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SPIN AND U N I T A R Y  SPIN IN T H E  DUAL 
RESONANCE MODEL 

By 
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BUDAPEST 

The recent developments in constructing dual amplitudes~with spins and unitary sym - 
metry ate briefly reviewed. 

I. Introduetion 

A considerable amount  of work in the Veneziano theory  has bcen done in 
the model wi th  neutral ,  scalar Reggeons only. In this model there is a single 
family of trajectories,  the ground state  being a neutral ,  scalar particle. As a 
consequenee, the intercept of the leading t ra jec tory  is negative.  One m a y  ask 
how much this simple model reflects the  rea lwor ld .The  mere fact  tha t  physi- 
eists consider such models expresses their  strong belief t h a t  the physieal world 
is not the only one possible mathemat ica l ly .  One can fulfil the axioms inc luding  

uni tar i ty  without  ~-mesons. Nevertheless e-mesons do exist, thus one must  
once abandon the spinless world. In faet,  a great deal of work has been done in 
the Iast two years in the direction of physieal Reggeons wi th  positive inter- 
cepts. 

I t  is interest ing to note tha t  the two classical examples (the :r:r:rc0 and 
,7~:ru amplitudes) both  involve spin and uni tary  spin. In spite of this,  the 
systematic  inclusion of positive intercept  trajeetories and especially fermion 
trajeetories represents a lot of nontr ivial  problems. After  the suecess of the 4zr 
ampli tude i t  is t empt ing  to t ry  the many-pion amplitudes.  The isospin s tructure 
of them was given quickly by  PXTON and CaAN [1]. The integral representa- 
t ion of the invar iant  ampli tude in the case of 47 is [2]: 

1 

.I av v . . . .  (s) (1 v) -l-~(') ( 1 - a ( s ) - a ( t ) } ,  
0 

~ - h e r e  

s = (Pi -]-P2)2; t --~ (P2 + P3)2; 

Pi  + P2-4- Pa + P~ ---- 0; ~(s) ---- %(s)--1 = %--1 + us. 

Therefore, the invar iant  for the N-pion ampli tude can be of the general form 

y d vN(,,, e) P(vij; s,j) 
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Here p is a polynomial in the channel invariants 

si,j ~-  (Pi~-l+Pi+2+. �9 �9 _~pj)2 ; 0 < i < j  ~ N - - 1  ; Pl+P2~-"  �9 �9 +PN = 0 

and in the corresponding channel integration variables 

v0,i = vi (i = 1 , . . .  , N - 1 )  ; 

131 = V N _  1 = 0 ; 

Vi, j = 
(1--vi+l vi+2. . .v i - l )  (1 - v i . . . v i )  

(1 - -Viq_  1 . . . Y j )  (1 v i . . . V i - l )  

(2 ~ i - ~ l  < j  ~ N - - l ) .  

The integral without the polynomial P i s  the spinless N-point amplitude: 

f dv 2 d % . . .  dvN_ 2 111 v~] -  ~,(s,,j) = 
J" dq~N(v'P) = (1 -v2% ) (1 - vav4).. .  (1--v�98 z vN-2) (i,j) 

N--2 =~H dviv[ l-~'(s''')(1 - - v i )a - -1  H ( 1 - - V q  
2 ~ i ~ j ~ N - - 2  

Explicit expressions for the many-pion amplitude were given by OLIVE and 
ZAKaZEWSKY [3] and by RITT~r~BEnG and RgmNSTEIN [4]. These amplitudes 
ate, however, not completely satisfactory as they do not factorize along the 
daughter trajectories. 

The many-pion amplitudes ate still simple in the sense that  external 
spins ate not present in them. In the general case the amplitude has spin 
indices. Instead of an invariant one has to construct functions of the particles' 
momenta showing the appropriate covariance property. In principle it would 
be possible to deal with helieity amplitudes familiar in the Regge theory, or 
with several invariant amplitudes multiplying the independent covariants. 
A more direct and simple way is, however, to consider the M-functions ("spinor 
amplitudes") which ate the S-matrix elements between spinor states. The 
M-functions ate free from kinetical singularities and have simple eovariance, 
crossing and factorization properties. 

