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A set of self-consistency conditions based on very simple assumptions is derived. The
conditions imply that hadrons have a surprising number of quark-model properties.

1. Introduction

My talk concerns the question, “Why does the quark model work?”’
But before I attempt to answer this question, I shall ask another, namely,
“Why don’t physicists worry about this question more than they do ?”After
all, the quark model is surprisingly successful. Five or six years ago, when this
success was first becoming apparent, most physicists who were impressed with
the quark model believed that the reason behind it was simply that quarks
existed, and would be discovered. This was a reasonable hope. However, after
years of unsuccessful quark searches, most of us do not believe in physical
quarks any more. So why do we not worry more about the model’s success ? My
own opinion is that we have become too familiar with the model by now, and
some of us are so infatuated with learning the various rules and diagrams
involving quarks that we forget that the reason why these rules work is still a
mystery. In short, some physicists today think that the quark model works
because it has always worked. As this is not really a satisfactory reason, I will
propose another; that self-consistency conditions of the bootstrap type force
hadrons to behave as quark composites.

Before discussing some self-consistency conditions, I will list and com-
ment briefly on what I consider the three main successes of the quark model.

1) A simple rule for exotic states.

2) SU(6)y, symmetry.

3) A simple matrix rule for meson-hadron-hadron coupling ratios.

You all know what exotic means: internal quantum numbers for which
no known strongly coupled particles or resonances exist. The fact that there
are exotic quantum numbers is not surprising. In any conceivable universe in
which some particles possess nonzero values of an additive internal quantum
number, the number of internal quantum states corresponding to particles is
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either finite or infinite. It is certainly not surprising if it is finite, and if it is,
the nonresonating quantum states can be called exotic. Furthermore, some
states made of two nonexotic particles will be exotic in such a universe. Thus,
the quark model is successful not because exotics exist, but because the pre-
scription for exoticity is simple in the model. The prescription is that only
quark-antiquark and three-quark states are not exotie.

In order to discuss the second and third successes of the above list, I
will first consider what the meson —quark — quark interaction should be in the
quark model. Actually, if hadrons were composites of heavy quarks, bound
very relativistically, it would not be easy to explain hadrons with realistic
physical interactions. However, most physicists today do not try to think of
physical quarks when they discuss quark models; rather they think of rules
that can be expressed simply in terms of quarks. The term “mathematical
quark™ is used sometimes to mean that the quarks are not supposed to be
real physical particles. My main aim here is to find why the mathematical
quark is such a useful concept.

The following is a simple rule for the interaction of meson with mathe-
matical quarks. The quantura numbers a of a meson M, may be expressed in
terms of a square matrix Aij, where this matrix is the coefficient in an expan-
sion of the quantum numbers in quark-antiquark states. Symbolically,

a~ Z‘-/Aij Q:0; &)
The bar denotes an antiquark. The interaction constant for the process

b — M, - d, where b and d are quarks, is simply A4, where 2 is a constant
of proportionality. One can represent this rule with the diagram of Fig. 1(a);

meson

(a) (b)
Fig.

this diagram means that the interaction constant is proportional to the coeffi-
cient of the (,(Q, term in the expansion of the meson wave function.

If the hadrons are considered to be composed of quarks, a simple rule for
meson—hadron-hadron interactions is to assume that this interaction is the
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sum of the interaction of the meson with all the constituent quarks. This is
represented in Fig. 1(b) for the interaction of mesons with baryons (assumed
composed of three quarks).

This rule automatically implies SU(n) symmetry, where n is the number
of the quark states. If we include the quark spin-component quantum num-
bers, SU(6) is the group. Because of the charge-conjugation of the meson, one
can show that the group must be applied in the SU(6),, manner; I do not have
time to explain this here [1]. The point is that the quark model leads to SU(6),,
naturally, sc the success of this symmetry is a success of the quark model.

