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POSSIBLE BOOTSTRAP ORIGIN OF 
MATHEMATICAL QUARKS* 

By 
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DEPARTMENT OF NUCLEAR PHYSICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL 

A set of self-eonsistency eonditions based on very simple assumptions is derived. The 
eonditions imply tha t  hadrons have a surprising number of quark-model properties. 

I. Introduct ion 

My ta lk  concerns the question,  " W h y  does the quark  model w o r k ? "  
But  before I a t t e m p t  to answer this question, I shall ask another ,  namely,  
" W h y  don ' t  physic is ts  worry  abou t  this quest ion more than  they  do ?"Af ter  
all, the quark  model  is surprisingly successful. Five or six years  ago, when this 
success was f irs t  becoming  apparent ,  most  physicists who were impressed with 
the quark  model  bel ieved tha t  the reason behind it was simply tha t  quarks 
existed,  and would be discovered.  This was a reasonable  hope.  However ,  af ter  
years  of  unsuccessful  quark  searches, most  of us do no t  believe in physical 
quarks any  more.  So why  do we not  worry  more about  the  model 's  success ? My 
own opinion is t h a t  we llave become too familiar with the model by  now, and 
some of us are so in fa tua ted  with learning the various rules and diagrams 
involving quarks  t h a t  we forget  t ha t  the reason why these rules work is still a 
mys te ry .  In  short ,  some physicists t oday  th ink tha t  the quark  model works 
because it  has always worked.  As this is not  really a sa t i s fac tory  reason, I will 
propose another ;  t l lat  self-consistency conditions of the boots t rap  type  force 
hadrons to behave  as quark  composites.  

Before discussing some self-consistency conditions,  I will list and com- 
ment  br ief ly  on wha t  I consider the three  main suceesses of  the  quark model.  

1) A simple rule for exotic  states.  
2) SU(6)w symmet ry .  
3) A simple ma t r ix  rule for m e s o n - h a d r o n - h a d r o n  coupling ratios. 
You all know what  exotic means:  internal  q u a n t u m  numbers  for which 

no known s t rongly coupled part icles of resonances exist.  The  fact  tha t  there  
ate exotic q u a n t u m  numbers  is not  surprising. In  any  conceivable universe in 
whicll some part icles possess nonzero values of an addi t ive internal  q u a n t u m  
number ,  the  n u m b e r  of  in ternal  q u a n t u m  states corresponding to particles is 
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ei ther  f ini te  of infinite.  I r  is eer ta inly  not  surprising i f  ir is finite, and ir  ir is, 
the  nonresonat ing q u a n t u m  states can be ealled exotie.  Fur the rmore ,  some 
states  made  of two nonexot ie  partieles will be exotie  in sueh a universe.  Thus,  
the qua rk  model is sueeessful not  beeause exoties exist,  bu t  beeause the pre- 
seription for exot ie i ty  is simple in the model.  The preseript ion is t h a t  only 
qua rk -an t iqua rk  and th ree -quark  states are not  exotie.  

In order  to diseuss the seeond and th i rd  sueeesses of the above list, I 
will f irst  eonsider what  the meson- -  quark quark  in teraet ion should be in the 
quark  model.  Aetually,  if hadrons  were eomposites  of heavy  quarks,  bound 
ve ry  relativist ieally,  it  would not  be easy to explain hadrons with realistie 
physieal  interaet ions.  However ,  most  physieists  t o d a y  do not  t r y  to th ink  of 
physieal  quarks when they  diseuss quark models;  r a the r  they  th ink  of rules 
t h a t  can be expressed simply in terms of quarks.  The te rm "m a th em a t i ea l  
q u a r k "  is used sometimes to mean tha t  the quarks  are not  supposed to be 
real physieal  partieles. My main aim here is to f ind why the mathemat iea l  
quark  is sueh a useful coneept .  

The following is a simple rule for the in terae t ion  of meson with mathe-  
mat ical  quarks.  The q u a n t u m  numbers  a of a meson M~ may  be expressed in 
terms of a square ma t r ix  .d• where this ma t r i x  is the  coefficient in ah expan- 
sion of the quan tum numbers  in q u a r k - a n t i q u a r k  states.  Symbolical ly,  

a ~-. S i j ; t  U QiQj. (1) 

The bar  denotes an an t iquark .  The in te rac t ion  constant  for the process 
b --- Ma + d, where b a n d  d are quarks,  is s imply ;~Adb, where 2 is a constant  
of  propor t ional i ty .  One can represent  this rule with the diagram of Fig. l(a);  

_ mr 
d 

b 

(a) 

Fig. 
(b) 

this d iagram means tha t  the in teract ion cons tant  is propor t ional  to the coeffi- 
cient  of  the QaQ~, t e rm in the expansion of the  meson wave function.  

