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Spin-dependent effects in deep-inelastic electron—proton scattering are discussed.

Introduction

In this report we hope to convince you that spin-dependent effects in
deep-inelastic electron—proton scattering are interesting and should yield new
information on many questions arisen in the intensive analysis of the spin-
averaged SLAC-MIT data [1]. These data shed light on the behaviour of two
famous structure functions W,(¢%, v) and W,(¢? v) vehemently discussed during
the last two years [2].

Our group at the Estvés University started a program last July to in-
vestigate the spin-dependent effects measurable by using polarized electron
beam scattered on polarized nucleon target. The motivation for this program
was that “theoretical explanations” of the SLAC-MIT data on W, (¢?, ») and
W,(q?, v) differed widely. One possibility to test these ideas is to turn to
polarization effects.

It turns out from our analysis [3] that the spin-dependent structure func-
tions, which we denote here by d(¢?, ») and g(¢%, v) should be more selective than
the present spin-averaged data.

To our knowledge, there has been only little effort in the literature to
shed more light on spin-dependent effects in deep-inelastic electron—proton
scattering. Some time ago (1966) BJORKEN wrote down a sum rule for the cor-
responding cross sections [4] and dismissed it as “worthless”, This negative
conclusion has been reconsidered in a recent SLAC preprint [5]. Beyond this,
we have found only a few attempts to clarify the polarizability contribution
of the spin-dependent functions to the hyperfine splitting in the hydrogen
atom [6]. Hyperfine splitting is interesting in itself, and we have investigated
this problem in the light of tbe present theoretical situation [3].
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86 L. GALFT et al.

I. Kinematics of the scattering process

The scattering amplitude is shown in Fig. 1. Here (p, ) denotes the four-
momentum and polarization vector of the proton; (k;, f) and (k,, 5') are si-
milar notations for the electron beam before and after the emission of a virtual
photon of four-momentum g¢. P, stands for the hadrons produced in the colli-

sion.
(ky,p) polarized (k3,6
electron beam scattered eleciron
beam
polarized proton p, tinal
- hadrons

(p,d)

Fig. 1. Inelastic scattering of polarized electron beam from polarized proton target

We sum over final hadrons and the polarization of the scattered electron beam.
The differential cross section with proton polarization « and electron polariza-
tion B is*:

&Lk,

1
do,, = — etq~4[(k, - p)2—m2M2]~12-Lf - ] 1
p=y ¢ 9 Lk p)—m® M7] g (@) (1)
The leptonic part is given by
Lﬁv - 2 Wp'(kz) VHIVp(Iﬁ) : I7,6*("’1) Yy W;i’(kz) . (2)
<

The hadron amplitude is split into symmetric and antisymmetric parts in the
(4, v) indices:

Wi(p,q) = § d*xeitx (p-al[J (2), J(0)]lp, > = W} (p. ) +iW 5(prg) - (3)

From (PT) invariance we read off

Wislp )= 5 3 [ 4l ol 1,0, O, “
1

]

~

iW2(p, q) = —- | d*ae'™ {{p, a|[J,(x), J,(0)]l p ) — (> —ax)}.

_ * Normalization of states < p’,r|p,s > = 2py(2n)*0(p’ —p)d,s, spinor normalization:
W W=2m,p>?=M?>and v =p +q.
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The definition of the four real structure functions is:

. 1
e e e RS - L PAR
7 M r
(5)
X (pvv quqv 47M -Wy(g%, ),
q
WAP D)= €urer € 2" A7) + (29) €uuo 4 P 7). (9)

Similar splitting can be performed on the leptonic piece of the amplitude:
L, =L, +ilj, Li=2m¢,,, ¢ f°. )

In order to analyze spin-dependent effects, we turn to the antisymmetric com-
bination:
d*ot  d*oM E 1
dQdE'  dQdE’ n-M-E ¢ 8)
* {(E4E’ cos ) d(¢?,v) +(E —E’ cos 6) (E+E’) Mg(g, v)}.

— o2

Here E and E’ are, respectively, the initial and final electron energies, as view-
ed in the laboratory frame, and 6 is the electron scattering angle. do' is
the cross section when the spins of electron and proton are parallel and along
the direction of motion of the incident electron; do" is the cross section for
antiparallel spins. The electron mass is neglected in Eq. (8).