We next consider the question: does the simple interaction rule given
above imply more than SU(6),, symmetry? Since the mesons correspond both
to the singlet and regular representations of the group [i.e. to the representa-
tion 1 4 35 of SU(6)], the above construction relates the interactions of the
1 and 35 meson states, and thus does imply more than the symmetry. This
extra interaction prediction works fairly well, so I have listed it above as the
third success of the quark model.

We must be a little careful about applying this interaction rule. Taken
at face value it says that the interactions of the 35 and 1 mesons are pro-
portional te matrix elements of the group generators and identity matrix.
Such a rule would say that the meson interactions do not connect different
representations, such as the 56 and 70-fold representations of SU(6). Since the
observed even- and odd-parity baryon Regge trajectories correspond to these
two representations, this rule would imply that such odd-parity states as the
A* (1520) and 2* (1660) would not decay strongly into meson-baryon states,
in contradiction to experiment. Quark model enthusiasts are not troubled with
this problem, because they point out that the odd-parity baryons correspond
to three-quark states with some orbital angular momentum, and it is easy
to write things down so that the meson-56—70- interaction exists. Thus, the phy-
sical existence of this interaction is neither a success nor failure of the quark
model; 1 mention it here only because it is something any correct theory must
predict.

I will give a short derivation of a set of consistency equations in Section
I1 of this paper, and study the implications for MMM (meson —meson—meson)
interactions and MBB (meson— baryon — baryon) interactions in Sections I11(A)
and III(B), respectively.

IL. The consistency conditions

Some of the consistency equations that I will write are algebraically the
same as equations derived from two to seven years ago. Among the people
who have contributed to the development of the bootstrap equations are
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Curkosky [2], PoLKINGHORNE [3], CHIU and FINKELSTEIN [4], and myself
15, 6]. The starting points for the derivations have been different; for example,
a simple potential model was used in [2] and [3], and N/D dispersion relations
were used in [5]. Somewhat later, in [6], superconvergence relations were used
to derive similar equations. The recent development of the duality principle
has led to great progress in this field, by allowing derivations of consistency
conditions that are more plausible than the early derivations, and also lead to a
more complete set of conditions. I will give a duality argument here.

I will consider both MM and MB scattering in the s-channel, at an
intermediate energy, near the backward (small u) direction. It is assumed that
t-channel Regge exchange may be neglected in this region. The duality principle
may be written [7]:

(Im TREEE ) = (Im T (2)

Here i denotes the internal quantum numbers of the amplitude; i.e., ¢ might
represent ntp scattering in the s channel, in which case it would correspond to
7 —p scattering in the u channel. The symbol TH¢& denotes the amplitude for
the exchange of u-channel Regge trajectories, T® is the contribution of reso-
nances to the s-channel amplitude, and << > denotes some sort of semi-local
average over energy. I assume that the external particles belong to a set of
degenerate mesons and a set of degenerate baryons. If the amplitude i is
exotic in the s channel, this condition implies that the trajectories of opposite
signatures must be exchange degenerate, and that the residues are numerically
equal. From now on I will simply assume the exchange degeneracy of the trajec-
tories, and concentrate on the implications of the condition for the residues.

I now want to digress a little to show how a simple type of diagram,
based on the duality principle of Eq. (2), makes plausible the fact that the
quark model might lead to solutions of the consistency conditions. These are
the “duality diagrams” of RosNER and HaRrARI, and they have increased the
popularity of consistency conditions based on duality [7, 8]. I will illustrate
this with the baryon-exchange contributions to MB scattering. If the MBB
interactions follow the rules of Fig. 1, then the left-hand side of Eq. (2) corres-
ponds to the baryon-exchange diagram of Fig. 2(a), while the right-hand side
of Eq. (2) corresponds to the baryon-resonance diagram of Fig. 2(b). However,
it is clear that if one twists the lines a little, Figs 2(a) and 2(b) are identical, so
it is not surprising that the quark model leads to a solution of the conditions.
This argument is quite useful as a pedagogical device, but it does not serve the
purpose of my talk, for two reasons. First, the argument is unclear in several
aspects, among them the role played by the parities of the particles. Second,
the quark construction is assumed at the beginning. I am interested in showing
not just that a quark model satisfies the conditions, but also that models not
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(@) (b)
Fig. 2

interpretable in terms of quarks do not satisfy them. Therefore, I must write
the consistency equations for the residues in an algebraic form.
The residue condition that follows from Eq. (2) is,