I f  the hadrons are considered to be composed of quarks,  a simple rule for 
m e s o n - h a d r o n - h a d r o n  in teract ions  is to  assume th a t  this in teraet ion is the 
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sum of the interaction of the meson with all the constituent quarks. This is 
represented in Fig. l(b) for the interaction of mesons with baryons (assumed 
composed of three quarks). 

This rule automatically implies SU(n) symmetry,  where n is the number  
of the quark states. Ir  we include the quark spin-component quantum num- 
bers, SU(6) is the group. Because of the charge-conjugation of the meson, one 
can show that  the group must be applied in the SU(6)w manner; I do not bave 
time to explain this here [1]. The point is that  the quark model leads to SU(6)w 
naturally, so the success of this symmetry  is a success of the quark model. 

We next consider the question: does the simple interaction rule given 
above imply more than SU(6)w symmetry?  Since the mesons correspond both 
to the singlet and regular representations of the group [i.e. to the representa- 
tion 1 + 35 of SU(6)], the above construction relates the interactions of the 
1 and 35 meson states, and thus does imply more than the symmetry.  This 
extra interaction prediction works fairly well, so I have listed it above as the 
tbird success of the quark model. 

We must be a little careful about applying this interaction rule. Taken 
at face value it says that  the interactions of the 35 and 1 mesons are pro- 
portional to matr ix  elements of the group generators and identity matrix. 
Such a rule would say that  the meson interactions do not connect different 
representations, such as the 56 and 70-fold representations of SU(6). Since the 
observed even- and odd-parity baryon Regge trajectories correspond to these 
two representations, this rule would imply that  such odd-parity states as the 
A* (1520) and 2;* (1660) would not decay strongly into meson-baryon states, 
in contradiction to experiment. Quark model enthusiasts are not troubled with 
this problem, because tbey point out that  the odd-parity baryons correspond 
to three-quark states witb some orbital angular momentum, and ir is easy 
to write tbings down so that  the meson-56-70- interaction exists. Thus, the phy- 
sical existence of this interaction is neither a success nor failure of the quark 
model; I mention it here only because ir is something any correct theory must 
predict. 

I will give a short derivation of a set of consistency equations in Section 
II  of this paper, and study the implications for MMM (meson--meson--meson)  
interactions and MBB (meson-  baryon - baryon) interactions in Sections III(A) 
and III(B),  respectively. 

II. The consistency conditions 

Some of the consistency equations that  I will write ate algebraically the 
same as equations derived from two to seven years ago. Among the people 
who bave contributed to the development of the bootstrap equations ate 
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CUTKOSKY [2], POLKINGHORNE [3], CHIU and FINKELSTEIN [4], and myself 
] 5, 6]. The starting points for the derivations have been different; for example, 
a simple potential model was used in [2] and [3], and N/D dispersion relations 
were used in [5]. Somewhat later, in [6], superconvergence relations were used 
to derive similar equations. The recent development of the duality principle 
has led to great progress in this field, by allowing derivations of consistency 
conditions that  are more plausible than the early derivations, and also lead to a 
more complete set of conditions. I will give a duality argument here. 

I will consider both MM and MB scattering in the s-channel, at ah 
intermediate energy, near the backward (small u) direction, h is assumed that  
t-channel Regge exchange may be neglected in this region. The duality principle 
may be written [7]: 

res ( Im Tª = ( Im Tsi >. (2) 

Here i denotes the internal quantum numbers of the amplitude; i.e., i might 
represent ~ +p scattering in the s channel, in wbich case ir would correspond to 

-p scattering in the u channel. The symbol T~ egge denotes the amplitude for 
the exchange of u-channel Regge trajectories, T~Ÿ s is the contribution of reso- 
nances to the s-channel amplitude, and < > denotes some sort of semi-local 
average over energy. I assume that  the external particles belong to a set  of 
degenerate mesons and a set of degenerate baryons. If  the amplitude i i s  
exotic in the s channel, this condition implies tha t  the trajectories of opposite 
signatures must be exchange degenerate, and that  the residues ate numerically 
equal. From now on I will simply assume the exchange degeneracy of the trajec- 
tories, and concentrate on the implieations of the condition for the residues. 

