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B R O K E N  SCALE I N V A R I A N C E  IN INELASTIC 
LEPTON NUCLEON SCATTERING 

B y  

G. SARTORr 
INSTITUTE OF PHYSICS,,' HE UNIVERS[TY, PADOVA, 1TALY 

Broken scale invarianee in inelastic lepton-nucleon scattering is diseussed studying 
current eommutators  near to light-cone and their  equal time limits. Models, based on WILSON'S 
ideas, ate proposed here to provide a more general frame than canonical models. 

I. Introduction 

I shall mainly review some work I have done in eollaboration with 
CICCAm~LLO, GATTO and ToNIN (Sections IV, V and VI) [1, 2], and some pre- 
vious related results by other authors (Sections I, II  and III),  concerning bro- 
ken scale invariance and its applications to inelastic lepton-hadron scattering. 

Finally (Section VII), I shall briefly comment on some relevant very 
recent experimental results from SLAC [40, 41]. 

Since the local algebra of currents has been proposed by GELL-MAN~, 
a lot of sum rules have been derived which connect measurable quantities to 
ETC's between local operators. Particularly interesting ate the ETC's involving 
e.m. of weak currents of their derivatives. 

The model-independen~ parts of such commutators are easy to write 
down, at least ir one believes in some symmetry scheme. More intriguing to 
compute are the model-dependent parts. To solve the problem, suggestions 
have been sought in canonical Lagrangian models such as the quark model, 
the gluon model, field algebra, or others. 

Unfortunately, as JOFFE and VAINSTEIN [3], JACKIW and PREPARATA [4] 
and ADLER and TUNG [5] have shown, cqual time commutators calculated 
by naive canonical manipulations of the field operators generally cannot be 
used in asymptotic sum rules. In fact, they do not always agree with those 
computed from Feynman diagrams via q0 ~ i ~  limit. 

The source of trouble has to be sought in the singular nature of products 
of local operators evaluated at the same space-time point. Such singularities 
can hardly be treated correctly unless one is able to solve exactly the model. 

An economical way to bypass the problem, has been suggested by 
WILSON [6]. According to W'ILSO N  the commutator of two local operators, 
A(x) and B(0), can be expanded, when x~ ~ 0, in the following asymptotie 
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series: 
[A(~), B(O)] ~ ~Y 0.(0) Cn(x). (1) 

In  Eq. (1) the equali ty holds in the weak sense, the Cn(x)'s are tempered 
distr ibutions which contain the whole x : d e p e n d e n c e  and for locali ty mus t  
vanish outside the light cone; the Or,(0)'s f o r m a  generally infinite set of inde- 
pendent  local operators. 

F rom Eq. (1), by  taking the limit x 0 --~ 0, one formally gets the following 
expansion for the equal t ime commuta tor  between A(x )  and B(0): 

[A(~, 0), B(0)] = 2 S .... . .  k (A, B; 0) 0 ..... ~~k" 6(3)(~) �9 (2) 
k = 0  

S ... . . .  k, the k-order Schwinger term, may  also be infinite (in this sense Eq. (2) 
is a formal  development  of ah equal t ime commuta tor ) :  when finite, it  is a 
linear combination of local operators and has physical dimension (in units  
of length) 

ls(k) = l A + I s + k + 3 ,  (3) 

: and IB, which are negat ive numbers,  are the physica] dimensions of A and B. 
The r.h.s, of Eq. (2) turns  out  to be certainly a finite sum in theories 

t h a t  do not  contain dimensioned parameters,  provided the number  of operators 
wi th  dimensions ~: lA + lB + 3 is finite. 

]f, moreover, the set of such operators is known,  the r.h.s, of Eq. (2) is 
determined apart  from a few numerical  eonstants .  Theories tba t  do not  contain 
dimensioned parameters  ate insensible to a change of the unir of length, tha t  
is wi th  respect to a scale t ransformat ion  of, wbich is the same, wi th  respect to 
a di la ta t ion of s iace and t ime:  

x~, -~ e~ x~,; ~ real 

II. Scale and conformal  invariance  

The idea tha t  scale invariance could be a useful concept in theoret ical  
physics is ra ther  old and dates to the works of Gu•srY [7], WESS [8], FULTO~, 
ROH~LICH and WITTEN [9], and KASTRUP [10]. 

KASTEUP [11] and MACK [12] in part icular  suggested tha t  strong inter- 
actions become scale-invariant at  short distances, t h a t  is at large energies, 
when all the  masses and dimensioned coupling constants  of renormalized in- 
teract ions loose their  relative weights. 

Such asymptot ic  scale invariance, however, cannot  be considered the 
eonsequence of ah exact  symmet ry .  In fact,  it  is easy to prove t h a t  in a scale- 
invar ian t  theory,  discrete states wi th  non-vanishing masses ate ruled out,  cross- 
sections fall off too rapidly,  the  lack of dimensioned parameters  prevents one 
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from defining asymptotic states: to mention but a few of the diffieulties one 
meets. 

Therefore asymptotic scale invariance must be considered only a s a  bro- 
ken symmetry.  This amounts to saying that  one believes in the existence of a 
limiting theory, called by WILSON skeleton theory, which obtains when all 
masses and dimensioned coupling constants vanish. 

In such a situation, whenever the theory is renormalizable, one expects 
only operators of dimensions >~ l s (k ) ,  as given in Eq. (3), to contribute to the 
k-order Schwinger-term; those of dimensions > l s (k ) ,  when finite, oceur suit- 
ably multiplied by symmetry breaking parameters. 