The factorization is a severe restriction a n d a t  the same time a very 
powerful tool in every zero-width resonance model. I t  says that  the residuum 
of a pole eorresponding to a given intermediate state must factorize into the 
product of the appropriate lower point functions. I f  we have, for instance, 
the 6z~ amplitude, then by factorization we can get AI~:r~, A2~:r~, e~:r~, etc. 
By subsequent factorizations the whole amplitude can be traced back to the 
vertiees. Therefore, the only physical content of a dual resonance model is 
the spectrum of particles and the trilinear couplings among them. A construc- 
tive way of building up the amplitudes is thus to specify the spectrum of part- 
icles (which can be external as well as intermediate states) and to fix their 
eouplings. Then by ealeulating the residua and summing up the poles, one has 
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the amplitude of ah arbitrary process. I t  can be seen that  the procedure is very 
similar to the van Hove model of Reggeization. The difference is that  a simul- 
taneous description of the crossed channels is also aimed both at low and 
high energies. There are several papers which start from this standpoint of 
more precisely from its advanced variant, the Reggeized supermultiplet [5]. 
The spectrum of these models is, however, too much unphysical as the internal 
states span SU(6, £ representations. 

The SU(6,6) symmetry which is a relativistic version of SU(6) points 
toward quarks. In faet, already the PATON--CHAN unitary symmetry factors 
for the N-point functions are easily interpreted in terms of the Rosner-Hara¡  
duality diagrams strongly reminiscent of quarks. Therefore, it is perfeetly 
reasonable to try to extend the PAToN--CnA~ SU(3) factors to SU(6) in order 
to get a description of the external spins on the same footing as external 
unitary spin. Indeed, this was done by  MANDELSTAM, BARDAKCI and HALe~aN 
[6] (MBH). In the MBH model the M-functions for the hadron are projected 
out by factorization from the "seattering amplitudes" UB of quarks. Here B 
is the sealar Veneziano amplitude and U a spin and unitary spin factor, being 
a product of quark wave funetions. The main failure of this model is also the 
unphysieal degeneraey of intermediate states: there ate 144 ground state 
mesons and 1728 ground state baryons (instead of 36 and 56, respeetively). In 
spite of its unphysieal features the MBH model is one of the greatcst achiev- 
ments of the last years, as a eonsequenee of its faseinating simplicity and its 
faetorization at all the daughter levels. 

The unphysieal degeneracy of the leading trajeetory in SU(6, 6) theories 
is on the same footing as the long standing problem of the parity doubling oJ 
fermion Regge trajectories. It  was demonstrated reeently on ah explicit 
example in the van Hove model by CARLITZ and KISLINGER [7] that  there is a 
theoretical possibility to avoid the parity doubling by means of standing j-  
plane cuts. Such standing cuts were introduced in the Veneziano model by 
several authors to avoid the degeneracy of internal states [8-10]. In the 
SU(6,6) models (or the S1(6, C) model [11]) the CARLITz--KISLINGER euts 
appear both in fermion and meson channels. This makes the high-energy 
predictions at high momentum transfer problematic. 

An essentially different method of constructing Veneziano type amplitu- 
des for general processes was proposed in a work of DOMOKOS, K{JVESI-DOMO- 
KOS and SCn/SNBERG [12]. It  is based on a general Fourier--Mellin integral 
representation which gives in pole approximation the Veneziano amplitude. 
In this proposal the internal SI(2, C) group of M6bius transformations of the 
KOBA--NIELSEN integrand [13] for the spinless amplitude is combined in a 
nontrivial way with the Lorentz group transforming the external spins. The 
interesting possibility in this approach is that  it gives a framework for going 
beyond the pole approximation. 
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The main drawback of all the above models is very easy to summarize:  
ir is the lack of factorization.  Even the factorizat ion of the spinless ampli tude 
holds only in a l imited sense. Strictly speaking, factorization with  ghost states 
eannot  be regarded as factorization. Another  uncer ta in ty  is due to the possible 
inelusion of satellite terms which do not  contr ibute  in one of more channels to 
:the leading t ra jectory.  Ah interesting question is whether it would be possible 
to make out o f two  bad things a good one, t ha t  is, to use the satellite ambigui ty  
for ghost  killing. 