I now want to digress a little to show how a simple type of diagram, 
based on the duality principle of Eq. (2), makes plausible the fact tha t  the 
quark model might lead to solutions of the consistency conditions. These ate 
the "dual i ty  diagrams" of ROSNER and HARARI, and they have increased the 
popularity of consistency conditions based on duality [7, 8]. I will illustrate 
this with the baryon-exchange contributions to MB scattering. Ir  the MBB 
interactions follow the rules of Fig. 1, then the left-hand side of Eq. (2) corres- 
ponds to the baryon-exchange diagram of Fig. 2(a), while the right-hand side 
of Eq. (2) corresponds to the baryon-resonance diagram of Fig. 2(b). However, 
it is clear that  if one twists the lines a little, Figs 2(a) and 2(b) are identical, so 
it is not surprising that  the quark model leads to a solution of the  conditions. 
This argument is quite useful as a pedagogical device, but ir does not serve the 
purpose of my talk, for two reasons. First, the argument is unclear in several 
aspects, among them the tole played by the parities of the particles. Second, 
the quark construction is assumed at the beginning. I aro interested in showing 
not just  that  a quark model satisfies the conditions, but also tha t  models not 
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(ca) ('b) 

Fig. 2 

interpretable in terms of quarks do not  satisfy them. Therefore, I must  write 
the consistency equations for the residues in an algebraic forro. 

The residue condition tha t  follows from Eq. (2) is, 

~e(X.~(+)-- X ,a( - ) )  = Z~/+) - Zs~(-) , (3) 

where ~i is a k inemat ic  factor, X~,i(~) is the sum of the residues at  small u 
of the trajectories of signature ( i ) ,  and the Z ~• are the contributions of 
resonances of parities ( i )  to the r ight-hand side of Eq. (2). The minus sign in 
front  of  Z (-) is appropriate,  because the contributions to backward elastic 
scattering of resonances of opposite parities are opposite. The resonances lie on 
s-channel Regge trajectories,  so t h a t  the  Zst ate proport ional  to the residues 
of these trajeetories.  We define constants  q by  the equation:  

Zsi (-+) = ~i fli (+-) Xsi (-+), (4) 

where X~/-+) are the rcsidues at  small s of the s-channel trajectories.  The con- 
s tants  ~i ~;(• involve phase space factors and also the var ia t ion of the residues 
between the Regge and resonances regions. Subst i tut ion of Eq. (4) into Eq. (3) 
yields 

x . / + ~ -  X ~ : - )  --  ti/+> xs /+)  - E(-) x ~ / - ) .  (5) 

h is impor tan t  to realize tha t  no assumption has been made between Eqs. (3) 
and (5), as the constants  ti/• are defined by the requirement  tha t  Eq. (4) 
is true. 

I now make the assumption tha t  the ti/-+) ate independent  of the internal  
index i. This implies t ha t  the residues of the various trajectories ate propor- 
t ional as functions of energy. Basically, this assumption means tha t  the dege- 
nerate mesons ate dynamical ly  similar, and the degenerate baryons ate dyna-  
mically similar, i.e., these degeneracics ate not  accidental.  A fuller discussion of 
the assumption is given in a recent paper  [9]. 
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I t  is now easy to f ind restr ict ions on the  values  of ~/-+). Appl icat ion of  
Eq.  (5) to  a proeess exotic  in the  s channel  implies Xui(+) = Xui (-). Applica- 
t ion  to the  crossed process (obtained by  reversing the roles of the s and u 
channels) then  implies t h a t  /~(+) ---- ~(-). We then  consider two possibilities; 
Xu~(+)--Xui (-) either is zero for all i, of is non-zero for at  least  one i. In  the 
f i rs t  case, the following eonsis tency condit ion is au tomat ica l ly  valid:  

X~~(+)-X~~(-)-- :s (X~~(+)-X~~(-)), (6) 

a l though the -4- sign on the  r ight  is superfluous in such a case. I r  Xui(+)--Xui (-) 
~=~ 0 for some i, appl icat ion of  Eq.  (5) to the ampl i tude  for this i and to the  
crossed ampli tude,  toge the r  with the condi t ion ~(+) = ~(-), implies ~(+)2 

1, or Eq.  (6). This equa t ion  is the condi t ion t h a t  the Xsi(+)--Xsi (-) are 
components  of ah e igenveetor  of the s-u crossing mat r ix ,  with eigenvalue • 1. 
Thus ,  the  condit ion is a generalizat ion of t h a t  of  CH~w's reciprocal  boots t rap  
model  [10]. In  our case, the  sign of the eigenvalue depends on whether  of no t  the 
residue changes sign be tween the resonance and Regge regions. 

