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‘We propose that the {’ trajectory at @;r = 0 can serve the role of a Goldstone boson for
cale invariance and discuss experimental consequences that follow from such an association.

Introduction

One of the most important questions on scale invariance in elementary
particle physics is how good this invariance is in the real world. In this connec-
tion GELL-MANN [1] emphasized that there are two ways in which scale in-
variance manifests itself. In one way (i) the masses of all the particles will be
massless in the limit of scale invariance. The invariance is violated to the ex-
tent that the nucleon mass, for example, has a value ~1 GeV. In another way

(ii), the particles may be massive even in the limit of scale invariance provided
there is a Nambu — Goldstone boson, i.e. a massless scalar meson. A measure of
violation of scale invariance would be given by how much massive this Gold-
stone boson is in the actual world. The arguments on these points will be re-
viewed briefly in the following.

As an illustration consider the matrix element of the stress-energy-mo-
mentum tensor §,, between the states of a spinless particle. Using Lorentz
covariance, parity conservation, time-reversal invariance, one can write the
most general form given by [1]

, 1
P1Oulp> =S [2BF, F2)+ (K6, — b, k) G()] (1)
where p,, p, are the momenta of the particle in the initial and final states, and

1 ’ !
1::1. = _—2— (P[.L+p,ll) ° ky. =Pup—Pu-

* Enlarged version of the paper by C. B. Chiu, Y. Fujii, and W. W. Wada, Lett.
Nuovo Cimento, 1, 110, 1971.
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One can check that the form (1) is consistent with the conservation law Biﬂm =
= 0. The first form factor F(k?) is normalized as

F(0)=1. 2)
One now uses the fact that 0, is traceless in the limit of scale invariance;

f,.=0. (3)
This is derived from the geometrical consideration. The only question is how to
modify the usual definition of the “canonical’’ stress-energy—momentum ten-
sor derived from the field theoretic Lagrangian. See the papers by STRATHDEE.
and TakamasHI [2], and by GeLL-Mann [1].

Imposing the condition (3) onto (1) one obtains

0= (p'l0,,|p> — ﬁ [2P? F(k?)+ 3K2G(k?)), (4)

which gives a constraint on two form factors F(k?) and G(k?). Particularly in-
teresting is their behavior for k? < 0. Noting P2 ~~ p? ~~ —m? in this limit
one finds two cases: If G(k?} is finite at k2 = 0, Eq. (4) gives

—2m?F(0) = 0,
which combined with (2) gives

m?2 = 0.

This corresponds to the case (i) mentioned above. On the other hand, one
may assume that G(k?) has a pole at k2 = 0. Eq. (4) is then satisfied by

6l == 2 (5)

This pole can be interpreted as the emergence of a massless scalar boson (the
Nambu-Goldstone boson) which will be hereafter called the 6, meson.

The matrix element (1) is the “form factor” of a coupling of the particle
to the graviton, since 6, is a source of the graviton. Eq. (5) will corres-
pond to the fact that the diagram (a) of Fig. 1 contains a part whieh is domi-
nated by the exchange of the 6, as illustrated by the diagram (b). One realizes
a close analogy to the pion dominance in the weak coupling of a hadron to
the leptons.
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In the diagram (b) the constant for the graviton —0, junction is denoted
by f, (times the gravitational constant) while the coupling of a hadron labeled
by i to 0, is denoted by f;,;. The amplitude corresponding to the diagram (b)
is then given by

G@t) = f‘ﬁ (6)

—t

where t = —k?. Comparing this with (5) one obtains the relation

3 -
mi = “2_fefeii , (0

which is the exact analogue of the Goldberger—Treiman relation.
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Fig. 1. Diagrams for (p’|f,,|p>

Now the question is whether there is a scalar meson which is light enough
to be considered as an approximate Goldstone boson. The meson should be
isoscalar as far as the electromagnetic mass differences are neglected. There
are some candidates like ¢ (750 ~ 900 MeV) or S* (1070 MeV). They are, how-
ever, almost as heavy as the nucleon or the g meson, etc. This would mean that
there is no preference of the second mechanism (the emergence of the Gold-
stone boson) over the first one in which finite masses of the ordinary particles
are the manifestation of the violation of scale invariance.