(X P — X)) = Z D ~Z ), (3)
where «; is a kinematic factor, Xm.(") is the sum of the residues at small u
of the trajectories of signature (4-), and the Z(%) are the contributions of
resonances of parities ({) to the right-hand side of Eq. (2). The minus sign in
front of Z!7) is appropriate, because the contributions to backward elastic
scattering of resonances of opposite parities are opposite. The resonances lie on

s-channel Regge trajectories, so that the Z_ are proportional to the residues
of these trajectories. We define constants 8, {*) by the equation:

Zsi(i) = % ﬂi(i) Xsi(i)e (4')

where X(*) are the residues at small s of the s-channel trajectories. The con-
stants «; 8,{*) involve phase space factors and also the variation of the residues
between the Regge and resonances regions. Substitution of Eq. (4) into Eq. (3)
yields

X, P — X [ == B0 X (D — B X ), (5)

It is important to realize that no assumption has been made between Eqs. (3)
and (5), as the constants f,*) are defined by the requirement that Eq. (4)
is true.

I now make the assumption that the ") are independent of the internal
index i. This implies that the residues of the various trajectories are propor-
tional as functions of energy. Basically, this assumption means that the dege-
nerate mesons are dynamically similar, and the degenerate baryons are dyna-
mically similar, i.e., these degeneracies are not accidental. A fuller discussion of
the assumption is given in a recent paper [9].
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Tt is now easy to find restrictions on the values of B*). Application of
Eq. (5) to a process exotic in the s channel implies X, (P = X, ). Applica-
tion to the crossed process (obtained by reversing the roles of the s and u
channels) then implies that (+) = §(~). We then consider two possibilities;
X, —X, ) either is zero for all i, or is non-zero for at least one i. In the
first case, the following consistency condition is automatically valid:

Xui(+)'_Xui(—) - Z{: (Xsi(_l-)"Xsi(_)) ) (6)

although the L sign on the right is superfluous in such a case. If X () —X )
=< 0 for some i, application of Eq. (5) to the amplitude for this i and to the
crossed amplitude, together with the condition S = (7). implies B(+)2 =
=1, or Eq. (6). This equation is the condition that the X" —X_ () are
components of an eigenvector of the s—u crossing matrix, with eigenvalue 4-1.
Thus, the condition is a generalization of that of CHEW’s réciprocal bootstrap
model [10]. In our case, the sign of the eigenvalue depends on whether or not the
residue changes sign between the resonance and Regge regions.

Our basic bootstrap equations are Eq. (6) and the corresponding equations
that may be obtained for the s—t and u—t pairs of channels, together with the
requirements that the set of lowest states on the mesonic and baryonic Regge
trajectories should correspond to the sets of external mesons and baryons.

III. Implications of the conditions

(A) MMM interactions

I label the external particles in the s and u channels according to the
scheme,

s: a-+b—ctd,
u: ¢+ b—a-+ d

(7)

We consider first the cases for which a and ¢ are mesons of the same parity,
and b and d are either both baryons of the same parity or both mesons of the
same parity. We use the labels to refer to both internal quantum numbers and
the z-components of the particle spins. We consider only backward scattering,
for which the spin-components behave as internal quantum numbers under
crossing. The set of mesons must include all the antiparticles, and so must be a
self-conjugate set. A complete set of self-conjugate states exists in a self-conju-
gate set, for convenience, we take all meson states to be self-conjugate.