In Lagrangian field theories scale invariance is often accompanied by a 
larger space-time symmetry, associated to the group of conformal transforma- 
tions. The conformal group is a 15-parameter non-compact and non-semisimple 
Lie group, isomorfic to S0(2, 4). I t  contains a sa  subgroup the Poinear› group, 
and is defined as the group of the following non-linear transformations in the 
Minkowsky space: 

t x~ ~ a .~A ~ x,,, 
q , l~ 

t x ~ = e  ~x~; 2 real, 

t X/z-~- CO x 2  
Xq 

1 + 2cx  + c 2 x ~ 

(inhomogeneous Lorentz 
transformations) 

(dilatations) 

(special conformal trans- 
formations) 

The Lie algebra of the conformal group is specified by the following commuta- 
tots among the generators of infinitesimal transformations: 

where Mg~ and 

[M~v, Dl = 0, (4a) 

[ P , D  l = i P ,  (4b) 

[ M : ,  K~] = i(gr K~, - go~, K~)  , (4c) 

l P ,  K~] = 2 i(g~v D - M~,), (4d) 

[Ks, K,] = 0 ,  (4e) 

[D,  K~, l - -  iK~, ,  (4f) 

P~ are the generators of the Poinear› group, D is the 
dilatation charge and K~ are the generators of special conformal transforma- 
tions. 

The commutators among the generators of the inhomogeneous Lorentz 
group are well known and have not been written down. 

The field-theoretically admissible representations of the eonformal al- 
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gebra have been discussed in a review paper by MACK and SAI~X~ [13]. They 
are defined through the following relations: 

[~a(x). P ]  = i ~~ qba(x). 

[~o(~). M~~] = i [(~, ~~-~~ av) ~~(i 2;,~)~ ~ ] ~~(x). 
[qSa(x), D] = i ( --q x ~ Oe 5ha) qbb(x) ' 

['~~(x), K . ]  = i [  2t~~~+(2x~x~ ~~--x~~~) ,~~ -- 
-- 2 i xe(.~~x'..o)a~-}-~a b] q~b(x), 

where ~ba(x) is a finite or infinite set of local fields, Z~~,l and ~~ are finite or 
infinite matrices, a n d a  sum over repeated indices is understood. 

According to the type  of the matrices L~,, I aud ~g, one gets the following 
classes of representat ions:  

1. x~ ~ 0. l i s  real and proportional to a uni t  matr ix  ir L'~~ f o r m a n  ir- 
reducible representat ion of the Lie algebra of the homogeneous Lorentz group. 

2. Sg~, l and ~~ ate finite dimensional; x~ J= 0, but  ni lpotent .  
3. ~'~,, l and z~ are infinite dimensional. 
A local operator  q~(x) satisfying the above commuta t ion  relations will 

be said to be covariant  with respect to conformal t ransformations.  For the 1. 
class representations,  l will be called the scale dimension of the field; it neces- 
sarily coincides with the physical dimension of ~(x) only if the theory  is scale- 
invar iant .  

III.  Broken conformal invariance in Lagrangian 
field theories 

I t  is also instruct ive to see how conformal s y mme t r y  comes about  in 
canonical Lagrangian field theories. 

This point has been analyzed for iustance by WESS [8], MACK and SALAM 
[13] and GRoss and WEss [14]. 

In canonical Lagrangian theories of conformal covariant  fields a slightly 
modified form of Nfiether's theorem teaches how to construct  the generators 
of the conformal t ransformat ions  out of the canonical conjugate variables. 

One can verify in this way tha t  the divergence of the di latat ion current  
vanishes, as expected, ir and only ir there are no dimensioned parameters  in 
the theory.  

I t  has also been proved [13, 14] t ha t  in a large class of Lagrangian field 
theories, including among others almost all renormalizable ones, the divergen- 
ces of the special conformal currents ate proport ional  to the divergence of the 
di la tat ion current,  so t ha t  scale invariance implies invariance with respect to 
the entire conformal group. Wben such a s i tuat ion is realized, one speaks of 
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minimal breaking of conformal symmetry.  A minimal breaking of conformal 
symmetry in canonical Lagrangian field theories allows for a redefinition, 
la Belinfante-M611er, of the energy momentum tensor, as a symmetric tensor, 
which I shall call 0g~. In terms of 0g~ the conformal currents, their divergences 
and their associated charges assume the following simple form: 

O~v ~ O~g 

M~,,,q = x v 0~o " - -  x~ O~v , 

D ~  = x ~ Ogv,  

K~~ = x~ D f ~ + x  o- M~,~ ,  

O~ 0~~ = O, 

O ~ M~,,~ ~ 0 ,  

0~ D~ = 0~, 

0~ K~. = 2x, 0~, 

= I d~x%(x), 

M~,, = S d3 x M o g ~ ( x ) '  

D = J" d 3 xDo(x  ) , 

(5a) 
(5b) 
(5c) 
(5a) 
(6a) 

(6b) 

(6c) 
(6a) 
(Ta) 
(7b) 

(7c) 
(7a) 

If  the symmetry is exact, 0~~ is traeeless and carries pure spin 2. 
This result is due to CALLAN, COLEMAN and JACKIW [15] who have also 

proved that  the matrix elements of 0~,~ ate less singular than the homologous 
matrix elements of any other permissible energy-momentum tensor, in every 
order of perturbation theory. 

IV. A non-Lagrangian model exhibiting smoothly broken 
conformal and U(3) |  U(3) synmletries 

After the short digression of the preceding seetions let me now leave the 
limits of Lagrangian field theories. I want to retain, however, the following 
results which will be some of the defining hypotheses of the model worked out 
by CICCAmELLO, GATTO, TO~IN and myself [2]. 