Our basic boots t rap  equat ions ate Ec I. (6) and the corresponding equat ions  
t h a t  m a y  be obta ined for the  s-t and u-t pairs of channels,  toge ther  wi th  the 
requ i rements  t ha t  the  set of  lowest  states on the  mesonic and baryonic  Regge 
t ra jec tor ies  should correspond to the  sets of  external  mesons and baryons .  

III. Implications of the conditions 

( A )  M M M  interactions 

I label the externa l  part icles in the s and u channels according to the  
scheme, 

s: a - 4 - b - - ~ c d - d ,  
(7) 

u: ed-b--+a-+-d.  

We consider f irst  the eases for which a and c are mesons of the same par i ty ,  
and b and d ate e i ther  bo th  baryons  of the same pa r i t y  or bo th  mesons of the  
same par i ty .  We use the  labels to refer to bo th  in ternal  q u an tu m  numbers  and 
the  z-components  of the  par t ic le  spins. We consider only backward  scat ter ing,  
for  which the sp in-components  behave as in ternal  q u a n t u m  numbers  under  
crossing. The set of mesons mus t  include all the  antipart icles,  and so mus t  be a 
self-conjugate set. A complete  set of self-conjugate s tates  exists in a self-conju- 
gate set, for  convenience,  we take  all meson states  to be self-conjugate.  

We consider f i rs t  the  case of M M  scat ter ing,  where all ex terna l  mesons 
are of  the same par i ty .  We define the coupling cons tan t  of the u-channel  t rajec-  
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t o ry  r of  even s ignature (whose physical  particles are of  even par i ty)  with the 
final s ta te  a + d to  be dad r and the  corresponding coupling of  the  t r a j ec to ry  s of  
odd signature to be fad~" The quant i t ies  Xui (+-) are then  given b y  

Xui(+) = •rdadrdcbr*, Xui (-)  = S s f o , ~  fcb~*. (8) 

I have def ined the  X to be the residues at  the small u appropr ia te  for backward  
s-channel scat ter ing.  However ,  it  is more convenient  to eva lua te  the residues 
at  the u of  the  lowest  states on the t ra jector ies ,  so tha t  the  d a n d f a r e  ord inary  
meson -meson -meson  eoupling constants .  Thus,  the t ra jec tor ies  are labelcd b y  
their  lowest states.  This cont inuat ion  in u aetual ly  introduces a p ropor t iona l i ty  
constant  into eaeh of  the equat ions of Eq .  (8). However ,  m y  assumption con- 
cerning the  p ropor t iona l i ty  of the residues of ampli tudes  of  differcnt  i allows 
me to divide out  one of the constants ,  and I ehoose the r e l a t i v e f / d  normaliza- 
t ion so t ha t  the o ther  cancels also. 

The self-conjugate p rope r ty  of  the  mesons a and c implŸ th a t  the dij k 
and ~jk ate Hermi tean  in the f inal  two Ÿ F ro m  this and Eq.  (8), one 
m a y  wri te  the consis tency condit ion of Eq.  (6) in the forro, 

~~'rdadrdctb - S s f a d s f c s b  ~ a ~ c ----: 0 ,  (9) 

where a , ' c denotes  the preeeding te rms with a and c reversed.  The physieal  
states on one of the sets of t ra jee tor ies  have the samc pa r i t y  as the external  
partieles. Our boo ts t rap  hypothesis  requires tha t  the set of lowest  states on 
this set of t ra jee tor ies  corresponds to the set of external  mesons, and t h a t  we 
la ter  mus t  consider ampli tudes with all possible ex terna l  pa r i ty  eombinat ions.  
For  M M  scat ter ing,  we need not  eonsider s-t  and u- t  ehannel  eonsisteney 
eonditions,  as we can permute  indiees so t ha t  every  meson exehange is an s -u  
channel  exehange.  

I will describe the solution to this type  of M M M  consis tency con- 
dition only brief ly,  as it  has been worked  out  a few years  ago. More details 
are given in [6]. 

We have t aken  all the meson states  to  be self-conjugate.  Beeause of  the 
Bosc principle, the d's and f ' s  refer  to interaet ions of  even and odd orbi tal  
par i ty ,  respect ively.  Since reversing the  first  two Ÿ corresponds to 
reversing the directions of the two part icles coupled to a t r a j ec to ry  partiele,  the 
d and f ate symmetr ic  and an t i symmetr ic ,  respeetively,  in the  first  two indiees. 
This, toge ther  wi th  the  Hermi t ie i ty  in the last two indiees, implies t h a t  the  
d ate real and eomple te ly  symmetr ic ,  and the f ate imaginary  and complete ly  
ant i symmetr ic .  