It would be here worthwhile to recall that our concept of the particles
had been changed drastically in the last decade. We have now the Regge pole
theory. What we are going to do in this paper is to try to apply this new con-
cept to the Goldstone boson so that one may consider the real world to be
very close to the limit of scale invariance.

Being motivated in this way one can look at the Chew—Frautschi plot
to find immediately that there is a trajectory which goes very close to the ori-
gin. It is the (exchange degenerate) g — f’ trajectory. The value of ¢, for which
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this trajectory passes through the abscissa, is the order of +ml. One might
say that there is some spinless, isoscalar object having the squared mass ¢,.
Of course, no such particle has been observed experimentally. One usually
appeals to the so-called ghost killing mechanism. The simplest of such is the
choosing nonsense mechanism by which the scattering amplitude correspond-
ing to the exchange of this trajectory contains a numerator which behaves
like ~ «(t) so that the pole behavior at «(tf) = 0 is cancelled. We are going to
see if this “nonsense point” of the ' trajectory is identified as the Goldstone
boson we are looking for.

Consider scattering of the particle { and the particle j in the ¢ channel.
The scattering amplitude will then be given by

x(t
7() ~ —2_ ®)
sin 7o (t)
The Feynman amplitude, on the other hand, corresponding to the exchange of
a meson §; whose mass is assumed to be exactly zero just for simplicity is
given by
T() ~ S ©)

14

Comparing (8) and (9), and accepting the linear trajectory, one realizes that
the coupling strength f;; cannot be a constant, but should be proportional to
Ve

Jaii(t) = ¥t gaii » (10)

where g,;; is a constant, or at least finite at t = 0. This is, no matter how strange

in may appear, an inevitable conclusion from the choosing nonsense mecha-

itsm and the factorizability of the residue functions. Note also that the Ve-

neziano —Lovelace amplitude gives the same result. Substituting (10) into (6)
one obtains

G(t) — fogeii Vi .

—1

The second term of (4) then vanishes for t — 0 if f; is finite at ¢ = 0. The only
way in which the second term survives so that the nonsense point of the f’
trajectory serves as a Goldstone boson is that f, is inversely proportional to |/¢;

1
Vi
where Fy is a constant, or at least finite at ¢ = 0. One may argue at this point

if a singular form (11) may cause any serious difficulty. Before answering this
question, we discuss what the particle picture of our 0, will look like.

fot) =—F, (11)
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The behavior as given by Eq. (10) is supposed to be true for every hadron,
so that the pole ¢ ~! is always cancelled in any amplitude of the hadron inter-
actions. This means that the 6, can never be observed as a particle as long as
one is looking at the strong interactions of hadrons. The same would be true
also for the interactions of hadrons and photons if the photons are absorbed
or emitted always through vector mesons. The situation is not clear for the
weak interaction. It is rather likely that the pole ¢t ~! appears in the amplitudes
involving gravitons. The 0, is then a real particle which may decay into a
number of gravitons or be produced through the graviton-hadron ecollision,
for example. In the following we discuss other questions which will arise from
our approach.

