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The recent developments in constructing dual amplitudes with spins and unitary sym -
metry are briefly reviewed.

1. Imntroduction

A considerable amount of work in the Veneziano theory has been done in
the model with neutral, scalar Reggeons only. In this model there is a single
family of trajectories, the ground state being a neutral, scalar particle. As a
consequence, the intercept of the leading trajectory is negative. One may ask
how much this simple model reflects the real world. The mere fact that physi-
cists consider such models expresses their strong belief that the physical world
is not the only one possible mathematically. One can fulfil the axioms including
unitarity without p-mesons. Nevertheless p-mesons do exist, thus one must
once abandon the spinless world. In fact, a great deal of work has been done in
the last two years in the direction of physical Reggeons with poesitive inter-
cepts.

It is interesting to note that the two classical examples (the nnzmw and
aanz amplitudes) both involve spin and unitary spin. In spite of this, the
systematic inclusion of positive intercept trajectories and especially fermion
trajectories represents a lot of nontrivial problems. After the success of the 4n
amplitude it is tempting to try the many-pion amplitudes. The isospin structure
of them was given quickly by Paton and CHAN [1]. The integral representa-
tion of the invariant amplitude in the case of 4 is [2]:

gl dv o™= (1 - p)=1=%0 {1 —a(s) —a(t)},

where

s = (p; + po) t = (p. + ps)s
Py + P2+ p3+py=0; a(s) = a,(s) -1 = a,—1 + as.

Therefore, the invariant for the N-pion amplitude can be of the general form

{d on(v,p) Plvyssy))-
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Here p is a polynomial in the channel invariants

sij = (Piy1+Pivat - -+p)s 0<i<j<N—-1; P1+I_’2+---+PN=0

and in the corresponding channel integration variables

_ (1—vi41040. .. 7_1) (1 —v;. . .0)
(I—Ui+1. . .'Uj) (1 7”1" . '”j~1)

vy, =vNy_,=0; C<i+1<j<N-1).

vo;=vi(i=1,...,N=1); v;;

The integral without the polynomial P is the spinless [N-point amplitude:

~

- d‘l) dv . 'va——-
| den(v. p) =J - - 2 o 1—lses) =
’ (1 —v,05) (1~ v30,). . .(1 —vn_3UN_») (tl,£ “

N2
=\ JJ dvivyi=0(1—0)e=t T (L= 054, .0) " 2PiPiss,
i=2 2<ISjSN -2

Explicit expressions for the many-pion amplitude were given by OLIVE and
ZAKRZEWSKY [3] and by RiTTENBERG and RUBINSTEIN [4]. These amplitudes
are, however, not completely satisfactory as they do not factorize along the
daughter trajectories,

The many-pion amplitudes are still simple in the sense that external
spins are not present in them. In the general case the amplitude has spin
indices. Instead of an invariant one has to construct functions of the particles’
momenta showing the appropriate covariance property. In principle it would
be possible to deal with helicity amplitudes familiar in the Regge theory, or
with several invariant amplitudes multiplying the independent covariants.
A more direct and simple way is, however, to consider the M-functions (“spinor
amplitudes”) which are the S-matrix elements between spinor states. The
M-functions are free from kinetical singularities and have simple covariance,
crossing and factorization properties.

The factorization is a severe restriction and at the same time a very
powerful tool in every zero-width resonance model. It says that the residuum
of a pole corresponding to a given intermediate state must factorize into the
product of the appropriate lower point functions. If we have, for instance,
the 6z amplitude, then by factorization we can get A nnx, A,nnn, gpnn, ete.
By subsequent factorizations the whole amplitude can be traced back to the
vertices. Therefore, the only physical content of a dual resonance model is
the spectrum of particles and the trilinear couplings among them. A construc-
tive way of building up the amplitudes is thus to specify the spectrum of part-
icles (which can be external as well as intermediate states) and to fix their
couplings. Then by calculating the residua and summing up the poles, one has
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the amplitude of an arbitrary process. It can be seen that the procedure is very
similar to the van Hove model of Reggeization. The difference is that a simul-
taneous description of the crossed channels is also aimed both at low and
high energies. There are several papers which start from this standpoint or
more precisely from its advanced variant, the Reggeized supermultiplet [5].
The spectrum of these models is, however, too much unphysical as the internal
states span SU(6, 6) representations.