We consider first the case of MM scattering, where all external mesons
are of the same parity. We define the coupling constant of the u-channel trajec-
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tory r of even signature (whose physical particles are of even parity) with the
final state a 4 d to be d_;, and the corresponding coupling of the trajectory s of
odd signature to be f,;. The quantities X,,(*) are then given by

Xui(+) = X, dyg, dep ™, Xui(_) =2 fads frbs*- (8)

I have defined the X to be the residues at the small u appropriate for backward
s-channel scattering. However, it is more convenient to evaluate the residues
at the u of the lowest states on the trajectories, so that the d and f are ordinary
meson—meson—meson coupling constants. Thus, the trajectories are labeled by
their lowest states. This continuation in u actually introduces a proportionality
constant into each of the equations of Eq. (8). However, my assumption con-
cerning the proportionality of the residues of amplitudes of different i allows
me to divide out one of the constants, and I choose the relative f/d normaliza-
tion so that the other cancels also.

The self-conjugate property of the mesons a and ¢ implies that the d,;,
and f;;, are Hermitean in the final two indices. From this and Eq. (8), one
may write the consistency condition of Eq. (6) in the form,

Zrdadrdcrh " Zsfadsﬂ‘sb:Fa —c=0, (9)

where a = ¢ denotes the preceding terms with e and ¢ reversed. The physical
states on one of the sets of trajectories have the same parity as the external
particles. Our bootstrap hypothesis requires that the set of lowest states on
this set of trajectories corresponds to the set of external mesons, and that we
later must consider amplitudes with all possible external parity combinations.
For MM scattering, we need not consider s— and u—t channel consistency
conditions, as we can permute indices so that every meson exchange is an s—u
channel exchange.

I will describe the solution to this type of MMM -consistency con-
dition only briefly, as it has been worked out a few years ago. More details
are given in [6].

We have taken all the meson states to be self-conjugate. Because of the
Bose principle, the d’s and f’s refer to interactions of even and odd orbital
parity, respectively. Since reversing the first two indices corresponds to
reversing the directions of the two particles coupled to a trajectory particle, the
d and f are symmetric and antisymmetric, respectively, in the first two indices.
This, together with the Hermiticity in the last two indices, implies that the
d are real and completely symmetric, and the f are imaginary and completely
antisymmetric.

One can show that if the lower signs in Eqs. (6) and (9) are taken, there
is no nontrivial solution. So we take the upper signs from here on out. This
means that the eingenvalue of X(*)—X(~) under s == u crossing is (+ 1). A
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rather trivial solution exists, with only one state interacting with itself with
one symmetric interaction constant; we consider this too trivial. If all s
vanish, it can be shown that one can always choose an appropriate basis so that
any solution becomes a direct sum of these disconnected one-state solutions.
Hence, a non-triviality requirement implies that the f’s do not all vanish.

If one sums Eq. (9) over all permutations of the external particles,
a, b, ¢ and d, including a minus sign for odd permutations, the d terms all are

cancelled because of the symmetry property d,; = d;,. The resulting equation

jik*
can be written in the form

23 (fadsfcsb +facsfbsd+fabsfdsc) =0. (10)

This is the Jacobi identity for the f’s. Together with the antisymmetry property,
it implies that the f’s must be proportional to the structure constants of a Lie
group. A set of particles, all of whose interactions are of the f type, is the set
of odd-parity mesons, so our bootstrap equation implies that the odd-parity
mesons which interact with each other must correspond to the regular represen-
tation of a Lie group. The first use of this type of argument was by CuTkosky,
who used a potential model involving only vector mesons {2].