II.  Ghost killing with satellites 

The possibility of adding satellite terms to the generalized Veneziano 
~amplititdes seems to leave a considerable freedom in the construction of dual 
~es0nanee models. This arbitrariness is presumably  weakened by factorization. 
~Nev6rtheless, a t  the first  sight ir seems t h a t  every level densi ty and every 
eoupling strength can be f i t ted  with a suitable choice of satellite terms. 

Le t  us il lustrate this in the simple case of scalar N --~ 4 point functions.  
The integral representat ion of a typical  satellite term is 

1 

[V(m, M; n, N) = J" dv v- '-~(s)(1--v) -1-~t(/} vm(1 V)n(as)N(at)M 
O 

~(s)  = a + ~ ~ .  

(1) 

This term gives contributions in the points s i =  (i -a/z); ~(s) ~-- M 4- i - -m,  
M'4-  i - m --1, . . . ,  0 (i = m, m + 1, m -4- 2, . . .) on the s-channel C h e w -  
Frautschi  plot, and in tj = (j -a/:r :r = N + j - - n ,  N 4 - j - - n - - 1  . . . . .  0 
(j ~ n) on the t-channel Chew--Frau t seh ip lo t .  Le t  us suppose for the moment  
t h a t  we know the " g o o d "  residua, corresponding to the physical level density 
a n d  physical couplings. Then in the representat ion 

n S~vt ~ _m~o . ~  Tm~S.,~ 
B(,,,) = o=o ~~=o2 - -  ~(~I = ,,=o ~-~(�91 

(2) 

the  coefficients Sn~ and Tml , are known. The good residua can be buil t  in an 
ampli tude of Veneziano type  ir one adds satellite terms in the following order: 

B(s,t) ----- a00 V(0, 0; 1, 0) + r00 V(1, 0; 0, 0) + o~11 V(1, 1; 2, 0) + 

-4-a10 V(1, 0; 2, 0) + r l t  V(2 ,0 ;1 ,1 )  + r~0 V ( 2 , 0 ; 1 , 0 ) +  

-4- a22 V(2, 2; 3, 0) + az, V(2, 1; 3, 0) 4- ac0 1/(2, 0; 3, 0) + 

+ r22 V ( 3 , 0 ; 2 , 2 ) +  v21 V ( 3 , 0 ; 2 , 1 ) +  re0 V ( 3 , 0 , 2 , 0 ) - 4 - . . .  

(3) 
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The coefficients 000, %0, a h  �9 �9 �9 ate chosen successively to fi t  So0 , T00 , S n . . . .  
(For a similar construct ion see [14].) I t  is clear tha t  the physical  residua 
(without  ghosts) can be f i t ted b y  this procedure on any finite number  (k) of  the 
lowest levels. The convergence as k ~ ~ depends, however ,  on the explicit  
form of the prescribed residua. 

A different procedure for (partial) ghost killing was proposed in [15], 
where the  ghosts were "ki l led" everywhere  on a f inite number  (k-}-1)  of 
highest daughter  trajectories.  The ampli tude is given there in the form 

A(s, t) = els(S, t) + elt(s,  t) 
1 (4) 

A~(s, t) = y d v  v-l-~(~) (1 - v) +k-~(t) (Ko(x )  §  ) @ .  . . + v k K ~ ( x ) )  
O 

x = ~ ( t ) ;  A , : ( s ~ t ) .  

For definiteness let us choose the " g o o d "  residua to be 

]~~(a(t)) = (--  1 ) "  [ a ( t ) + a p  (5) 
n!  