The SU(6,6) symmetry which is a relativistic version of SU(6) points
toward quarks. In fact, already the PATON —CHAN unitary symmetry factors
for the N-point functions are easily interpreted in terms of the Rosner-Harari
duality diagrams strongly reminiscent of quarks. Therefore, it is perfectly
reasonable to try to extend the PAToN—Cnan SU(3) factors to SU(6) in order
to get a description of the external spins on the same footing as external
unitary spin. Indeed, this was done by MANDELSTAM, BARDAKCI and HALPERN
[6] (MBH). In the MBH meodel the M-functions for the hadron are projected
out by factorization from the “scattering amplitudes” UB of quarks. Here B
is the scalar Veneziano amplitude and U a spin and unitary spin factor, being
a product of quark wave functions. The main failure of this model is also the
unphysical degeneracy of intermediate states: there are 144 ground state
mesons and 1728 ground state baryons (instead of 36 and 56, respectively). In
spite of its unphysical features the MBH model is one of the greatest achiev-
ments of the last years, as a consequence of its fascinating simplicity and its
factorization at all the daughter levels.

The unphysical degeneracy of the leading trajectory in SU(6, 6) theories
is on the same footing as the long standing problem of the parity doubling of
fermion Regge trajectories. It was demonstrated recently on an explicit
example in the van Hove model by CArriTZ and K1SLINGER [7] that there is a
theoretical possibility to aveid the parity doubling by means of standing j-
plane cuts. Such standing cuts were introduced in the Veneziano model by
several authors to avoid the degeneracy of internal states [8-10]. In the
SU(6,6) models (or the Sl(6, C) model [11]) the CarLiTZz—KISLINGER cuts
appear both in fermion and meson channels. This makes the high-energy
predictions at high momentum transfer problematic.

An essentially different method of constructing Yeneziano type amplitu-
des for general processes was proposed in a work of Domokos, Kovesi-Domo-
kKos and ScHONBERG [12]. It is based on a general Fourier—Mellin integral
representation which gives in pole approximation the Veneziano amplitude.
In this proposal the internal SI(2,C) group of Mébius transformations of the
KoBa—NiIeLSEN integrand [13] for the spinless amplitude is combined in a
nontrivial way with the Lorentz group transforming the external spins. The
interesting possibility in this approach is that it gives a framework for going
beyond the pole approximation.
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The main drawback of all the above models is very easy to summarize:
it is the lack of factorization. Even the factorization of the spinless amplitude
holds only in a limited sense. Strictly speaking, factorization with ghost states
cannot be regarded as factorization. Another uncertainty is due to the possible
inclusion of satellite terms which do not contribute in one or more channels to
the leading trajectory. An interesting question is whether it would be possible
to make out of two bad things a good one, that is, to use the satellite ambiguity
for ghost killing.

II. Ghost killing with satellites

The possibility of adding satellite terms to the generalized Veneziano
amplitudes seems to leave a considerable freedom in the construction of dual
resonance models. This arbitrariness is presumably weakened by factorization.
‘Nevértheless, at the first sight it seems that every level density and every
coupling strength can be fitted with a suitable choice of satellite terms.

Let us illustrate this in the simple case of scalar IV = 4 point functions.
The integral representation of a typical satellite term is

V(m, M;n, N) = ‘f dv v~ !1=4) (1 — )12 p™(1 — ) (xs)N(at)M (1)
’ x(s) = a+tas.

This term gives contributions in the points s,= (i—a/x); a(s) = M + i —m,
M4i-m—1,...,0 (i=m, m- 1, m+2 ..) on the s-channel Chew —
Frautschi plot, and in t; = (j-a/x); a(t) = N +j~n, N4+j—n—1,...,0
(j > n) on thet-channel Chew — Frautschi plot. Let us suppose for the moment
that we know the “good” residua, corresponding to the physical level density
and physical couplings. Then in the representation

t o m Tm S«
u' j—

S) m=or=o m—-x(t)

B(s,1) — é é 2)

the coefficients S,, and T, , are known. The good residua can be built in an

'a

amplitude of Veneziano type if one adds satellite terms in the following order:

B(st) = 040 V(0,051,0) 1+ 7, V(1,050,0) + o, V(1,1;2,0) 4
4+ o0 V(1,0;2,0) + 7, V(2,0;1,1) 4+ 7, V(2,051,0) + (3)
+ 0y V(2,2;3,0) 4+ 0y V(2. 153, 0) 4 0y V(2,0:3,0) -
+ T V(3,052,2) 4+ 7, V(3,052,1) + 75 ¥(3,0,2,0) 4 ...
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The coefficients g, 7o, 01 - - - are chosen successively to fit Sgg, Tops Sypr - - -
(For a similar construction see [14].) It is clear that the physical residua
(without ghosts) can be fitted by this procedure on any finite number (k) of the
lowest levels. The convergence as k — oo depends, however, on the explicit
form of the prescribed residua.