L Graviton—0, mixing

Practically one does not have to worry about the singular behavior (11),
since in the lowest order terms in the extremely small gravitational coupling
constant the factor I/VE is so designed as to be cancelled by another factor
V¢ in (10). In principle, however, one can investigate the effect of the higher
order terms. We are particularly interested in the infinite sum of the diagrams
like those in Fig. 2. This mixing problem between the 0, and graviton can be

e i e S ANAANS K o= —

_——XI\/\/\/\X——— x/WV\.x__._

Fig. 2. Examples of diagrams due to the mixing between the graviton and the 6,

solved baéically. At this moment, however, we can report only the results of
an exercise — the mixing problem between a massless vector meson and a
scalar meson, §;. The mixing interaction is given by k¢, f;(t), where ¢, is the
polarization vector and fy(¢) will have the form (11). After solving the Dyson
equation in the matrix form, one obtains the results summarized as follows:
(i) The vector meson remains massless after the mixing is turned on.
(ii) The squared mass t, is changed to i, by the amount which is second
order in the gravitational coupling constant.
(iii) The fields V, and ¢ are related to the diagonalized fields 17” and
¢ as follows: -
V., =buV, + b,,9,9,

= 6218,4?,; + bzzé’-
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The constants are determined as

byy =1, by o< folfy),
b21 == 09 b22 = 1.

The result of b, shows that an infinity can be avoided if
i, = 0.

These qualitative results are expected to remain the same if one replaces
the vector meson by the graviton. The analogue of the first point (i) will
say that main features of Einstein’s gravitation theory remain unaltered.
It is clear, however, that the second order tensor field which describes the
graviton is no longer traceless. If the spinless part corresponding to this trace
turns out to be massless, the resulting modification of Einstein’s theory may
be somewhat similar to Dicke’s theory [3].

IL. SU; transformation property of 0,

It is well-known that ¢ and f’ are very close to the *“ideal” mixing of
SU, so that they transform like 7} in terms of quarks. It is natural to expect
that our 0, also transforms in this way. If one appeals to the simple-minded
quark counting model, one immediately obtains

gOM = O ’
Bown _ A (12)
8oKK 3

where 7, represents the purely octet 7 meson. Combining (12) with (7), one

gets the mass relations

2
m,zs

2 __ —_
m, =0, =—,

mk 3
which are consistent with GMO mass formula. If one applies the same proce-
dure to the nonet vector and tensor mesons, one obtains the familiar equal

spacing law, but with
2 2
m, =0, my =0,

since the p as well as the A, do not contain the strange quarks. One realizes
that we need something else to give the masses of these lowest levels. It is
not yet clear which of the mechanisms (i) and (ii) is responsible for these
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masses. (See, however, the following Section IV). Focusing our attention
to the SU, breaking part at present, we modify the previous formula (7) to
the form

3
om} = ? 0 8oii > (13)

where we have replaced f, and fy; by F, and g,;, respectively, by using (10)
and (11).

Similar calculations can also be carried out for the fermions. Correspond-
ing to (13) one obtains the result,

om; = 3F; gyy;. (14)

Again the §, gives no contribution to the nonstrange baryons like N or 4. Con-
trary to the squared mass formula (13) for the mesons, one obtains the linear
mass formula (14) for the baryons. Again using the simple quark counting for
the estimate of the coupling constants, one obtains the equal spacing law for
the baryon masses (neglecting the mass difference between A and X). For the
later use, we quote one of the results

gx& _ 2mi (15)

A £

8ozz my—my

which is easily obtained from (13) and (14).

III. Broken chiral symmetry

According to our scheme, we find that the Hamiltonian (= —0,,) con-
tains a part which is dominated by the 6,. This part clearly transforms like 1.
On the other hand, GMOR Hamiltonian

(4
H' = u, -+ cug,

which violates chiral SU; X SU, has the similar SU, transformation property.
In fact, the constant ¢ was found to be very close to — V2. In the approxima-
tion in which the pion mass is neglected, ¢ is exactly equal to — |/ 2 so that the
whole H' transforms like 1. One may speculate that the part of the Hamilto-
nian which is dominated by 0, is identical with the GMOR Hamiltonian. If
this is really the case, the SU; X SU, violating Hamiltonian is almost invariant
under scale transformation, contrary to GELL-MANN’s conjecture that GMOR
Hamiltonian also violates scale invariance [1].
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IV. Exotic nature of the 0

As was emphasized in Section II, we need something which lifts up
the SU,; multiplets other than pseudoscalar octet. The violation of scale in-
variance associated with this might be of the type (i) without the Goldstone
boson. It seems still worthwhile to explore the possibility that there is another
Goldstone boson, which will be called 65. We expect that there is another. uni-
tary singlet trajectory which is almost degenerate with the f’ trajectory.
This trajectory will couple to the hadrons other than pairs of octet pseudo-
scalar mesons. This suggests that the new trajectory is exotic in a sense that
it does not allow simple quark counting.