I shall assume: 
i )  the existence of a symmetrie divergenceless energy momentum ten- 

so r~  01~ v. 

i i )  The possibility of defining the charges 

P#,  M~,v, D and Ku 

in terms of 0s~ as speeified in Eqs. (6a, b, c, d) and (7,a b, c, d). 
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i i i )  The existence of  a s y m m e t r y  l imit  in which the energy m o m e n t u m  
tensor  is traceless and t ransforms covar ian t ly  with respect  to the  ent ire  con- 
formal  group as a f irst  class tensor  with scale dimension -4  and spin 2. In  
this Iimit the charges P~, Mg~, D and K~ forro a LŸ algebra which is isomorfic 
to the  Lie algebra of  the conformal  group. 

To fu r the r  specify the model,  we have assumed - according to WILSO~'S 
phi losophy - the existence of  the following l inear ly  independen t  local opera-  
t o t s :  

a) The traceless par t  of  the ene rgy -m o m en tu m  tensor.  
b) The 18 currents  j~, where ~ = (a, A), a ~ 0 , . . . ,  8 and A speeifies 

the par i ty .  
The assoeiated eharges 

Q, = ,�90 d3xj~(x) 

are the generators  of a chiral U(3)|  
c) The scalar and pseudoscalar  fields w A which are SU(3)|  sing- 

lets bu t  not  U(3) |  singlets. 

d) The scalar and pseudoscalar  fields u a which t ransform as tensors o f  
a representa t ion  (3,3)| (3,3) of  SU(3) | SU(3). 

The t ransformat ion  propert ies  of these opera tors  with respeet  to P,  C, 
and P C T  are the usual ones. 

The breaking of the U(3) | U(3) s y m m e t r y  is specified b y  assuming 
t h a t  the opera tor  

(8 

is a U(3) ~ U(3) singlet. 

The s y m m e t r y  breaking parameters  e ~ a n d e  A ate dimensioned constants .  
An immedia te  consequence of this assumpt ion  is PCAC in the forra:  

~~ j~ == S~SC eB wC § F:~y ~~ u y, (9) 

where S ~Bc and F ~/'y are re la ted to the t r ans fo rmat ion  proper t ies  of  w A and 
u ~ with respect  to U(3) | U(3) t ransformat ions .  

The skeleton theory  is obta ined  in the l imit  e~, e A --~ 0 ;  i r  is eonformal  
and U(3) | U(3)- invariant  and the limit of the operators  ment ioned  above 
t rans form in it eovariantly as tensors of the first  elass with the following s ea l e  
dimensions: 

I o = - 4 ;  l i = - - 3 ;  l w = - - A ' ;  l u =  A .  
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Apart from eventual derivatives of sueh operators of c-numbers, there ate no 
other operators with scale dimensions 2>--4. 

In the true theory the breaking of the conformal symmetry is specified 
through Eq. (6c): 

~~ D,, : 0~ 

and the assumption that  0~ is n o t a n  independent field. We have proved that 
in our hypotheses* 

0 z = ( 4 - 3 )  8 ~ (u ~ -  < u ~ > 0 ) + ( 4 - 3  ") ~A (w A - <w%0).  (10) 

This relation states the partial conservation of the dilatation current. 
In fact, ir can also be derived following the standard procedure used to prove 
PCAC provided one adds the assumption that  the singlet part  of 0~~, O(£ ) 
has scale dimension (--4). 

In our model this has not been assumed but can be proved to be true. 
Let me now justify some of our assumptions and make some additional 

remarks about their significance. 
The use of the group U(3) ~r U(3) as a broken symmetry group is not 

new; it had already been considered by GELL-MA•N, who also emphasized that  
the non-conservation of the axial baryon number is required by the high mass 
of the ~7' [16]. A and A' are not generally entire numbers. WILSON has pointed 
out that  the renormalized fields have not necessarily the same dimensions as 
the unrenormalized ones; in fact, they do not generally satisfy the same cano- 
nical commutation relations. This fact, whieh has been explicitly checked in 
the Thirring model by WILSOr~ [17] and by LOWENST~I~ [18], can be consider- 
ed as a renormalization effect of the dilatation charges A and A'. 

The assumptions A, A' < 4 express the requirement tha t  the breakings 
of the internal and of the conformal symmetries occur together and assure that  
they ate due to a superrenormalizable piece of the Hamiltonian. 

The condition A ~ 1 is an immediate consequence of the semipositivity 
of the spectral funetion in the Lehmann representation for <0 1 T{u~(x)u~(O)}[ 0), 
which requires this object being at least as singular as l /x  2 when xg -* 0. 

Ah analogous reasoning gives A' > 1. 
The number of local fields with low dimensions, allowed in the model, 

is the minimum consistent with a symmetry scheme based on a broken U(3) r 
| U(3). 

The existence of the fields w a (first proposed by GLASHOW [19]) as ve- 
aiele~: of symmetry breaking is required for instance to justify the large mean 
mass of the 0-multiplet and the masses of nucleons, as has been noted by 
WlrSON [6]. 

* See also [12]. 

Acta Physi*a Academiae Scientiarum Hungaricoe 31, 1972 



ti2 G. s ARTORI 

V. Computing equal time commutators 

Le t  me now come to the  technical  p rob lem of comput ing  the  equal  t ime  
c o m m u t a t o r s  among  the  local opera tors  of  the  model .  