One can show tha t  if the lower signs in Eqs.  (6) and (9) are taken,  there  
is no nontr iv ia l  solution. So we take  the upper  signs f rom here on out.  This 
means t ha t  the eingenvalue of X ( + ) - - X  (-) under  s ~ ~ u crossing is (q- 1). A 
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r a the r  tr ivial  solution exists, with only one s ta te  in teract ing with i tself  with 
one symmetr ic  in teract ion constant ;  we consider this too trivial .  I f  all f ' s  
vanish,  i t  can be shown tha t  one can always choose an appropr ia te  basis so t h a t  
any  solution becomes a direct  sum of these disconnected one-state  solutions. 
Hence,  a non- t r iv ia l i ty  requ i rement  implies tha t  t h e f ' s  do not  all vanish. 

I f  one sums Eq.  (9) over  all pe rmuta t ions  of the external  particles,  
a, b, c and d, including a minus sign for odd permuta t ions ,  the d te rms all ate 
cancelled because of the s y m m e t r y  p rope r ty  d i j  k ~ dji k. The result ing equat ion  
can be wri t ten  in the forro 

z~ (L~~ fc~~ +s f~.~,+fo~~f,..~) = o .  (10) 

This is the Jacobi  iden t i ty  for  t h e f ' s .  Toge ther  with the  an t i symmet ry  proper ty ,  
i~ Ÿ tha t  t h e f ' s  mus t  be propor t ional  to the  s t ruc ture  constants  of a Lie 
group.  A set of particles,  all of  whose in teract ions  are of the f type ,  is the  set 
of  odd-par i ty  mesons, so our  boots t rap  equat ion implies tha t  the  odd-par i ty  
mesons which in terac t  with each other  must  correspond to the regular  represen- 
t a t ion  of  a Lie group. The  f i rs t  use of this t ype  of a rgument  was b y  CUTKOSKY, 
who used a potent ia l  model  involving only r e c t o r  mesons [2]. 

We have not  ye t  ex t rac ted  all the  in format ion  from Eq.  (9), so we 
cont inue  the a rgument  of [6]. I f  the d's a n d f ' s  are regarded as matr ices  in the 
space of  the last two indiees, and the upper  sign in Eq.  (9) is taken,  this equat ion  
m a y  be wri t ten in terms of  mat r ix  commuta to r s ,  i.e., 

[da, d~] - -  [fa, s  = O. (ll) 

Since the  f c ommuta to r  exists, so must  the d commuta to r ,  and so part icles of 
bo th  pari t ies must  exist.  We may  then  consider the  scat ter ing ampl i tudes  for 
which three  of the ex te rna l  particles ate of odd pa r i t y  and one is of even par i ty .  
Our conclusions concerning the  s y m m e t r y  of the d's a n d f ' s  remain val id ir we 
use t he m to apply to all M M M  interact ions,  the d and f applying when the 
p roduc t  of the three  intrinsic parities is even and odd, respeet ively.  Our three  
odd-one even process leads then  to a eonsis tency equat ion  in which each t e rm is 
bi l inear  in the d and f .  I f  we follow the procedure  used in deriving Eqs.  (9) 
a n d ' ( l l ) ,  this new equat ion in mat r ix  form is, 

[da, fe] - -  [fa, dc] = 0. (12) 

This last equat ion is symmetr ic  in the  in terchange  a ~ c, corresponding 
to the  choice of the lower sign in the erossing equat ion,  Eq.  (6). I t  is appropr ia te  
to choose this different  sign when dealing wi th  an ampl i tude  for which the 
p roduc t  of the intrinsic pari t ies changes f rom the  initial to the  final state.  

.Acta Physica Academiae Scientiarum Hungaricae 31, 1972 



POSSIBLE BOOTSTRAP ORIGIN 127 

These ampli tudes are odd in the momen tum ks, which is odd under  crossing 
for collinear ampli tudes (i.e., k~ = - - k , ) .  Since the coupling constants are 
defined with this kinematic factor removed, an extra minus sign is introduced 
into the crossing equations for the coupling constants.  