We have not yet extracted all the information from Eq. (9), so we
continue the argument of [6]. If the d’s and f’s are regarded as matrices in the
space of the last two indices, and the upper sign in Eq. (9) is taken, this equation
may be written in terms of matrix commutators, i.e.,

[das de] — [far fe] = 0. (11)

Since the f commutator exists, so must the d commutator, and so particles of
both parities must exist. We may then consider the scattering amplitudes for
which three of the external particles are of odd parity and one is of even parity.
Our conclusions concerning the symmetry of the d’s and f’s remain valid if we
use them to apply to all MMM interactions, the d and f applying when the
product of the three intrinsic parities is even and odd, respectively. Our three
odd-one even process leads then to a consistency equation in which each term is
bilinear in the d and f. If we follow the procedure used in deriving Eqs. (9)
and'(11), this new equation in matrix form is,

[das fe] — [far dc] = 0. (12)

This last equation is symmetric in the interchange a v ¢, corresponding
to the choice of the lower sign in the crossing equation, Eq. (6). It is appropriate
to choose this different sign when dealing with an amplitude for which the
product of the intrinsic parities changes from the initial to the final state.
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These amplitudes are odd in the momentum k,, which is odd under crossing
for collinear amplitudes (i.e., k, = —k,). Since the coupling constants are
defined with this kinematic factor removed, an extra minus sign is introduced
into the crossing equations for the coupling constants,

By taking a rather complicated permutation sum of the states a, b, ¢,
and d, one can derive from this equation the matrix equation

[da’fb] = A‘—’1r fabr(dr) . (13)

Since the fy, are proportional to structure constants, this equation implies)
that d, transforms either as a singlet under group transformations (if all f;;;
vanish), or as a regular representation (if some f[,,-j do net vanish), Further-
more, it can be shown that the ratio between these two types of interactions is
fixed. This requirement cannot be met with all simple Lie groups. For example,
the only simple second rank group that gives a solution is SU(3); the other two
(C, and G,) do not, because they do not possess a completely symmetric interac-
tion involving the regular representation only. It may be (though I have not
proved it) that only SU(n) gives solutions, in which case the consistency cen-
ditions have implied another of the properties of the quark model.

The meson states of both parities must correspond to the singlet amd
regular representations (though the odd-parity singlet does not interact with
pairs of odd-parity nicsons). The quantum numbers of each parity set may be
written in terms of the quark—antiquark construction of Eq. (1). It has been
shown in [6] that the solution to the consistency equations is written simply in
terms of these matrices, i.e.;

da = C Tr [(AB + BA) R], (14a)
fur = C Tr [(AB — BA) R}, (14b)

where C is a proportionality constant and Tr denotes the trace. In these equa-
tions, the indices are those of the quark —antiquark construction; there is an
even-parity and odd-parity meson state for each pair of values of the indices.
The d and f apply when the products of intrinsic parities are even and odd,
respectively. This solution is a solution to the consistency equations obtained
with all possible parity combinations for the external particles. The matrices
for the singlet mesons are multiples of the identity matrix. The f constants
involving singlets are zero, while Eq. (14a) defines the d constants for both
singlet and regular-representation mesons. We conclude that our consistency
equations do imply that mesons possess some properties of quark-antiquark
composites,

I want to comment further on one feature of these solutions. Recall
that by taking a simple permutation sum of Eq. (9), with the upper sign, I
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obtained a simple equation involving only the f constants. One cannot obtain a
simple equation involving the d constants alone. Therefore, it appears that
odd-parity mesons are the more fundamental, and it is not surprising that
these are the lightest observed states on the exchange-degenerate meson
trajectories. Physically, the lowest states on the even-parity trajectories are
one unit of angular momentum higher than the lowest states on the correspond-
ing odd-parity trajectories. I must emphasize again that the quantum numbers
involved in the equations do not include total angular momentum, but are the
internal quantum numbers and spin component along the direction of the colli-
near interactions.

(B) MBB interactions

1 will simply assume that states of baryonic number greater than one
should not exist. (I do not know whether or not simple solutions to the self-
consistency equations exist that involve states of greater baryon numbers.)
With this assumption, baryon —baryon scattering is simple, because all states
are exotic. This implies that for every BB — BB amplitude the contribution-
of exchange-degenerate mesonic trajectories of opposite signatures must
cancel. We already found that the quantum numbers of the meson sets of
opposite parity must be the same; now we find that the couplings to each
baryon pair are the same for a pair of exchange-degenerate trajectories.