II. Light-cone behaviour and scaling laws

It is widely recognized [7] that deep-inelastic electron scattering measu-
res the light-cone behaviour of the commutator functions of two electromagne-
tic currents sandwiched between identical proton states. We go to coordinate-
space by Fourier transformation:

X;“v(p, x) = (2n) 4 | dige= % W:,(p, 9, o)

. 1
iX4(p, %) = Y {<(p> 2I[J (%), J(0)]|ps ) — (ot~ —a0) }.
Similarly, the Fourier transforms of the structure functions:

Afp, x) = (2n) ~* [ dige™""d(g, v),
Ag(p, x) = (27) ~* | diqe™ g(¢?, v).
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88 L. GALFI et al.

In terms of these amplitudes we write:
X5(p> %) = 16,05 8° 2" Ay(p, %) — (2 8) €9, 8° P° Ag(p, %). (10)

A4(p, x) and Agp, x) are invariant functions of two independent Lorentz
scalars; 22 and M —%(px)? or 2?2 and —=«? - M ~%(px)? can be choosen for conve-
nience.

We have proved that Ay(p,x) and Ag(p, x) vanish outside the light-
cone and they have correct support properties in momentum space to apply
the Jost —Lehmann representation to them. In the proton rest frame:

Ag(p, x) = i |7 d22A(x, ) puler )

1 2 L FE—) (1)
A(x, 12) = EE(%) {5(x2)—0(x2) o —V"ﬁ—*x—z**}
Provided the integral

ag (M ~*(px)) = | - py(M~*(px}, 32)

converges, we can write A4(p, x) in the form
i
Aq(p,x) = o €(xo) 9(x?) as(xo) + Ry(p> %) » (12)

where R, (p, x) is less singular than 1/2? on the light-cone. The Fourier trans-
formed form of Eq. (12) yields the asymptotic behaviour in the deep-inelastic

limit when o = —2v/g? is fixed and ¥ — oco:
1 M
d(g®v) ~ —a(§), &=-—,
v w (13)
L (" gz ena)
ay(x,) = — el-%o .
a (%) 27:MJ_M ®

a(&) has to vanish for | & | > M.

Ry(p, x) cancels the leading &é-singularity in the forbidden region in
momentum space where d(¢% ») is forced to vanish because of support condi-
tions.

It may happen that the leading §-singularity of A,(p, x) is missing in
special dynamical models. In that case f dA? - @4(xg, A2) = 0 is satisfied iden-
tically. Apart from more singular cases, the integral
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1 L
bd(M—2(px)2) _ TJ dAz- A2 (pd(M—2(Px)2) (14)‘
0
converges and we write

AM%ﬂ=i€%Wﬁ%W”WWH&@M, (15)

where S;(p, x) vanishes on the light-cone in the limit 2 — 0. Again, Fourier
representation shows that the scaling limit is determined by the leading light-
cone singularity in Eq. (15):

¥(6)
d(¢*v)>——,
(@)

(16)

.
boa) = = [ 48
0 0

where y(£) is restricted to | §| < M.

The observed scaling behaviour of W (¢?, v) and W,(¢% v) puts stringent
restrictions on the “scaling” of d(¢?, ») and g(¢?, »). The general constraints have
been derived from W (p,q) - a* - @™ > 0, which is valid for any complex
four-vector a”. With properly choosen a,’s we find four inequalities:

Vilg> v) + M? - V, (g8, v) > 0,
PV, 7) + 2 - Vi v) > 0, (17)
dx(g% v) < (Vi@ v) + M2V, (g% »)) (¢ Vi v) + 92 V(g% v))

gAY S Mg - Vy 492 V) - VI (M YV M2V, —
—VeVi+ 2V ™

Here we have introduced two local functions instead of W(q%, v) and W,(¢> v):

Wi‘v(p’ Q) - [qP. 9. q2 ggw] ' K(q2’ 1}) + (18)
+ (P 9+P. 4.) (P9) —P.P. (P9 8.1 Valg? ¥) -

We put into (17) the observed behaviour of Wi (g% v) and W,(¢?, v). We find
in scaling limit the very interesting upper bounds on d(¢?, v) and g{(g?, »):

1
2

d(g, v) < o scaling function, if Iy(&) 5= 0,
¥y
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1
d(g®, v) < - (scaling function) if F(é)=0,

1
gl v) < ol (scaling funetion) if Fy&) == 0, (19)
v

1 : . :
g(g? v) < P (scaling function) if Fy(§) =0.

Here V(g% v) — 1/2v F(£)-& ! and Fi(§) = 0 is allowed by the present data,
The restriction (19) on d(¢2, ») is consistent with a leading € (x,)8{x?) singularity
in A4(p, x). However, derivatives of §(x?) are forbidden by the bound in any
local representation for Ay(p, x).