By taking a ra ther  complicated permuta t ion  sum of the states a, b, c, 
and d, one can derive from this equation the matr ix  equat ion 

[da,fb ] = --  ,~v r fabr(dr). (13) 

Since the fabr are proportional to s tructure constants,  this equation implies) 
tha t  da t ransforms either a s a  singlet under  group t ransformat ions  (ir all faij 
vanish), o r a s  a regular representat ion (if some faij do not  vanish), Further-  
more, ir can be shown tha t  the ratio between these two types  of interactions is 
fixed. This requirement  cannot be met  with all simple LŸ groups. For example ,  
the only simple second rank group tha t  gives a solution is SU(3); the other two 
(C 2 and G2) do not,  because they  do not possess a completely symmetr ic  interac- 
tion involving the regular representat ion only. I t  may  be ( though I have n6t 
proved ir) tha t  only SU(n) gives solutions, in which case the consisteney con- 
ditions have implied another of the properties of the quark  model. 

The meson states of both parities must  correspond to the singlet amt 
regular representations (though the odd-pari ty  singlet does not  interact  with 
pairs of odd-par i ty  mcsons). The quan tum numbers of each par i ty  set m a y  be 
writ ten in terms of the qua rk -an t iqua rk  construction of Eq. (1). I t  has been 
shown in [6] t ha t  the solution to the consistency equations is wri t ten simply in 
terms of these matrices, i.e.; 

d~br = C Tr [ ( A B  -~ B A )  R], (14a) 

f~br = C Tr [ ( A B  -- B A )  R],  (14]~) 

where C is a proport ional i ty  constant  and Tr denotes the trace. In these equa- 
tions, the indices are t h o s e o f t h e q u a r k - - a n t i q u a r k  construct ion;  there is an 
even-pari ty and odd-par i ty  meson state for each pair of values of the indices. 
The d and f apply when the products  of intrinsic parities are even and odd, 
respectively. This solution is a so]ution to the consistency equations obtained 
with all possible par i ty  combinations for the external partieles. The matrices 
for the singlet mesons are multiples of the ident i ty  matr ix.  The f constants 
involving singlets are zero, while Eq. (14a) defines the d eonstants for both  
singlet and regular-representation mesons. We conclude t h a t  our consisteney 
equations do imply tha t  mesons possess some properties of quark-ant iquark  
composites. 

I want  to comment  fur ther  on one feature of these solutions. Recall 
tha t  by  taking a simple permuta t ion  sum of Eq. (9), wi th  the upper sigtr, I 
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ob ta ined  a simple equat ion  involving only the f constants .  One cannot  obta in  a 
simple equat ion involving the d constants  alone. Therefore,  it appears  tha t  
odd-par i ty  mesons are the more fundamenta l ,  and it  is not  surprising tha t  
these are the l ightest  observed states on the exchange-degenera te  meson 
t ra jeetor ies .  Physical ly ,  the lowest states on the even-par i ty  t ra jec tor ies  are 
one unir  of angular  m o m e n t u m  higher than  the  lowest  states on the correspond- 
ing odd-par i ty  t ra jector ies .  I must  emphasize again tha t  the q u a n t u m  numbers  
involved  in the equat ions do not  include to ta l  angular  momen tum,  bu t  ate the 
in ternal  qua n tum numbers  and spin componen t  along the direction of the  colli- 
near  interactions.  

(B )  M B B  interact ions  

I will s imply assume tha t  states of  baryonic  number  greater  than  one 
should not  exist. (I do not  know whether  of not  simple solutions to the  self- 
consis tency equat ions exist  t ha t  involve s tates  of greater  ba ryon  numbers.)  
W i t h t h i s  assumption,  b a r y o n - - b a r y o n  scat ter ing is simple, because all states 
are exotic.  This implies t ha t  for every  B B  --, B B  ampli tude the contr ibut ion-  
of exchange-degenera te  mesonic t ra jector ies  of opposite signatures must  
cancel.  We already found t ha t  the q u a n t u m  numbers  of the meson sets of  
opposi te  pa r i ty  mus t  be the  same; now we find tha t  the couplings to each 
ba r yon  pair  ate the  same for a pair  of  exchange-degenerate  t rajectories .  

This simplifies the t r e a tmen t  of m e s o n - - b a r y o n  scattering.  We need 
consider only ampli tudes  fo r  which the pari t ies  of  the external  mesons ate the 
same; the  only impor t an t  pari t ies in the M B  problem are those of the baryons .  
I will use the capital  le t ters  D and F to denote  the  M B B  interact ions;  D applying 
when the  two baryons  bave  the same par i ty ,  F applying when the two baryons  
have  opposite par i ty .  