We  have  assumed t h a t  t hey  are regular  in the  s y m m e t r y  l imit  e A, e ~ --~ 0, 
i.e. t h a t  the s y m m e t r y  is s m o o t h l y  broken,  a t  leas t  as lar  as the  equal  t ime  
c o m m u t a t o r s  are concerned,  Par t i cu la r ly  s t rong  restr ic t ions come f rom t his 
a s sumpt ion ,  if  t aken  in conjunct ion  wi th  the  hypothes i s  of  the  exis tence of  
a l imi ted  n u m b e r  of opera tors  with low dimensions.  All o ther  condit ions to be 
imposed  on the equal  t ime  c o m m u t a t o r s  of  the  model  come f rom the assumed 
in te rna l  and s p a c e - t i m e  symmet r i e s .  Le t  me diseuss this poin t  in g rea te r  de- 
tail ,  s t a r t ing  f rom Eq.  (2). The  eventua l  tensor  proper t ies  of  A and B wi th  
respec t  to t r ans fo rma t ions  of  some group (whether  i t i s  a s y m m e t r y  group of 
not)  f ix the  tensor  proper t ies  of  the Schwinger t e rms  with  respect  to t r ans fo rm-  
at ions of  the same group.  

Sueh tensor  proper t ies  can be ana lyzed  convenient ly  in t e rms  of infini- 
tes imal  t r ans fo rmat ions .  This  in turn  am ou n t s  to requir ing the  va l id i ty  of  the  
Jaeob i  ident i ty  at  different  t imes:  

[Q(t2), [A(~, ti), B(0)]] = [[Q(t2), A(~, ti)], B(0)] -4- [A(~, t~), [Q(t2),B(O)]], (11) 

where  Q(t2) is a genera tor  of the  group.  I f  the  s y m m e t r y  is exac t  so t h a t  Q 
does not  depend on t ime,  ir is suff icient  to t ake  the  l imi t  t I ~ 0 in Eq.  (11) in or- 
der  to get an equal  t imes  Jacob i  ident i ty .  Bu t  i f  the  s y m m e t r y  is b roken  and  Q 
does depend on t ime,  in order  to get an equal  t imes Jacobi  iden t i ty  ir is not  
suff ic ient  to t ake  in Eq.  (11) the two l imits  t 2 -~ 0, t 1 ~ 0, when such l imits  
c anno t  be  in terchanged.  Thus ,  in general,  one m u s t  expec t  t ha t  the  equal  t imes  
J aeob i  ident i ty ,  among  two covar ian t  local opera tors  a n d a  non-conserved  
cbarge,  is v iola ted b y  t e rms  whieh are p ropor t iona l  to the  b reak ing  p a r a m e t e r s .  

I t  m a y  also occur  t h a t  the  equal  t imes Jacob i  iden t i ty  is sat isf ied in the  
skele ton theory ,  where the  s y m m e t r y  is exact ,  b u t  not  in the  t rue  theory ,  be- 
cause in the l a t t e r  one of b o t h  of the opera tors  A and B loose the i r  exac t  eo- 
var iance .  In  this case too,  correct ions p ropor t iona l  to the  b reak ing  p a r a m e t e r s  
m u s t  be  expected.  

In  any  case, however ,  the  v iola t ing t e rms  are not  comple te ly  a rb i t r a ry ,  
b u t  can be de te rmined  a p a r t  f rom a few p a r a m e t e r s  b y  a spur ion analysis .  

So, pract ical ly ,  in our  model  we m u s t  impose  the  following set of  con- 
di t ions:  

A) Condit ions which come f rom the discrete  symmet r i e s  P,  C and  PCT 
ate  a lmos t  obvious and will no t  be discussed. 

B) Poincar›  covar iance .  Considerable technical  advan t ages  are ob ta ined  
b y  in t roducing a pos i t ive  t ime-l ike  r e c t o r  n, ,  which acts as a spur ion of the  
Loren tz  group, and b y  subs t i tu t ing  to the  equal  t ime  c o m m u t a t o r s ,  the  com- 
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mutators �91 [A(x), B(0)] calculated on the space-like hyperplane of equa- 
tion n . x  =-O.  In this way one obtains formal covariance by sight. 
S ~''''~~ (A, B; 0) becomes a function of n, and its n,-dependence can be easily 
analyzed through differential methods. The validity of the equal times Jacobi 
identities involving one generator of the inhomogeneous Lorentz group allows 
to determine completely the Schwinger terms of the equal time commutator 
between `4(x)  and B(0). 

These conditions must clearly be satisfied by the ETC's of any accept- 
able theory, and in our model they turn out to be essential in checking of im- 
posing consistency between our commutators and conservation or partial 
conservation properties of the local operators involved. 

C) D and K~ covariance must be imposed only within the skeleton theory; 
in the true theory they are violated by terms proportional to the symmetry 
breaking parameters. The conditions which come from dilatation covariance 
have already been discussed. 

K~, covariance gives rise to complicated relations among the Schwinger 
terms of the equal time commutator between A and B. Their most striking 
effects can be roughly resumed in the following statement: the local operator 
0 s . . . .  o,q ) (j = 1, 2 . . . .  ) eontributes in the k-order Schwinger term of 
[A(x), B(0)]c.t. if C(0) contributes in the (k -k-j)-order Schwinger term of the 
same commutator  [2]. 

D) Further  conditions must be obeyed by the equal time commutators 
involving the (0#) components of the energy-momentum tensor. These condi- 
tions come from the covariance of the operators of the skeleton theory with 
respect to transformations of the conformal group and from the particular 
form that  has been postulated for the generators in terms of 0~,. 

Restrictions of this kind concern Schwinger terms up to the second or- 
der [2]. Those coming from dilatations and special conformal transformations 
may be violated by terms proportional to the symmetry breaking parameters. 

E) Covariance with respect to U(3) | U(3) transformations implies 
obviously that  all the Schwinger terms in the equal time commutator between 
A and B can get contributions only from operators which transform according 
to a representation contained in the Kronecker product of the representations 
according to whieh _4 and B transform. This statement must be taken in a strict 
sense only within the skeleton theory: in the true theory ir must be substituted 
by the results of a spurion analysis. 