This simplifies the treatment of meson—baryon scattering. We need
consider only amplitudes for which the parities of the external mesons are the
same; the only important parities in the M B problem are those of the baryons.
Iwill use the capital letters D and F to denote the M BBinteractions; D applying
when the two baryons have the same parity, F applying when the two baryons
have opposite parity. '

Again, I use the labels of Eq. (7) to describe the scattering in the s and u
channels, with a and ¢ self-conjugate mesons, and b and d baryons, The s-u
channel consistency equations then follow from the same arguments as before.
If b and d have the same parity, the condition may be obtained by replacing
the fand d by F and D in Eq. (11). If b and d have opposite parity, one can
make the same replacements in Eq. (12). The two resulting equations may be
combined into one equation, if we regard the D, and F; as matrices correspond-
ing to the meson i in a space which is the direct sum of the baryon states of
even and odd parities. This combination equation is

{D,— F,, D, + F,] = 0. (15)

We recall again that in the space of even and odd-parity baryon states, the D
are non-zero only in the diagonal corners that connect states of the same
parity, and the F are non-zero only in the off-diagonal corners.
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In the case of meson—baryon scattering, the s—t and u—t channel consist-
ency conditions are different in nature from the s—u conditions, and so must be
considered also. In these conditions, the i-channel residues involve mesonic
trajectories, and are bilinear in an MBB coupling constant and an MMM
constant. Because of the symmetry of the MMM constants [the d’s and f’s of
Sec. ITI(A)]itis convenient to take the sum and difference of the s—t and u—t
equations. One does this by writing the s—t equation, reversing the a and ¢
labels, and adding and subtracting. The resulting two equations are,

(s-0)+(u—t)
{Dc“f"'Fce Da+1;:1}+ =K2Z, dacm(Dm+Fm)9 (16)

(s-1) — (u)
[DC+E‘7DG+FZJ] = K’ mfacm(Dm+Fm)’ (17)

where K and K’ are constants and the d and f are the MMM interaction
constants of Eqgs. (14b).

These three equations, Eqgs. (15), (16) and (17), are the consistency equa-
tions for the M BB interactions. The derivation and discussion of these equa-
tions that I give here are contained in a paper soon to be published [11]. The
MMM interaction constants f,., of Eq. (17) are proportional to the structure
constants of the group, if all indices refer to regular representation states, and
fuem = 0 if one or more indices refer to singlet states. Thus Eq. (17) implies
that the D 4 F are a representation of the Lie algebra. If the meson index i
refers to a regular-representation state, (D + F); represents the generator
associated with i; if i is a singlet state, the matrix (D + F); commutes with
all the generator matrices, and thus is diagonal in every irreducible subspace
of the baryon space.

The anticommutator relation, Eq. (16), is new, and to the best of my
knowledge, was first discussed in [11]. It is well-known that the anticommuta-
tors of matrices representing the generators can be written as a linear combina-
tion of the generator matrices and identity matrix only in the fundamental
representation; for this representation these matrices form a complete set.
Thus Eq. (16) implies that the D ++ F behave like operators in quark space, i.e.,
in the space of the fundamental representation. It is easy to establish that Eq.
(16) is satisfied in the quark representation. In fact, for SU(3), Eq. (16) is a
standard equation for anticommutators given, for example, by Gastorowicz
[12]. In GAsioROWICZ, the right-hand side contains a d,,, term and a §,. I term,
where I is the identity matrix [12]. Our d is defined for singlet as well as regular
representation states, and our d,, term contains the ,, I term of [12] impli-
citly.

On the other hand, the baryons cannot correspond simply to quarks of one
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parity. If baryons of only one parity existed, the F would vanish, and Eqgs. (15)
and (17) would be contradictory. Thus the conditions imply that the baryons
‘cannot be simple quarks, but must have many quark-model properties.

