functions of the interpolating group.

From our basic relation it is not hard to see that if we restrict ourselves
to the SU(1, 1) subgroup of the Lorentz group, the z plane breaks up te two
disjoint regions since

[2"] >1if |2 >1 and 2" < 1 if || <1,
5 . 10
.l .EJ € SU(1,1)  SL2,C). 10
Bz+a {f «

This means that the SU(1, 1) type basis will appear with multiplicity two.
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We do not think it is necessary to give here the detailed form of the @
functions, as they are rather complicated. The inquirer can found it in [2].
But we emphasize again that though the structure of the algebra changes
radically with v, the @ functions change smoothly, without the appearing of
any type of singularities.

One may ask whether our representation is unitary or not. This depends
on whether one can or one cannot introduce a scalar product into the space of
the functions. It turns out that it is possible only for special j, and o values;
for the others, the positive definiteness condition cannot be maintained; hence
we have to work with some generalization of the scalar product what is called
invariant bilinear functional [6]. Using this, we were able to calculate the
normalization of the basis, the finite group representation matrix elements and
overlap functions between different bases [2].

Fipishing our discussion we make some remarks about the application of
this formalism for generalized partial wave analysis.

If in the expansion of the scattering amplitude we use energy dependent
representations instead of |j,ojm > basis, the T functions of Eq. (2) will be
simple reduced matrix elements, which, because of the Wigner —Eckart theorem
depend only on the Casimirians. As the scattering amplitude is expanded in
terms of Lorentz representations, one tends to write Lorentz Casimirians into
T. However, the scattering amplitude has a larger symmetry group, the Poin-
caré one, and our group is its subgroup. Hence the reduced matrix elements
depend only on Poincaré Casimirians, e.g. on s and W2

Since T does not depend on j, and o, we can perform the summation on
it in Eq. (2);in this way we get an expansion of the scattering amplitude in
terms of the interpolating group. This result seems to be trivial, but the whole
procedure is not useless.

We can conclude that the generalization of the ordinary partial wave
analysis is not singular at s = 0, whereas in the unequal case the old fashioned
one is; consequently, the introduction of Toller or Lorentz poles is not the
only theoretical way-out. Secondly, as the reduced matrix elements do not
depend on the SL(2, C) Casimirians in general, the introduction of Lorentz
poles is a bit artificial. However, as generally at s = 0 a large number of Regge
poles contribute with almost equal weight, the SL(2, C) expansion can be useful
to handle them since it can correlate them, at least in some sense. The detailed
description of these and further results will be published elsewhere [1b, 7].
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HEKOTOPBLIE 3AMEYAHUS OTHOCUTEJIBHO TPEOCTABJIEHUA
3ABUCHIIUX OT 3HEPTIUU

K. CETE u K. TOT
Pesome
ITocsie 00bSICHEHHST MOHATHSA «PEACTABJEHHE 3aBHCSIIEe OT 3HEPrHH» PacCMaTphbl-

BAETCS1, KAK OHO MOYKET BbITh TMOAYUeHo Ms1 ciayuast rpynm SL (2, C). OnHCLIBAIOTCSI HEKOTOPHIE
¢u3HUeCKHe TIPHMEHEHHS.
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