The 0(x%)-singularity in A, p, x) is ruled out by (19). The corresponding
“*smooth” scaling behaviour follows from the form, analogous to (15):

Ag(po3) = € (30)-6(s%) by (M*(p)) + Sy(p. ). 20
ooy B
8lg) ~—
bl = = g [ a2 . (21)

From this analysis, we expect the scaling law for » - d(¢?, ») or +* - d(¢? )
depending on more detailed dynamics, and for 4% - g(q?, »). Fractional powers
of » could appear in the scaling laws, but this would imply less regular ‘““theo-
ries”” which we do not want to discuss here,

The missing d(x?)-singularity in g(¢?% v) is not a real surprise, because we
have used the experimental input for V,(¢%,v) and V,(¢% »). The 6(x?)-singularity
is missing in V,(¢?, v) and the four structure functions are coupled through the
inequalities in (19).

The next step is to calculate the equal-time commutators. It is easy to
see from Eqs. (9), (12), (15) and (20) that

Xii(p. %o = 0.%) = a4(0)8(x) - €4y * o' (22)
Only the 6(x?)-singularity of 4d(p, x) contributes to the equal-time commuta-
tor of the space-space components. No gradient terms appear in (22). In quark

algebra [4,5] we have

[J0, x), J(0)] = —2i €, - J5(0) - 6¥(x) + gradient terms. (23)
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The commutator algebra in (23) sandwiched between identical proton states, is

X{}C(p, %y = 0,x) = 1M - Zb(s)(x) “ € ” ol 4+ gradient terms (24)
(p>a|J5(0) | p,a) = —2MZ - .

In our analysis Z is given in terms of a measurable integral:

z L (™ aex e 25
— oL - v
) (25)
From isospin algebra:
74 l_ ]_Gi quark algebra;
6 |Gv proton target;
A
7 116 quark algebra;
l 6 Gv neutron target.
G, _
Here ||~ 1.2 is the ratio of p-decay coupling constants and Z is a model-

v _
dependent isoscalar contribution. Depending upon the sign of Z, the magnitude

of Z must be greater than 0.2 for either proton or neutron target [5]. In field
algebra the antisymmetric piece of the equal-time commutator should vanish
identically.

II1. J-plane analysis

The forward virtual Compton amplitude is defined by

M (p,q) =1 j dt xel7* { p, z|T(J'H(x), J,(0))|p, %> + polynomial.

The scattering process, described by the S-matrix element €,(¢%) M}'(p, q) €.(¢")
is shown in Fig. 2. € (¢?) is the polarization vector of the virtual photon.
We define the symmetric and antisymmetric pieces:

E (¢%) E (¢%)

p,d p. &

Fig. 2. Virtual Compton scattering on polarized proton
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3

M:,(p,q) = % [M2(p, q)+M(p, 9l

1
Ma(p:9) = —M5.(p, @) — Mo (p: 9)]-
The imaginary parts are

Im M,(p,q) = Wi.(p,q),
Im (—iMA(p, ) = Wi(p,q)-

The covariant expansion of the antisymmetric amplitude is

M(p, @) = 1€,,00 €° 2° - D(g%, v)+1(xq) €00 ° P° G(g%, 7). (26

The imaginary parts of the scalar amplitudes are the spin-dependent structure
functions:

Im D(¢, ») = d(¢%, ), Im G(&, ») = g(¢* ).

D(¢?, ») is even in », G(g% ») is odd in ». It is convenient to perform the Regge—
Sommerfeld-Watson transformation on two linear combinations* given by

mmn:%?wmwﬂmeML

2 p) — _ Mt 2 g
Hy(g?v) = 2(p0) G(g% 7).

There are twelve independent S-channel helicity amplitudes but eight of them-
vanish in the forward direction. Crossing gives us H,(¢% ») and H,(¢? 7) in
terms of the t-channel helicity amplitudes:

Hy (@) = — [ 2 (Fs_y () —
s gy | M N
— F?y13(e% %) + | 2¢2 Fy0-4(e% ”)] )
27).
M4 M
H,(¢>,v) = — ————— | —(FJ_,., _i(q%,v) —
2(¢%7) 4(?2—q2M2)[ ) ( i—11-3(0%7)

o
= Ff4(q% ”)) + quq Fiy; o-3(g% ")] .