I have found two types of solutions to the three equations [11]. In the
first, the quantum numbers and interactions of the sets of baryons of both
parities are the same. The simplest example is the case where the baryons of
each parity correspond to the fundamental representation. In this type of
solution, each of the two terms of the commutator of Eq. (15) vanishes for
every a and c. This implies that for M B scattering, each quantity X (¥} —
— X,;17) vanishes, so there is no eigenvector of the s—u crossing matrix. In a
bootstrap sense, the baryons are bootstrapped entirely by meson exchange,
so we can say there is no static limit. This type of solution does not correspond
to reality, as the quanta of the baryons of odd and even parities are not the
same.

In the second type of solution, the two terms of the commutator of Eq.
(15) do not each vanish for all @ and c. In the simplest example that I have
found, the baryons are all simple N-quark composites, where N >> 2. Since the
choice N = 2 would correspond to integral-spin baryons, I will consider the
three-quark case, and call the quarks «, 5 and 7. The interaction D 4 Fis in
the space of only one quark, which I will call the « quark. In symbols,

D, + F, = » A%, (18)
where

<alﬁlyl lAiI 1ﬂy> = Am'z 6}3’ﬂ ay';"

Here 4., is the matrix element associated with the meson state a by Eq. (1),
and » is a constant of proportionality. This interaction will satisfy Eqs. (16)
and (17). The s-u condition, Eq. (15), will be satisfied also if (D, — F) is equal
to xC’, since the « and B quarks are independent.

These interactions will satisfy all the conditions provided that they are
consistent with our definitions of D and F in the space of baryons of both
parities. It must be possible to assign each irreducible representation in the
baryon space a definite parity in such a way that the D connect only states of
the same parity and the F connect only states of the opposite parity. This is
easy to do with our choice of interactions, as the D and F matrices are given

simply by
D, = ——;—x(A"‘—{— A‘d)

F_1

a ? K(Au‘-‘ Aﬁ) .
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Clearly, if the baryon states of opposite symmetry under exchange of the « and
B quarks are assigned opposite parity, everything will be all right.

If the group is (SU(6), the three-quark representations that are symmet-
ric under the interchange of the first two quarks are the representations 56 and
70, while those antisymmetric under this interchange are the 20 and another
70. Thus, the corresponding solution involves the multiplets 56*, 70+, 70 — and
20 -, where the superscript is the parity. In this solution, one can show that
the 56+ and 70 - are coupled strongly together, and relatively weakly to the
70* and 20 -. Since the observed baryon spectrum seems to correspond to
even parity trajectories of the 56 representation and odd-parity trajectories
of the 70 representation, this solution may be valid approximately.

IV. Conclusion

At present we do not know how well the self-consistency conditions are
met experimentally. The predicted results do not correspond exactly with
experiment. On the other hand, we have made several assumptions that are
unnecessary for the deriving of conditions, but were made only for simplicity,
and we know these assumptions are not true exactly. An example is the assump-
tion that meson states of the same parity (that are the lowest states on their
Regge trajectories) are degenerate. It would be interesting to see if realistic
modifications of some of our simple assumptions lead to predicted hadron
spectra and hadron —hadron—hadron interaction ratios that agree even better
with experiment. I hope that the next few years illuminate this question.

I can summarize my main result in two sentences. A set of self-consistency
conditions based on very simple assumptions requires that the hadrons of any
solution have a surprising number of quark-model properties. If these condi-
tions are approximately valid physically, this might be the reason that the
quark model works so well, even though quarks themselves do not exist.
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BO3MOXXHOCTb BYTCTPAITHOI'O IMPONCXOKAEHUA MATEMATHUECKUX
KBAPKOB

P. X. K3IMC
Pesome

YCTaHOBIIEH PSif yCJIOBHI CaMOCOTJIACOBAHHOCTH OCHOBAHHBLIX HA OYeHb MPOCTHIX IIpel-
NOJIOYKEHUAX. ITH YCIIOBHSA BAEKYT 32 060l TO, YTO a/{poHbl 06NAJAIT YAHBUTEIBHO GONBIIHM
YKCJIOM CBOICTB MOJENH KBAPKOB.
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