Again, I use the labels of Eq.  (7) to describe the scat ter ing in the s and u 
channels,  with a and c self-conjugate mesons, and b and d baryons .  The  s - u  

channel  consistency equat ions  then  follow from the same arguments  as before.  
I r  b and d have the same par i ty ,  the condi t ion m ay  be obta ined by  replacing 
t h e f  and d by  F and D in Eq.  (11). I r  b and d have opposite par i ty ,  one can 
make  the same replacements  in Eq.  (12). The two resulting equat ions m a y  be 
combined into one equat ion,  ir we regard the  D i and F i a s  matrices correspond- 
ing to the meson i in a space which is the direct  sum of the ba ryon  states  of 
even and odd parities.  This combinat ion equat ion  is 

[ D e - -  Fe, Da + Fa] = 0. (15) 

We recall  again t ha t  in the  space of even and odd-par i ty  ba ryon  states,  the D 
ate non-zero only in the  diagonal corners t h a t  connect  states of the same 
par i ty ,  and the F are non-zero only in the off-diagonal corners. 
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In the case of meson- -baryon  scattering, the s-t and u-t channeI consist- 
ency conditions ate different in nature  from the s-u conditions, and so mus t  be 
considered also. In these conditions, the t-channel residues involve mesonic 
trajectories, and are bilinear in an M B B  coupling cons tant  and an M M M  
constant .  Because of the symmet ry  of the M M M  constants  [ the d's a n d f ' s  of 
See. III(A)] it is convenient to take the sum and difference of the s-t and u-t 
equations. One does this by  writing the s-t equation, reversing the a a n d c  
labels, and adding and subtracting.  The resulting two equations ate, 

(s-t) + (u-t) 

{Dc§ Da+F~}+ = KXm dacm(Dm~-Fm), 

(s-t) (u-t) 

[D~+F~,Da+Fa] = K'Zmfacm(Dm+Fm), 

(16) 

(17) 

where K and K '  are constants  and the d and f ate the M M M  interact ion 
eonstants of Eqs. (14b). 

These three equations, Eqs. (15), (16) and (17), are the consistency equa- 
tions for the M B B  interactions. The derivation and discussion of these equa- 
tions t ha t  I give here are contained in a paper soon to be published [11]. The 
M M M  interact ion constants fa~m of Eq.  (17) are proport ional  to the s tructure 
constants  of the group, if  all Ÿ refer to regular representat ion states, and 
f ,  cm -~ 0 ir one or more indices refer to singlet states. Thus Eq. (17) implies 
that  the D A- F ate a representat ion of the Lie algebra. I f  the meson index i 
refers to a regular-representation state,  (D ~ F)i represents the generator 
associated with  i; if i is a singlet s tate,  the matr ix  (D + F)i commutes with 
all the generator matrices, and thus is diagonal in every irreducible subspace 
of the baryon space. 

The an t i commuta to r  relation, Eq. (16), is new, and to the best of my 
knowledge, was first  discussed in [11]. I r  is well-known tha t  the ant icommuta-  
tors of matrices representing the generators can be wri t ten  as a linear combina- 
tion of the generator  matrices and ident i ty  matr ix  only in the fundamenta l  
representat ion;  for this representat ion these matrices f o r m a  complete set. 
Thus Eq. (16) implies tha t  the D + F behave like operators in quark space, i.e., 
in the space of the fundamenta l  representation.  I t  is easy to establish t h a t  Eq. 
(16) is satisfied in the quark representat ion.  In fact, for SU(3), Eq. (16) is a 
s tandard  equat ion for an t i commuta to rs  given, for example, by  GASlOROWICZ 
[12]. In GASIOROWICZ, the r ight-hand side contains a d~cm term a n d a  �91 I term, 
where I i s  the ident i ty  matr ix  [12]. Our d is defined for singlet as well as regular 
representation states, and our dacm te rm contains the �91 I te rm of [12] impli- 
citly. 

On the other hand,  the baryons cannot  correspond simply to quarks of onc 
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parity. I f  baryons of only one parity existed, the F would vanish, and Eqs. (15) 
and (17) would be contradictory. Thus the conditions imply that  the baryons 
cannot  be simple quarks, but must have many quark-model properties. 

I have found two types of solutions to the three equations [11]. In the 
first, the quantum numbers and interactions of the sets of baryons of both 
parities are the same. The simplest example is the case where the baryons of 
each parity correspond to the fundamental representation. In this type of 
solution, each of the two terms of the commutator of Eq. (15) vanishes for 
every a and c. This implies that  for M B  scattering, each quanti ty X,~i(+) 

-- Xu/- )  vanishes, so there is no eigenveetor of the s - u  erossing matrix. In a 
bootstrap sense, the baryons ate bootstrapped entirely by meson exchange, 
so we can say there is no static limit. This type of solution does not correspond 
to reality, as the quanta of the baryons of odd and even parities are not the 
same. 