We also noticed that the GMOR Hamiltonian is the part dominated by
the 6,. On the other hand, we know that there must be the part of the Hamil-
tonian which violates chiral U;x U, but conserves SU; x SU, [4]. The term
having this property must also be exotic in a sense that it cannot be represented
by the form gq. It seems therefore natural to speculate that this is the part
which is dominated by the 6.

In this connection it is also interesting to note that ArRNoLD [5] proposed
recently that there is an exotic, and Pomeron-like trajectory which has the
unit intercept and the “normal” slope. Our 65 may belong to a daughter of
ARNOLD’s trajectory.

V. An experimental test

If we make a full use of the simple-minded quark counting, we can pre-
dict results which can be tested in ordinary high energy physics. Noting that
the f (1250) contains only non-strange quarks, one obtains, for example,

8iKK L £¢KK

8izZ 2 grsz
where the factor 2 in the denominator of the right-hand side comes from the
fact that the 2'*, for example, contains two proton quarks, while it contains
only one lamda quark. By assuming some smoothness condition along the
trajectory, the right-hand side can be replaced by (1/2) (g4xz/ger3), for which
one can use Eq. (15). Further using the SU, argument, one arrives at the re-
lation

81ipp 3 mgy—my

2
8igta— . 4 mg

In order to test this new relation, we consider the ratio

— UT(”N)f (16)

" of(NN)
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where o,(nIN), for example, is the part of the 7N total cross section dominated

by the exchange of the f. One may be able to extract such a part from the high

energy nN total cross section by subtracting the asymptotic cross section.
With the aid of the optical theorem, the ratio (16) is put into the form

1 ImF(=zN)
2my ImF(NN);

R_=

T

where F(aN),, which is the 7N forward scattering amplitude dominated by
the exchanged f, is proportional to g, gy, While F(NN), is proportional to
(ginn)% One finally obtains

_ 2
R ——)1 &=t 2 K 220.69 . (17)
2my  gwp 3 my(mg—my)
In the same way one obtains
(= BN L g0, * 18)
or(NN); 2

The experimental data are shown in Table L. Since the asymptotic values
for aN and NN eross sections have large uncertainties, we have used two sets
of numbers [6-8]. Although it seems premature to draw any definite conclusion,
the agreement is at least encouraging.

Table I
Experimental data (from 6 to 20 GeV/c) for K, and Ry

Case 1 Case 2
R, 0.39-0.45 0.84-1.10
Ry 0.19-0.22 0.28-0.44
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8. The asymptotic cross sections, o, used are (See [6] and [7])
0(KN),, = 17.0 mb,
o(nN),, = 20.5 mb and o(NN), = 34.8 mb for Case 1,
o(nN),, = 18.1 mb and o(NN), = 38.9 mb for Case 2.

KAJIMBPOBOUYHAST MHBAPHUAHTHOCTD, BO30OHbI I'OJIbJICTOYHA,
U TPAEKTOPUS f

A. GYA3UN
Pesiome
IlpennoykeHa mnest, COTJIACHO KOTOpO# [JIs1 CoXpaHeHHs1 KajnOpOBOYHOH HHBapHaHT-

HOCTH TPaexTopus {’ npu oy, = O MO>XKET HrpaTh posb 603oHa IosbAcTOyHa. JIHCKYTHPYIOTCSE
OKCMEepHMEHTANIbHBIE CJICACTBHA, BBHITEKAIOWME M3 TaKOi aCCOLHANMH.
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