A different procedure for (partial) ghost killing was proposed in [15],
where the ghosts were “killed” everywhere on a finite number (k 4 1) of
highest daughter trajectories. The amplitude is given there in the form

) A(s,t) = As, t) +A(s, 1)
Ads,t) = jdv p=1=30) (1 —v)te==O (K () +oK (x) + . . . + 0% Ky (%))
x=oft); A:(s—1).

(4)

For definiteness let us choose the ““good’ residua to be

R (x(t) = (—1)r LTl (5)

n!

Then the functions K,(x) are given explicitly [15] by

1-4 ,  I-4 x )i
Kix) = e > — lk-a——
TNy ST B 0 RN 7 2

Writing the amplitude A(s, t) as a sum of s-channel poles

Ay = 3 BL0O) (M

Y
n=o0 N *(Z(S)

it follows from the construction that the residua R, («(t)) conicide with a(a(2))
forn=0,1,..., k.

In A(s, t) the leading trajectories of the two channels are separated,
the piece A,, for instance, contributes in the t-channel only to the (k 4 1)-th
and lower daughters, but it gives entirely the highest (k 4- 1) trajectories in
the s-channel. Therefore, questions concerning duality may arise. Duality
can be formulated requiring the fulfilment of the finite energy sum rule

& % . () +1 T((Z(t)) a(f)) o > O
gﬂRn( (1)) = N<© T(al) 12) + O(N*) 5 (N — o) (8)

(r{=(t)) being the residuum of the leading Regge-pole exchanged in the t-chan-
nel). This fixes the asymptotic behaviour of the residua in the following way:

j— al r(oz(t)) a(f)—1
Ry(a(r)) = N=0 ) 4 g(N=)-1). 9
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The amplitude A(s, t) satisfies Eqs. (8) and (9) as it is meromorphic and Regge-
behaved in s. But looking at Eq. (5) one sees at once that Eq. (9) can be valid
only for N > k. This implies that a distinction can be made between the
resonances occurring in A(s, £): the resonances on the highest k 4 1 trajectories
are physical (they have physical couplings), but those on the lower daughters
are supplementary, they are partly ghosts and they are responsible for the
Regge behaviour in the direct channel. (One has to remark that a similar
situation is to be expected in every dual model, as the asymptotic behaviour
{(Eq. (9)) can only be produced by the far-out daughters.)

III. Higher symmetries in dual models

In this Section we give a short and simple derivation of dual models
with relativistic SU(6) symmetry in the case of meson four-point functions. The
starting point is the PATON—CHAN unitary symmetry factor

85105 0% 0 (10)

Here 4,, B; denote the SU(3) nonet indices of the i-th meson. An immediate
generalization to relativistic SU(6) would be

SF §Fs 5« §h ( 1 1)

Xy Ty &g Ty O

where a; = A;a;, f; = B;b; and a;, b, denote the Lorentz spinor indices of

the i-th meson. Eq. (11) is, however, incorrect as parity conservation requires

b _

M(p1 P2 Py P); a3t = 1 M(P1s Pas Pas Pas)3 2%

&] ,(&] ,(& M(pys PasP3s Pss)o; (ﬂ] (&] X (12)
m Jpb, \ T [op, \ M [pp) m Jala, \ M }ola,

“o2]
m fpp;

v [
X (&} l&J s Ps =(Po»—P)»P = p“0,,p=pso,.
m oo, M )50, -

Here M is the four-meson M-function, 7 = -+ 1 is the product of the parities
and m is the meson mass. Otherwise we used the notations of [9]. The most
simple change of Eq. (11) consistent with parity conservation is the following:

R O T = | (13)
m® }p.q,
Therefore, a possible four-meson amplitude is:
M(p; p. ps p,) 245258t = [ dvv=1=6)(1—p)~1==O [§ —(p, p,))%2- (14)
[0 - (ps P)IE[0—(ps Po) it 10— (py )i
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Here a(s) denotes the (negative intercept) trajectory of the 0~ particles in the
36-plet. This amplitude is identical to the MBH amplitude for 4 mesons.
Applying the same method to meson —baryon scattering one arrives at the
SI(6, C) symmetric amplitude of [9] which coincides with the SU(6, 6) ampli-
tude if the 4 coupling constants are properly choosen. Let us now investigate
the factorization properties of the spin-dependent part of the above amplitude,
say in the s-channel [s = (p, + p,)*]. The first and third factors belong entirely
to the initial and final states, respectively. The other two factors can be written
as follows:

_ B3 — i _ 012
[6—(ps Pz]az [0 —(p3 p1) 122 012 [6+(P12P2)] (15)

1
+ 9 [5+(P3P12)]912 [6— (P12 Po)J 5 Pir = Pi+ Pi» Pl = M.

The two terms on the right-hand side are already factorized, thus multiplying
by the other two terms coming from the last factor in Eq. (14), one has four
36-plets as intermediate states. It can be shown that there are two 36~ -plets
and two 36*-plets, one of each having imaginary couplings (*“ghosts™).

The superfluous intermediate states can be easily eliminated at the
ground state pole by the method of [16], which consists of multiplying the
unwanted pieces of the covariants by the integration variable of the channel,

1 1
M = J dvy=1=%) (1 —v) ~1- ;‘2— [0~ (Ps Pes) 52, [0+ (P2s pa) i+
1

s [0 (pas o) } [—[6 (P P

3+ (pua P + 210+ (py P [0~ (PraP ) }{? 0

[8 — (ps Pt [0+ (pr pOTES + -1—;— [0+ (p2 P
[5 (puupy) z:z“—[é (Pr P [ (psy PO +

e [6 +(p1 P31, [0 - (P34 P4)]$f‘} .

In this amplitude the ground state is a pure (and physical) 36 —-plet. The
excited states, however, are still degenerate. The degeneracy everywhere can be
removed by multiplying by some functions f(v) and f(1—v) instead of v and
(1—v), respectively if

fO) =0, a0 o 19 (17)
=1,  an I
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Such an amplitude was constructed in [17], where it was shown that in
doing so the amplitude gets pieces with exponential behaviour. This shows
that the scalar Veneziano spectrum multiplied by pure SU(6) couplings is no
more dual in the sense of satisfying finite energy sum rules.

Another possibility of modifying Eq. (16) is to remove the degeneracy
on the first (k 4 1) trajectories by the method of [15]. The resulting amplitude
is the following [9]:

1
M = || dvo=i=20) (1—0) =[5 — (p, py) B2 [~ (ps PV X

X (L) i(— @) [ dre=es(—logm)=) €D [R(oau(t) 7) + -

+ oo R (0x(t), 7)] )10 — (Pa P2V [0 (P1 PW)E: — “M%“
r(Bot]
X [(P3 P12)— (P12 P2)]g§ [6—(prp) s +[0 —(ps Pz)]gg[(Pl P3t) — (P31 P ] h

1
F‘(’B‘:i’l) [(PaP12) — (P12 P2 [(P1 Pos) —(Pas POTE| s M = M+ M,

+

where

B, = free parameter, a = «(0); p; + p, + p3s + ps = 0;

~iy ~i i
Rs,’f)(x, 1) = 2 _1_'_17_[ [1 +___ +k———2—]
AR THEFRE S DU 5 B 19)
. [r’[l—l— xe +k— ke ]”.
l+1 1+1

The piece M; can be obtained from M, interchanging the roles of the s- and ¢-
channels.

In summary, the factorization properties of the dual amplitudes of
spinning particles offer a lot of questions to be studied in the future. The
application of the dual model to most of the physical processes becomes possible
presumably only after knowing the answers to these questions.
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CMMUH U YHUTAPHbIM CMIMH B AYAJIbHOM PE30HAHCHOW MOJOEJIU
U. MOHTBAH

Pesome

INpuBeatn Kpatkuii 0630p MOC/IEIHHX AOCTHIKEHHH B 001aCTH MOCTPOEHHST JyailbHbIX
AMIUTHTYJ] C YHHTapHOil CHMMETpPHEH M CTHHAMH.
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