In this way, by means of simple group theoretical considerations, we 
have been able to compute in our model, in terms of a few numerical parame- 

-r ters, all the equal time commutators among the local operators w z ,  u =, j~  and 
0,, and the equal time commutators between j~ and 0~j~. The only exeeptions 
ate the equal time commutators involving only space components of the energy- 
momentum tensor. 
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W e  h a v e  t h u s  o b t a i n e d  a r e a l i z a t i o n  o f  GET,L-MANN'S p r o g r a m  o f  e x t e n d -  

i n g  c u r r e n t  a ] g e b r a  t o  i n c l u d e  t h e  e n e r g y - m o m e n t u m  t e n s o r .  

S o m e  o f  t h e  c o m m u t a t o r s  we  h a v e  c a l c u l a t e d  a t e  r e p o r t e d ,  in  t r u n c a t e d  

fo r ro ,  in  T a b l e s  I ,  I I ,  I I [  a n d  IV .  I n  t h e  f o l l o w i n g  s ec t i o n  I sha l l  d i scuss  o n l y  
s o m e  o f  t h e i r  m o s t  s t r i k i n g  a s p e c t s  a n d  i m p o r t a n t  a p p l i c a t i o n s .  

Table I 

[0oo(~, 0), 0oo(0)1T = -- iC o 0oo d(S)(x) + 2iOoj ~j d(a)(x) 

[Ooo(~, o), Oot(O)] r = - i~o Oo~ a(~)(x) + i(oj~ ~j + Ooo o~) g~)(x)  

[0oo(~, o),  0k,(o)] T - - i8o Ok, ~(~)(x) + i(Oo~ ok + Ook ot) aO)(x) 

[0ok(.~, 0), 0of(0)] T = -- iO k Oot d(3)(x) + i(Ool 0 k -~ 0o~ al) ~(3)(x) 

[Ook(X , 0), Oim(O)] T : - -  lO k Olm ~(a ) (x )  -[- 

14  1 1 "J~ i " ~  ~nk ~.lm ~- -~--  ~lm Ortk -~ ~ -  [(~nl ORto -~ ~nm Okl - -  

1 
- ~~t 0,~m - a~m 0,~~] - - -~-  ~n~ ~~m[0oo - ( 4  - A ' )2  ~~ w ~~ - 

- -  ( 4  - -  / I )  2 t~~ u/~] - -  pnkn'k"l'm',lm [ k Ÿ  1) �91 OR, m, -~- 

'~'2 "n,l" Uk'm" Ojj -- (~n,I, dk,m,(k~ t' ~~ ut~ q- k(4 a) eB wB)] �91 (~(:')(x) 

n'k',l'm" 1 " n'k' l'm' - -  l'm' n'k'~ Pnk,tm ~ ~ - ( P n k  Ptm t Pnk Ptm ! 

n'k" 1 2 
p~~ -~ ~ -  (a~~, ~~~, + ~~~, a~~, - - 5 -  ~~~ ~~'~') 

kO) ~(z) t.o) a n d  k(4 ~) 1 , "~= , ~3 are real numbers. 

In the r.h.s. 's all local operators aro evaluated at x = 0. 

Table II 

I j a r ,  0), 00o(0)] T = i~~'j~ �91 d- iJr Or (~(3)(x) 

L/~(~, 0), 00~(0)] r  - ij~ Oro ~(3)(x) 

[J~(x, O),Omn(O)]T-- --i~mn [ ~ 3  A 8~ J~ ~_A__ -~3 A' eB s~BC wC ] ~(3)(x ) -~- 

r 1 ,, " " %,]~O)(x) 2kt  Pmn Jm, + i ['~-Jm On ~-J n Om) -- ro'n" .~ 

[j~(~, 0), 0oo(0)] T -- i[Ooj~. -- a~.j~l ~O)(x) + ij~ a k ~r 

[j~(~, 0), Oom(O) ] T = i [ ( k , -  ~ ) Ok j¡ :- ~ k, Om j ~ 4-( k, + ~ )  dkm Or.l'~] ~(3)(x) -b 

--}-i[(i  -~ ~ kt ) j~ O m -~- ( ~ -- k,) j¡ Ok -- ( ~ -  ~- kt) dmkj~ Or] ~(3)(x) 
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i r  I 
I f (~,  O),Omn(O)]r : i i[k,  ~- ~ - )  pm~'t~p.r(Osj~ - Ooj~) -~- ~--~mn)+_ (Oojk) -~ (OkJo)J r + 

+ i i ~ o i ~ - r  ~,, + ~~. ~.,) + k,(,~,,,. ~.)  +('~,,.~3m - 

k t is a rea l  n u m b e r .  

saBC=3sV~--t~a~162237 ) 

S is an  in tege r  ~ O. 

I n  t h e  r .h.s .  ' s  all  local  ope ra to r s  are  e v a l u a t e d  a t  x = O. 
On ly  t r u n e a t e d  e o m m u t a t o r s  a t e  r epor t ed .  

N o t a t i o n s :  

Table  H I  

[f i-~,  0),j~k(0)]T = -- i {b~ C~~~~ª j~o "4- b2 D ~~~ eklmj~m -~ E~fl-C-eklmJr176 ~a)(x)  

[j~-~, 0) , -~(0) ] r  = i F ~~~ -~ ~~~)(~) 

z 
bk(~,0) , -~(0)] r  : 0 

o t = ( a ,  A):  a = 0 ,  1, 2 . . . .  8 

A = ~ (vec to r  or scalar)  of vft ( ax ia l  of  pseudosca la r ) .  