Then the functions K~(x) are given explicit ly [15] by  

1~ ' ~ {  xi;( ~/~' K i ( x )  - -  e -2x . ~  "" k - a  k - -  
i t + 2 i 2 + . . . + l i t = i  il I �9 �9 �9 ir ! 2 

Writing the ampl i tude  el(s,  t) a s a  sum of s-channel poles 

f k - / x  i, 
l 1+1) 

(6) 

Rn(zr ) 
e l (s ,  t) = ~a~ 

. = o  ,~ ~,(s) 
(7) 

it follows from the construct ion tha t  the residua R~(~( t ) )  eonicide with n(~(t)) 
for n = 0 ,  1 . . . . .  k. 

In A ( s ,  t) the leading trajectories  of  the two channels are separated,  
the piece els,  for instance, contr ibutes  in the t-channel only to the  (k -}- 1)-th 
and lower daughters ,  bu t  it gives entirely the highest (k q- 1) trajectories in 
the s-channel. Therefore,  questions concerning dual i ty  ma y  arise. Dual i ty  
can be formula ted  requiring the fulf i lment of the  finite energy sum rule 

N 
. ~  R n ( ~ ( t ) )  _ N~(t)+ , r (~( t ) )  + 0(N~�91 (N--~ ~ )  (8) 
n=0 / ' (a ( t )@2)  

(r(~(t))  being the res iduum of the leading Regge-pole exchanged in the t-chan- 
nel). This fixes the  asymptot ic  behaviour  of the residua in the following way:  

R N ( ~ ( t ) )  = N ~0 r (~( t ) )  + O(N~(t ) - l ) .  (9) 
/'(zr + 1) 
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The amplitude A(s, t) satisfies Eqs. (8) and (9) as it is meromorphie and Regge- 
behaved in s. But looking at Eq. (5) one sees at once that  Eq. (9) can be valid 
only for N �87 k. This implies that  a distinction can be made between the 
resonances occurring in A(s, t): the resonances on the highest k + 1 trajectories 
are physical (they have physical couplings), but those on the lower daughters 
are supplementary, they are partly ghosts and they are responsible for the 
Regge behaviour in the direct channel. (One has to remark that  a similar 
situation is to be expected in every dual model, as the asymptotic behaviour 
(Eq. (9)) can only be produced by the far-out daughters.) 

III. Higher symmetries in dual models 

In this Section we give a short and simple derivation of dual models 
with relativistic SU(6) symmetry in the case of meson four-point functions. The 
starting point is the PATON--CHAN unitary symmetry factor 

~~: ,sB, aB, a~, (10) ~A~ ~A3 ~A,  " 

Here A~, B i denote the SU(3) nonet indices of the i-th meson. An immediate 
generalization to relativistic SU(6) would be 

=6 . . . .  0~:, (11) 

where ~; = A iai, f l i =  Bi b~ and al., b i denote the Lorentz spinor indices of 
the i-th meson. Eq. (11) is, however, incorrect as parity conservation requires 

1 " 1 1 " 2 1 " 3 1 , 4 l a ,  a 2 a 3 a4 = ~] J]/l ( P i s  P 2 s  P 3 s  1,45]~L• = 

, (m)b.b: x ( , 2 ,  
' b,b3 ~ m I a~a~ 

Here M i s  the four-meson M-function, ~7 = + 1 is the product of the parities 
and m i s  the meson mass. Otherwise we used the notations of [9]. The most 
simple ehange of Eq. (11) consistent with parity conservation is the following: 

= a, [ --(P2P,)]~~ = 6& [ m 2 Jb2a, " 

Therefore, a possible four-meson amplitude is: 

Mt . . . .  x ~1~2~3~, = Sdvv-*-~(S)( l_v)- , -~( t )[ j_(p~pO]~~.  (14) ~ . F 1 / * 2 / * 3 / ' 4 1  ~j~2~a~4 

[~ ~~ �9 (p~ p~)]~~ [ - (p~ p~)]~~ [ ~ -  (p~ p~)]~~. 
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Here ~(s) denotes the (negative intercept) trajectory of the 0-  particles in the 
36-plet. This amplitude is identical to the MBH amplitude for 4 mesons. 
Applying the same method to meson--baryon scattering one arrives at the 
S1(6, C) symmetric amplitude of [9] which coincides with the SU(6, 6) ampli- 
tude if the 4 coupling constants ate properly choosen. Let us now investigate 
the factorization properties of the spin-dependent part  of the above amplitude, 
say in the s-channel [s = (Pi + P2)2] �9 The first and third factors belong entirely 
to the initial and final states, respectively. The other two factors can be written 
as follows: 