* In the first paper of [3] the imaginary parts of H,(¢% ») and H,(¢? ») are used as .
W (¢ v) and W,(¢% ») (up to a constant factor).
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Eight conspiracy equations are derived for the eight vanishing S-channel
amplitudes expressed in terms of the t-channel ones. After R—-S—W transform-
ation on the t-channel helicity amplitudes we get poles + cuts 4background:

H1 (qz, v) = 2 .5,'_(112) .y (0)—1 + 292 ,B,f(q2) . “_ljf_q)i . pE(0)—2
! k 2 (0) (28)
-+ cuts 4 background

The signs 4 refer to signature. The leading Pomeranchuk trajectory is de-
coupled from H,(q?, v) and H,(¢? »). This can be demonstrated by turning to
the conspiracy equations. The leading singularity, which satisfies the conspir-
acy equations and theorems on the spin-dependence of high-energy ampli-
tudes [8], is the negative parity piece of the Pomeranchuk cut:

'p"p(o)

+ lower terms,

d(¢%v) = By(¢%) e
: (29)
pap (0)—1
8(q% ) =— B,(g®) —— + lower terms.
In»

‘There is an attempt to describe the leading scaling behaviour by the leading
term in the R—S—-W expansion [9]. This idea tries to identify the leading light-
cone singularity with the leading J-plane object.

The scaling functions «(&) and S(&) are singular at & = 0 in that case,
and the residue function f,(¢q%) has definite ¢*>-asymptotics to give rise to the
desired scaling behaviour of d(¢? ») and g(¢?, »). Integrals involving x(&) and
B(&) remain meaningful even with «(&) and f(&) singular at £ = 0, since
A4(p, x) and Ay (p,x) are tempered distributions, so that every operation
has to be treated in distribution-theoretic sense. In this picture we find the
scaling law:

)~ - (8).
(30)
1

292

8(g%7) ~ — ——«é).

First, one takes the scaling of »%g(¢q?, ») for granted, then the behaviour of
d(q?, v) follows from (29). The common f,(¢?) in (29) gives rise to the very in-
teresting point that d(¢% ») and g(¢% ») are not independent in scaling limit.

This resulf is independent of the location of the leading .J-plane singular-
ity in the deep-inelastic limit if such an object can be singled out at all. The

Acta Physica Academiae Scientiarum Hungaricae 31, 1972



94 L. GALFI et al.

character of the J-plane singularity appears in the behaviour of z(£) near to
&= 0. (30) follows from the R-S—W representation and the identification

mentioned above.

IV. Spin-dependent effects in the parton model

We have calculated the structure functions d(g?, ») and g(¢% ») in a simple
field-theoretic model [10] which indicates point-like parton interpretation in
the spin-dependent case, too. The calculation is tedious and lengthy. The re-
sults are transparent and provocative because they do not contain any free
parameters.

We have found scale invariance for » - d(¢? ») and +* - g(¢?, ») with ex-
plicit scaling functions in the deep inelastic region at large values of w [3].

|
f
.
b ~_
/’/ — I~ \Tr

/ /

mesons

/ | \ N
/ // 1 N \
i
p.ot || [ { \ L 1P%
¥; coupling P, i A P,

Fig. 3. The current scatters on the proton. Scattermg on pions does not give rise to spin-
dependent effects

We summarize here only the essential points in the calculation. The
technique is the same as applied by DRELL et al. to the spin-averaged ampli-
tudes. We “undress’ the current operator and go into the interaction picture
with the U-matrix

U(t) = (e—' fLoar Hm)+

The free or “undressed” current is related to the fully interacting current by
Ju(x) = U-Y(1),(x)U(t) where j,(x) has the same form in terms of in-fields
as does .J,(x) in terms of interacting Heisenberg fields.
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One proves for the spin-dependent amplitude in secaling limit:

lim W2,(p, q) = | d* xe [CUP,)ju(x)j»(0)|UP.>]pmee

g« V> (31)
w>1 |UP, > = U(0)| P,x >

Equation (31) suggests parton-interpretation [10, 11] which may be more ge-
neral than simple models, manifested in H\(t). Detailed analysis in the pseu-
doscalar theory shows that one gets the main contribution to the spin-dependent
structure functions from the ladder diagrams (Fig. 3).