~ = ( ~ ,  A) :  ~ = I ,  2 . . . . .  8 

S u m m a t i o n  o v e r  r e p e a t e d  indices  is a lways  unde r s tood .  

Cr ~ fabc ~ABC ; Ca~T fabc ~ABC 

f ab t  s t r u c t u r e  e o n s t a n t s  of  U(3)  

fa~c s t r u c t u r e  c o n s t a n t s  of  SU(3)  

~,ABC / 0  i f  t h e  n u m b e r  of  " a x i a l "  indiees  aE is odd  
\ 1  if  t h e  n u m b e r  of  " a x i a l "  Ÿ ~ is even  

D=~y ~ da~t ~A8C ; D~~~ = da~v ~ABC 

d ~ a t e  de f ined  aeeord ing  to  Ge l l -Mann ' s  p roposa l :  

{Ÿ a ; 2 b} = 2d a~t 2 t 

~ i f  t h e  n u m b e r  of  " a x i a l "  indiees  ~�91 is even  
~ABC = < i f  t h e  n u m b e r  of " a x i a l "  indiees  ~�91 is odd  

b 1, bz, b a, b~, a t e  rea l  n u m b e r s .  

On ly  t r u n c a t e d  c o m m u t a t o r s  a t e  r epor t ed .  
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Table IV 

-4- G {@-b'a Okte~' u '~ -4- G (-=~}cD dkl ~C wD _~ +Cff~~-[(1 + bl)- 

�9 (SkJ~ -- ~lJ~) -4- Okff "']- Olj~ -- bt dkl 8~'J~] -- 

- - Ect#C - -  8mj(O C)} 
~ ' - -  Mm~ 0 Jm i 2 

t~(s)(x) - -  i {  c:t 'ar '  [t~lmJ~ -~- ~kmJ~ -~- bt ~klJ ym ] "+" 

-t- b2 D -~~~ vkl m ffo -~ E =~c ekl m ]£ 0m ~(S)(x ) 

[j~(~, 0), a0j~(0)] r = iC =~~' Ooj~ d(3)(x) 3- i {bt C =~~ 8kHYo + b~ D =~y ~klmJ~ -4- 

+ E =~c ek..i~'c~}~, ~r 

c t and c= are real numbers. 

G {~~~~ and G ~~')CD ate sets of real constants. 

In the r.h.s. 's all local operators ate evaluated at x = 0. 
Only truncated eommutators ate reported. 

VI. Diseussion of the equal t ime eommutators 

A) The equaI t ime  commuta to r s  [0~,, 0oo ] (see Table I), a t  least  for t h e  
moment ,  ate in teres t ing only  from a theore t iea l  point  of view. In  conneet ion 
wi th  t he m we have reder ived  as a par t icu lar  case, SCHWir~CEa's [23] theorem,  
and ehecked previous model - independent  results b y  BOULAWARE and DESER 
[24]. 

B) The  equal  t ime commuta to r s  be tween  the  components  of  a SU(3) 
eur ren t  and those of the  ene rgy -momen tum tensor  ate repor ted  in Table  I I .  
F r o m  the  first  three  rows of  the  Table, one realizes t h a t  the U(3) | U(3) singlet 
pa r t  of  0~, is a non-eovar ian t  opera tor  which differs f rom 0~~ only for the addi-  
t ion  of  spin 0 fields: 

0~.~ = 0 . v - g . d ~ = ( u  = -  < u % )  + ~A(wA <w%0)] -- ( -- g~, +g~o g~0) " 

A' (12), 

As a l ready noted,  the  mos t  in teres t ing commuta to r s ,  because of  thei r  connect-  
ion to exper imenta l ly  measurable  quanti t ies ,  are the  commuta to r s  am o n g  
eurrents  and eurrents  derivat ives.  They  de te rmine  [25-32]: 
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a) The divergent  par t  of e.m. self masses and the  leading divergences 
of  weak self masses; 

b) The asympto t i c  behaviours  of  e.m. and weak ampli tudes ,  and a num-  
ber  of electro- and neut r ino-product ion  sum rules, some of  which I shall men-  
tion. To this end I have  recalled in Appendix  A some s t andard  nota t ions  and 
results re levant  to the problem of  inelastie lepton scat ter ing f rom unpolar ized 
targets.  

e) For  the ETC's  [j~j~] whieh ate repor ted  in Table  l I I ,  we have found 
an expression which is more general t han  the one provided  by  the  quark  modeL 
In the P ~ ~ l imit  the ETC's between two SU(3) | SU(3) currents  de ter -  
mine m a n y  sum rules, of which I wish to reeall the DASrIE~--FuBINI-GEL�91176 
MANN sum rule [33-35], the backward  BJOnKE~ asympto t i c  sum rule [36] 
and the Gnoss and LLEWELLY~--SMITH sum rule [30].' 

Recen t ly  JACKIW et al. [31] and COnr~WALL et al. [32] have  proved t h a t  
the integral  

provided it eonverges,  is propor t ional  to the q-number  fŸ order  Sehwinger  
term in the  ETC between j~.m. and Jk'e'm'" In  our model we f ind no ope ra to r  
Sehwinger terms in this ETC, so the integral  diverges of vanishes.  In the  
seeond ease the semiposi t iv i ty  of Fl(co) implies t h a t  the  in tegrand is zero. 

