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Broken scale invariance in inelastic lepton-nucleon scattering is discussed studying
current commutators near to light-cone and their equal time limits. Models, based on WiLson’s
ideas, are proposed here to provide a more general frame than canonical models.

I. Introduction

I shall mainly review some work I have done in collaboration with
CiccARIELLO, GATTO and ToNIN (Sections IV, V and VI) [1, 2], and some pre-
vious related results by other authors (Sections I, IT and III), concerning bro-
ken scale invariance and its applications to inelastic lepton-hadron scattering.

Finally (Section VII), I shall briefly comment on some relevant very
recent experimental results from SLAC [40, 41].

Since the local algebra of currents has been proposed by GELL-MANN,
a lot of sum rules have been derived which connect measurable quantities to
ETC’s between local operators. Particularly interesting are the ETC’s involving
e.m. or weak currents or their derivatives.

The model-independent parts of such commutators are easy to write
down, at least if one believes in some symmetry scheme. More intriguing to
compute are the model-dependent parts. To solve the problem, suggestions
have been sought in canonical Lagrangian models such as the quark model,
the gluon model, field algebra, or others.

Unfortunately, as JoFFE and VAINSTEIN [3], JAckiw and PREPARATA [4]
and AprLEr and Tunc [5] have shown, equal time commutators calculated
by naive canonical manipulations of the field operators generally cannot be
used in asymptotic sum rules. In fact, they do not always agree with those
computed from Feynman diagrams via ¢, — ioc limit.

The source of trouble has to be sought in the singular nature of products
of local operators evaluated at the same space-time point. Such singularities
can hardly be treated correctly unless one is able to solve exactly the model.

An economical way to bypass the problem, has been suggested by
Wirson [6]. According to WiLsoN the commutator of two local operators,

A(x) and B(0), can be expanded, when x, — 0, in the following asymptotic
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series:

[4(x), B(0)] ~ 2 0,(0) C,(x). (1)

In Eq. (1) the equality holds in the weak sense, the C (x)’s are tempered
distributions which contain the whole x,-dependence and for locality must
vanish outside the light cone; the 0,(0)’s form a generally infinite set of inde-
pendent local operators.

From Eq. (1), by taking the limit x, — 0, one formally gets the following
expansion for the equal time commutator between A(x) and B(0):

[4(%, 0), BO)] = 3 S (4, B; 0) ... 8, 8D(). (2)

S7--™, the k-order Schwinger term, may also be infinite (in this sense Eq. (2)
is a formal development of an equal time commutator): when finite, it is a
linear combination of local operators and has physical dimension (in units
of length)

Is(k) =1+ 15+k+3, (3)

A and Ip, which are negative numbers, are the physical dimeusions of 4 and B.

The r.h.s. of Eq. (2) turns out to be certainly a finite sum in theories
that do not contain dimensioned parameters, provided the number of operators
with dimensions > 14 -+ Iz + 3 is finite.

If, moreover, the set of such operators is known, the r.h.s. of Eq. (2) is
determined apart from a few numerical constants. Theories that do not contain
dimensioned parameters are insensible to a change of the unit of length, that
is with respect to a scale transformation or, which is the same, with respect to
a dilatation of space and time:

A s
x, — e %3 A real

II. Scale and conformal invarianece

The idea that scale invariance could be a useful concept in theoretical
physics is rather old and dates to the works of GURsEY [7], WEss [8], FuLToN,
RomrricE and Wirten [9], and KastrUP [10]. :

Kastrup [11] and Mack [12] in particular suggested that strong inter-
actions become scale-invariant at short distances, that is at large energies,
when all the masses and dimensioned coupling constants of renormalized in-
teractions loose their relative weights.

Such asymptotic scale invariance, however, cannot be considered the
consequence of an exact symmetry. In fact, it is easy to prove that in a scale-
invariant theory, discrete states with non-vanishing masses are ruled out, cross-
sections fall off too rapidly, the lack of dimensioned parameters prevents one
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from defining asymptotic states: to mention but a few of the difficulties one
meets.