We give some explicit formulae to indicate the main points of the cal-
culation. The contribution of n° mesons with n rungs is

H / I 6(3)([) pn - k _ - i;n) x
VzE pa sz (32)

u(pr B)Ys(M A P nn) se - vs(M A+ Pr) vsu(p, @)
= (2E,)...QE,_)E, —E,—®)...(E,— E,— o, — ... — o,
1P B by by ky>,

n g3k,
We,(p,q) = const. —6(q2 + 2p, q) X
P> q) f]_] 9 (¢ Pnq) (33)

Up, > = const.J

1 . . N N .
i(M +5) ”"’“ Paeer (M4 Py, (M +pn+q)y,,(M+pn)ys---ws(M+p)rs}

2E,)2...(2E)XE,—E,—,)*. . (E,—E,—,— ... —w,)
1 p 1 p

To include the contribution of charged pions is only simple algebra. The anti-
symmetric piece of Eq. (33) permits the calculation of d(¢% ») and g(¢?, ») in
the pseudoscalar theory:

iW}.(p,q) = const. JL[ ks + 29,.9)
Tr{(M+p) {M+py) 7. - -V,L(M 4Pt @ - (34)
QE,)...QE)E,—E,— ). ..
vs(M+py) 75}

(E,—Ey—— . .. —w,)

One starts from Eq. (34) to work out the practical details. For the calculations
we refer to [3]. It turns out that the scaling laws (for proton or neutron):

(g% v) ~ (),

(35}

8(g%») ~ B(€)

22
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are general consequences of the special transverse momentum cut-off [10]
in a large class of models. We have tried this in the pseudoscalar model and
in other models where the pions were replaced by vector mesons [3]. At large
w we have found the scaling function, both for proton and neutron, without
free parameters. This makes it possible to estimate the polarization effects in
different parton models.

The physical interpretation is simple and transparent. The current is
scattered on point-like constituents, d(¢% ») and g(q? ») measure the spin-
distribution of the partons inside the physical nucleon:

We,(pg) = 3 P(N) Jf dx fu(x) WP (p,. q), (36)

where p, = xp. P(N) is the probability that we find NV partons inside the pro-
ton, fy(x) is the probability that the “proton—parton” has a four-momentum
xp. The polarization S(P,, «, p) of this parton depends on the polarization
of the physical proton.

The current scatters on the spin one-half charged constituents described

y Wﬂ, (p.> 9. The results one deduces from these models can be generalized
to parton models without concrete field-theoretic background [12]. In our
Letter [3] we have chosen a simple quark model to study spin-dependent
effects. In the light of the field-theoretic analysis we have now more general
results.

We emphasize again that the scaling law in (35) seems to be rather com-
mon property of different dynamical models based on point-like constituents.
The scaling functions can be calculated explicitly and we find sizeable polari-
zation effects in the deep-inelastic region.

Y. Conclusion

Spin-dependent effects in the deep-inelastic region should be analyzed
by measuring the asymmetry

_ daap—da_ap
dogtdo_,;

A (37

Incident polarized electron or muon beams should be focused onto a polarized
target. Scattered electrons or muons at fixed angles are momentum-analyzed
and identified using magnetic spectrometers. The theoretical estimations [3, 5]
predict raw asymmetries which may well be within the range of electron scat-
tering experiments in the future.
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Longitudinally polarized muon beams have been formed from the decay
of pions in flight at the major accelerator sites. The Serpukhov accelerator
and the Batavia accelerator will give rise to more intense and higher-energy
pion beams; this should make muon experiments of this kind feasible. It may
also be possible to produce a high-energy polarized electron beam at SLAC.

Another attempt in thinking about the feasibility of the spin-dependent
measurement is to use the unpolarized SLAC beam and to try to measure the
polarization of the scattered electron beam.

We are aware of the experimental difficulties. The motivation for our
analyzis is that experimental data on d(¢? ») and g(¢% ») could help a lot in
testing different ideas stimulated by the SLAC-MIT experiment.

We have investigated the consistency of Finite-Energy Sum Rules with
ideas presented here and the contribution of d(¢? ») and g(¢? ») to the hyper-
fine splitting of the hydrogen ground-state in different theoretical models [3].

In conclusion, the predictions of the different theoretical considerations
are summarized in Table I.
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rIIYBOKO HEVYIIPYI'OE PACCEAHHME IOJIAPU30OBAHHOI'O TTYUKA
3JIEKTPOHOB HA NMOJIAPU30BAHHONM HYKJOHHO MUIIEHU

J1. FTAJI®U, . THOUT, A. KYTH, . HUAEPMANEP u A. INATKOLI

Pesiome

PaccmorpeHs! agdexTsi, 3aBHCALIME OT CIIHHA NPH PACCESTHHH 3JIeKTPOHOB Ha NMPOTOHAX.
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