In the second type of solution, the two terms of the commutator of Eq. 
(15) do not each vanish for all a andc .  In the simplest example that  I have 
found, the baryons are all simple N-quark composites, where N ~ 2. Since the 
choice N = 2 would correspond to integral-spin baryons, I will consider the 
three-quark case, and call the quarks a, q and ~. The interaction D q- F is in 
the space of only one quark, which I will call the a quark. In symbols, 

where 

Da + Fa ---= ~ A ~, (1.8) 

Here A~,. is the matrix element assoeiated with the meson state a by Eq. (1), 
and ~ is a constant of proportionality. This interaction will satisfy Eqs. (16) 
and (17). The s - u  eondition, Eq. (15), will be satisfied also if (De - -  F~) is equal 
to nC p, since the a and fl quarks are independent. 

These interactions will satisfy all the conditions provided that  they are 
consistent with our definitions of D and F in the space of baryons of both 
parities. Ir must be possible to assign each irreducible representation in the 
baryon space a definite parity in sucia a way that  the D connect only states of 
the same parity and the F connect only states ~f the opposite parity. This is 
easy to do with our choice of interactions, as the D and F matrices are given 
simply by 

1 ~:(A~+A ~) 
D~ ~ 2 

1 u(A~ A~). 
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Clearly, if the ba ryon  states of opposite s y m m e t r y  under  exchange of the a and 
fl quarks ate assigned opposite par i ty ,  every th ing  will be all r ight .  

I f  the group is (SU(6), the th ree -quark  representa t ions  t h a t  are symmet-  
tic under  the in terchange of the f irs t  two quarks ate the representa t ions  56 and 
70, while those an t i symmetr ic  under  this in terchange ate the 20 and a n o t h e r  
70. Thus,  the corresponding solution involves the mult iplets  56 +, 70 +, 7 0 -  and 
20 - ,  where the superscr ipt  is the par i ty .  In this solution, one can show tha t  
the 56 + and 7 0 -  ate coupled s t rongly together ,  and re la t ively  weakly to the 
70 + and 2 0 - .  Since the observed ba ryon  spect rum seems to correspond to 
even par i ty  t ra jector ies  of the 56 representa t ion  and odd-par i ty  t rajectories  
of the 70 representa t ion,  this solution m a y  be valid approx imate ly .  

IV. Conclusion 

At present  we do not  know how well the self-consisteney conditions are 
met  exper imenta l ly .  The predicted results do not  correspond exact ly  with 
exper iment .  On the other  hand,  we have made several assumptions t h a t  are 
unnecessary for the deriving of condit ions,  bu t  were made  only for simplicity,  
and we know these assumptions are not  t rue exact ly .  An example  is the assump- 
tion t ha t  meson states of the same pa r i ty  ( tha t  are the  lowest states on their  
Regge trajectories)  are degenerate.  I t  would be interes t ing to see if realistic 
modifications of some of our simple assumptions lead to predicted hadron  
spcctra and h a d r o n - - h a d r o n - - h a d r o n  interact ion ratios tha t  agree even be t t e r  
with exper iment .  I hope tha t  the nex t  few years i l luminate this question. 

I can summar ize  my main result  in two sentences. A set of self-consistency 
conditions based on very  s imple assumptions requires t h a t  the hadrons of any 
solution have a surprising number  of quark-model  propert ies .  I f  these condi- 
t ions are app rox ima te ly  valid physical ly,  this might  be the reason t h a t  the  
quark model works so well, even though  quarks themselves  do not  exist.  
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B O 3 M O H ( H O C T b  B Y T C T P A H H O F O  H P O H C X O H 4 ~ E H H ~ I  M A T E M A T H q E C i ~ H X  

I ~ B A P K O B  

P. X. I~3rIFIC 

Pe3loMe 

YCTaHOB.rleH pfl)~ yC3OBHfi CaM0COr.qac0BaHHOCTH OCttOBaHHblX Ha 0qeHb [lp0CTblX npeR- 
no~o~(eHn~x.  3TH yC.rlOBH~I BJle~:yT 3a co6ofi TO, qTO a~poub~ o6~azm~OT y~,HBHTeJIbH0 ‰ 
qHCJIOM CBOHCTB M0,21e~H KBapKOB. 
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