�9 c�91 */~ 
D) The equal  t ime eommuta to r s  [ji,,Ooj,] are repor ted  in Table  IV. The i r  

forward ma t r ix  elements determine in the  P- -*  ~,~ l imit  the asympto t ie  sum 
rules re la ted to eleetro- and neut r ino-produet ion ,  whieh are expressed in t e rms  
of integrals over  the  funetions Fi(m ) and ~i(co) defined in Eqs (A.3) and (A.7). 
Only terms whieh do not  eontain der ivat ives  eontr ibi l te  to the integral  over  
dax of these forward  mat r ix  elements.  Therefore,  as is seen f rom Table  I r ,  
only the ma t r ix  elements of the energy m o m e n t u m  tensor  eont r ibute  to the  
sum rules. The o ther  non-der iva t ive  te rms are in faet  ma t r ix  elements of  
spin 0 fields, and vanish when P,  ~ ~ .  So the asympto t ie  sum rules for eleetro-  
and neut r ino-produet ion  on nueleons ean be expressed in terms of only t h e  
two parameters  c 1 and e2, whieh mul t ip ly  the eomponents  of 0,~ appear ing i n  
the expression of the equal t ime e o m m u t a t o r  (see Table  IV), and their  r .h .s . ' s  
tu rn  out  to be propor t ional  to the mdsses of  the targets .  MACK [37] has po in ted  
out  t ha t  this resul t  holds whiehever  is the  target ,  owing to the  un iversa l i ty  
of  the forward ma t r ix  elements of the ene rgy -momen tum tensor.  

The CALLAN--Gnoss sum rules [28], when eva lua ted  in our  model,  g i re  
[1, 2]: 

l i  = f'i dtotoF,(a~) = 2/3(c 1 + c2) {=: 0}*. (13b~ 
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The results marked  with a s tar  hold only if the sum rule of  JAcKtw et al. [31] 
r The same eonvent ion will be used in the  sequel too. Comparing with 
the exper imenta l<la ta  obta ined  at SLAC [38] for F~(o~) we find: 

{--c 1 = 0 .54•  (14) 

The neutr ino product ion  sum ruies are similarly determined in terms of  the  
two parameters  c 1 and % [1, 2]: 

L =f~d~~{~~(o~)+ ~~(~)} ----- - - 4c  1 { =  2.16-4-0.24},* (15a) 

= - -4(c  1 + %) { =  0},* (15b) 

= o,  (15c)  

where the label v(~) refers to neutr ino (anti-neutrino) processes. 
Not ing tha t  when Pz --* ~, the forward mat r ix  elements of  0s, coincide 

wi th  those of  its singlet par t  0{,s!, defined in Eq.  (12), it is possŸ to calculate 
the  rat io  of  the to ta l  neutr ino + ant ineutr ino cross-sections into S = 1 and 
S = O  states [1, 2]: 

atot (AS = I) = tan9 " 0 ,  (16) 
atot (AS = 0) 

where 0 is the Cabibbo angle. 
BJORKEN has shown [36] tha t  when E is much greater  than  M, bu t  not  

so large as to make  the eut  offs due to uni tar i ty ,  of in termediate  boson ex- 
ehange, operat ive 

a't~t+~~Pot'-~ G2 :tME i4 {Jzz -- ~3 Jxx- 2 ijxy / , (17a) 

~t, nj~~n__+ G2ME i (, ~ 4 �9 2 jxr} 
o t - T ~ t o t  Y~ 4 zz -- -~-J.x + ~ - i  , (17b) 

where the  definition of  Eq.  (A.9) has been used. In our model  the r.h.s. 's of 
Eqs.  (17a and b) coincide and can be computed  in terms of  c 1 and %. The result  
is [21 

3c2--c13 G2ME:t { = ( 0 . 7 •  --G2ME:t }* " (18) 

I f  one neglects S = 1 transit ions,  a "n = a rp is obta ined  as the result  of  a simple 
isospin rotat ion and the  experimental  result  [39] 
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G2 M E  o,P n atot-~O~tot -- - -  (1.02 • 0.3) (19) 
Y~ 

can be compared with the starred result of Eq. (18). The agreement is not fan- 
tastie, but within the experimental errors. I wish to reeall, however, that  th e  
assumption of convergence of the integral 

j do~ Ft(~) 
O.) 

is essential to the predietion of Eq. (18). 

VII. Additional remarks and conclusion 

At the recent Conference of Kiev [40] and at the beginning of this 
Symposium][41] some new data from SLAC have been reported which 
seem to be in disagreement with the universality of J,~ (defined in 
Eq. (A.9)) predicted by our model. In fact, the function vw~eutr~ q2) has 
been found sensibly different from vW pr~176 (co, q2). So, before concluding, I 
think some comments are in order about such a possible discrepancy. Various 
possibilities exist: 

1. One may be so optimistic as to hope that  the funetion V~~z~eutr~ ~') 
which for large values (1/16~ co ~ 2) of w has been found < Yw2Pr~176162 y), 
at small values of co becomes so large that  the integrals -t(l)Tneutr~ and q de- -t(0 
fined in Eqs. (13a, b) coincide. 

2. One may prefer to modify the model, for instance, by admitting the 
existence of a set of 16 operators 0~,, which carry spin 2 and dimensions --4, 
and transform as tensors of a representation (8, 1) + (1, 8) of SU(3) | SU(3). 
Such operators can contribute in the equal time commutator [1,,0~1~] and their 
contributions which depend on three new parameters, ate competitive with 
those of 0,~. 

I f  the sum rule of JACKIW et al. converges, one of the parameters can be 
determined; besides, the ratio F/D for the coupling of 0~~ to the nucleons can 
be computed from independent data, so beside c 1 two new parameters enter 
the asymptotic sum rules for electro- and neutrino-production on protons and 
neutrons, and the available experimental data ate sufficient only to determine 
them. No testable prediction can be made in this case. 