1 
[6-- (P3 P2]afl~ = ~ -  [6 -- (P3 P12)]£ [‰ -~- (P12 P2)]aQ~ 2 -~- (15) 

1 
r' [6+(p3p12)]~~2 [6--(p12p2)]~ ;Pik : Pi-+-Pk ,P~k = m2 

2 

The two terms on the right-hand side ate already factorized, thus multiplying 
by the other two terms coming from the last factor in Eq. (14), one has four 
36-plets as intermediate states. I t  can be shown that there are two 36--plets 
and two 36+-plets, one of each having imaginary couplings ("ghosts"). 

The superfluous intermediate states can be easily eliminated at the 
ground state pole by the method of [16], which consists of multiplying the 
unwanted pieces of the covariants by  the integration variable of the channel : 

M dvv-X-~(s)(1 13)-1-u(t) [6__(p4P23)]~~ 3 [6+(P23P3)]~ a ~_ 

, v  }11 

P2m~2 + [6 ~- (p3P12)]e ,216- - (P12P2)]a2  (16) 

[6_(p2p4~)]~}, [6+(p41P1)]~~t + 1--v [6+(p2P41)]~~~ 
2 

[6 (p41Pl)]~l~/{y [ plp34))ez,[6-1;-,(pa, p,)]~:'-}- 
v ] 

+ ~ [6 + (p~ p34)]gh [6 - (p3~ p~)]o~, . 

In this amplitude the ground state is a pure (and physical) 36--plet.  The 
excited states, however, are still degenerate. The degeneracy everywhere can be 
removed by  multiplying by  some functions f ( v )  and f (1- -v)  instead of v and 
(I--v),  respeetively if 

f ( o ) = o ,  d n f ( O , 1 ) _ 0  ( n = 1 , 2 , . . . ) .  (17) 
f ( 1 )  = 1 ,  d v  ~ 
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Such an ampli tude was constructed in [17], where it was shown t h a t  in 
doing so the ampli tude gets pieces with exponential  behaviour.  This shows 
t h a t  the  scalar Veneziano spectrum multiplied by  pure SU(6) couplings is no 
more dual  in the sense of satisfying finite energy sum rules. 

Another  possibility of modifying Eq. (16) is to remove the degeneracy 
on the f irst  (k + 1) trajectories by the method of [15]. The resulting ampli tude 
is the following [9]: 

• (1 -v)k+x(- a)Bof:dT z -a- ' (  --log ~)B0-, e~(t),.(,-,) [R0(k)(v ~(t), 3) + 
(18) 

[ Va log ~ X 
+ . . .  +v k R(kk,(vx(t),*)] [6-(pap2)]~: [6-- (p lp4)~:- -  P { B o + ~ _ !  

• [(p~ p~~)- (p~~ p2)]g~ [~ - (p~ p4)]gl + [£ - (p3 p~.)lg~[(p~ p3,) - (p31 P4)]~#t4] ~- 
a log �9 ] 

F ( B o + l  ) [(P3Pl~)--(Px2P2)]~~ [(PxP34)--(P34P~)]~~ ; M = M s + M  t, 

I 
where 

B 0 = free parameter ,  a = ~r Pi + P2 -~- P3 + PI = 0; 

1_,. .... ,- i~!/ ~)  ~-1 '~ 2 '  �9 1 +  + k - -  
i , + . . . + l i l = i  i l  [" " " i l [  

II ,x~~ ,x]i, . . .  ~l 1 -4 - l+ l - J  + k - -  l + 1  

(19) 

The piece Mt can be obtained from M s interchanging the roles of the s- and t- 
channels. 

In  summary,  the factorization properties of the dual ampli tudes of 
spinning particles offer a lot of questions to be studied in the future.  The 
application of the dual model to most of the physical processes becomes possible 
presumably  only after knowing the answers to these questions. 
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