I t  must also be noted that  in this way one gives up one of tlle most appeal- 
ing features of the model, consisting in a sort of bootstrap whieh realizes in 
the equal time commutators among the (minimum number of) operators wllich 
are required to generate and to break the symmetries. 
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3. In a recent paper [43] NAUENBERG has shown, through a phenomene- 
logical fit, that  the experimental data for the proton are not yet  asymptotie 
enough as to assure tha t  vwpr~176 v) really scales. 

I r  credit is given to such an interpretation of experiments, the data for 
the neutron too must be considered only sub-asymptotic, and one need not 
modify the model to  just ify them. The situation is illustrated by the following 
example. Suppose 

vW2(ro.v) = F2(~)ti- L l[--v--] F2(r~). (20) 

I r  ~ > 0 is sufficiently small and FŸ depends on isotopic spin, the contribu- 
tion of the second term in the r.h.s, of Eq. (20) can account for the differences 
between the neutron and proton data, but cannot be distinguished from the 
eontribution of ah exactly scaling term. 

In our model such contribution could be explained for instante by simply 
assuming that  the operators 0~, exist, but with dimensions --(4 A- ~), so they 
would contribute in WILSON'8 [44] expansion for [j~(x), 8j~(0)], but n o t a t  
equal times. While waiting for more precise of more asymptotic experiments, 
this position is perhaps the most appealing one to adopt from our point of 
view. 

In any case, whiehever is the interpretation of the experimental data, 
the philosophy which is behind the model keeps its validity. 

To conclude I would stress that  models of the kind proposed here, based 
on WILSON'S ideas, appear to provide a more general frame than canonical 
models, allowing inelusion of limiting cases of the canonical formalism. In this 
sense, such models are related for instance to the discussion of possible limiting 
cases of field algebra [45-48], where ambiguous products j s ( x ) j ~ ( x )  of operators, 
taken at the same point, appear in the equal time c6mmutators. Such ambi- 
guities are here evaded essentially through the assumption of the existence of 
a small number of low-dimension operators which, after fixing a broken sym- 
metry  scheme, for want of something better, have been selected according 
to a principle of economy. 

A p p e n d i x  

In this Appendix some standard notations and'results relevant to the 
problem of inelastic lepton scattering from unpolarized targets ate recalled. 

In the laboratory frame E and E'  ate the energies of the incident and 
scattered lepton, P~ is the momentum of the target and M its mass, 0 is the 
scat te¡  angle of the lepton; q2 ~ 4 E E '  �9 sin 2 0/2 and v = q �9 P = M ( E  - -  

�9 - E') are the squared momentum transfer and the energy transfer to the l e p -  
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tons, respeet ively.  The  s truct t t re  funet ions  for e lee t roproduct ion  are def ined 
f rom 

M 2 
(~~)~~ (~ �89 ~~,) -/~~~ ~'~~~ -q-~ ) ~(q',') q, ) 

• ~ ( e , , )  = --~--f a '~  
2zc eiqx <P[[je'm'(x)' J~'m'(0)][P> " 

(A.1) 

The  inelastic differential  cross section in te rms  of II/1 and  W 2 is 

d~r ~2 
- -  = [W2(q2, r) cos 20/2+2W~(q2; v) sin 20/2]; (A.2) 
dOdE' 4E  ~ sin t 0/2 

Following Bjo,K~.r~ [26] I shall also define:  

F~(o~) = lim MWx(~; v), A.3a) 
~ c o  
to f i x e d  

FI (~  ) = l im v/M W2(q2; v), (A.3b) 
t~-~ co 

to fixed 

Ft(w) = Fi(r ), (A.4a) 

E ( ~ ) -  F~(w) F ~ ( ~ ) .  ( A . 4 b )  
(D 

The  s t rue ture  funet ions  for neu t r ino  p rodue t ion  are def ined f rom 

Po d4x eiq.x/p.r; txL , , .,,,,~,,,--,- 
M 2z~ M z 

i 
- g,,~ w~(q~; , )  - - 

2 M  

%JP~q~Wa(q2; ") + . . .  

and  the  cross section is: 

_ _ d a  _ E '  --G2 [ W2(q2; v) cos 20/2 + 
EE'  dQdE' E 2zt 

+ 2 W~(q2; v) sin 20/2 + E + E '  
M 

a(q2; v) sin 20/2] .  

(A.5) 

(A.6) 
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F o r  n e u t r i n o - p r o d u c t i o n  one def ines:  

Fl(co) = lira MWI(q2; v) . (A.7a) 

to fixed 

F2(o~) = lira v/M ~2(q2; ~,), (A.7b) 
~--~. va 

fixed 

Fs(m) = lira v/M Ws(q~; v) ,  (A.Tc) 
it...~ r 
to fixed 

l im I'd3x <Pzl[Jt,(~, 0) , J+(0)] IP~>,  (A.8) 

l im ~ d3x / P z  [d-~- J/ ,(x,  0), J + ( 0 ) ]  Pz>. (A.9) 
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HAPYIHEHHAft I<AJIEIBPOBOqHAft HHBAPHAHTHOCTb FIPI4 HEYFIPYl"OM 

PACCEftHHH JIEFITOHOB HA HYKJ-IOHAX 

F. CAPTOPH 

Pe3ioMe 

CROM0mb~ H3yqeHH~ KOMMyTaTOp0B ToKa B‰ CBeTOBOrO KOHyCa paccMaTpHBaeTca 
HapymeHHa~ Ka~H‰ HHBapHaHTH0CTb HpH HeynpyroM pacce•HHH ~eHTOHOB Ha 
HyK~OHaX. npe~no>KeH~ M0~e~H, OCHOBaHHble Ha H~e~x BH~bCOHa, H o6ec~eqHBa~~He 6one~ 
o6mee OnHCaHHe, qeM KflHOHHqeCKHe Mo~e~H. 
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