Therefore asymptotic scale invariance must be considered only as a bro-
ken symmetry. This amounts to saying that one believes in the existence of a
limiting theory, called by WiLson skeleton theory, which obtains when all
masses and dimensioned coupling constants vanish.

In such a situation, whenever the theory is renormalizable, one expects
only operators of dimensions > [4(k), as given in Eq. (3), to contribute to the
k-order Schwinger-term; those of dimensions > I[(k), when finite, occur suit-
ably multiplied by symmetry breaking parameters.

In Lagrangian field theories scale invariance is often accompanied by a
larger space-time symmetry, associated to the group of conformal transforma-
tions. The conformal group is a 15-parameter non-compact and non-semisimple
Lie group, isomorfic to SO(2, 4). It contains as a subgroup the Poincaré group,
and is defined as the group of the following non-linear transformations in the

Minkowsky space:

x; — aH.v‘L_A“V x,, (inhomogeneous Lorentz
transformations)
x, = e* x; A real dilatati
= 0 ) (dilatations)
2 .
x = xp_*_cpx {special conformal trans-
[ 1 +20x+¢:2 x2 formations)

The Lie algebra of the conformal group is specified by the following commuta-
tors among the generators of infinitesimal transformations:

[M,,.D] =0, (4a)
[P,D] =iF,, (4b)
[M,., Ko] = i(gp K. — 8. K.) » (40)
(B, K] = 2i(g,, D~ M), (4d)
[K,,K]=0, (4e)
[D,K,]=iK,, (4f)

where M,, and P, are the generators of the Poincaré group, D is the
dilatation charge and K, are the generators of special conformal transforma-

tions.
The commutators among the generators of the inhomogeneous Lorentz

group are well known and have not been written down.
The field-theoretically admissible representations of the conformal al-
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gebra have been discussed in a review paper by Mack and Savam [13]. They
are defined through the following relations:

[Pox), B, ] =18, D(x),
[Po(x), M, ] = i[(x,0,—%,8,) 06(i X,.)a" ] Po(x) ,
[Pox), D] = i (—I5+x2 8, 05) Dy(x)
[Do(x), K, ) =i —2l5x,+ (2%, x°8,—2%8,) 0% —
—2ix(30)d" +# 1 Py(x)

where @y(x) is a finite or infinite set of local fields, ZW,

infinite matrices, and a sum over repeated indices is understood.

According to the type of the matrices X, , I and x,, one gets the following

! and %, are finite or

classes of representations:

L. %, = 0. lis real and proportional to a unit matrix if X, form an ir-
reducible representation of the Lie algebra of the homogeneous Lorentz group.
2. X, I and x, are finite dimensional; x, < 0, but mlpotent

3. 2, 1 and %, are infinite dlmenswnal

A local operator ®(x) satisfying the above commutation relations will
be said to be covariant with respect to conformal transformations. For the 1.
class representations, I will be called the scale dimension of the field; it neces-
sarily coincides with the physical dimension of @(x) only if the theory is scale-

invariant,

II1. Broken conformal invariance in Lagrangian
field theories

It is also instructive to see how conformal symmetry comes about in
canonical Lagrangian field theories.

This point has been analyzed for instance by Wess [8], Mack and SALAM
[13] and Gross and Wess [14].

In canonical Lagrangian theories of conformal covariant fields a slightly
modified form of Néether’s theorem teaches how to construct the generators
of the conformal transformations out of the canonical conjugate variables.

One can verify in this way that the divergence of the dilatation current
vanishes, as expected, if and only if there are no dimensioned parameters in
the theory.

It has also been proved [13, 14] that in a large class of Lagrangian field
theories, including among others almost all renormalizable ones, the divergen-
ces of the special conformal currents are proportional to the divergence of the
dilatation current, so that scale invariance implies invariance with respect to
the entire conformal group. When such a situation is realized, one speaks of
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minimal breaking of conformal symmetry. A minimal breaking of confermal
symmetry in canonical Lagrangian field theories allows for a redefinition, a
la Belinfante—Maller, of the energy momentum tensor, as a symmetric tensor,
which I shall call 6,,. In terms of 6,, the conformal currents, their divergences
and their associated charges assume the following simple form:

Guv =0, (5a)
M,, =%, Oﬁg—xe Ow . (5b)
D, = x”Gw, (5¢)
K,=x,D,+xM,,, (5d)
86, =0, (6a)
*M,,=0, (6Db)
o DH = 0{: . (6¢)
8K, = 2x, 0, (6d)
-P‘U. = S d? xﬁoy(x) . (7a)
M, = | d°xM,,,(x). (Th)
D = { d®*xD(x), (T¢)

K, = s d*xK, (x). (7d)

If the symmetry is exact, 6, is traceless and carries pure spin 2.
This result is due to CALLAN, CoLEMAN and Jackiw [15] who have also

proved that the matrix elements of 6, are less singular than the homologous

u
matrix elements of any other permissible energy-momentum tensor, in every

order of perturbation theory.

IV. A non-Lagrangian model exhibiting smoothly broken
conformal and U(3) ¢ U(3) symmetries

After the short digression of the preceding sections let me now leave the
limits of Lagrangian field theories. I want to retain, however, the following
results which will be some of the defining hypotheses of the model worked out
by CiccArierro, Gatro, TonNIN and myself [2].

I shall assume:

i) the existence of a symmetric divergenceless energy momentum ten-
sor, 0,,.

it) The possibility of defining the charges
P, M

Hy?

D and K,
in terms of 0, as specified in Eqgs. (6a, b, ¢, d) and (7.a b, c, d).
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iii) The existence of a symmetry limit in which the energy momentum
tensor is traceless and transforms covariantly with respect to the entire con-
formal group as a first class tensor with scale dimension -4 and spin 2. In
this limit the charges Pu’ Muv’ D and KH form a Lie algebra which is isomorfic
to the Lie algebra of the conformal group.

To further specify the model, we have assumed — according to WILSON’s
philosophy — the existence of the following linearly independent local opera-
tors:

a) The traceless part of the energy-momentum tensor.

b) The 18 currents j;, where « = (a, A), a =0, ...,8 and 4 specifies
the parity.

The associated charges

0" = { d*xji(x)

are the generators of a chiral U(3)®U(3).

¢) The scalar and pseudoscalar fields w* which are SU(3)®SU(3) sing-
lets but not U(3)® U(3) singlets.

d) The scalar and pseudoscalar fields u* which transform as tensors of
a representation (3,3)® (3,3) of SU(3) ® SU(3).

The transformation properties of these operators with respect to P, C,
and PCT are the usual ones.

The breaking of the U(3) ® U(3) symmetry is specified by assuming
that the operator

6(()?)) = Ogq(x) — ga(<u«_ <ua>0) - SA(“’A(“’) - <WA>0) (8

is a U(3) ® U(3) singlet.
The symmetry breaking parameters & and ¢* are dimensioned constants.
An immediate consequence of this assumption is PCAC in the form:

i j: — SrzBC EB wC+ F"lﬂ}' Eﬁ u)’, (9)

where $*5€ and F*/7 are related to the transformation properties of w” and
u® with respect to U(3) ® U(3) transformations.

The skeleton theory is obtained in the limit &, ¢* — 0; it is conformal
and U(3) ® U(3)-invariant and the limit of the operators mentioned above
transform in it covariantly as tensors of the first class with the following scale -
dimensions:

lp—=—4; L==-3; l,=—4"5 l,=—4.
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Apart from eventual derivatives of such operators or c-numbers, there are no
other operators with scale dimensions > —4.
In the true theory the breaking of the conformal symmetry is specified
through Eq. (6¢):
8* D, = 0

and the assumption that 0/, is not an independent field. We have proved that
in our hypotheses*

O = (4—A) & (u"— uo) + (4 —4") & (wh = (wh)y). (10)

This relation states the partial conservation of the dilatation current.
In fact, it can also be derived following the standard procedure used to prove
PCAC provided one adds the assumption that the singlet part of 6, 6{)(x)
has scale dimension (—4).

In our model this has not been assumed but can be proved to be true.

Let me now justify some of our assumptions and make some additional

uy?

remarks about their significance.

The use of the group U(3) % U(3) as a broken symmetry group is not
new; it had already been considered by GELL-MANN, who also emphasized that
the non-conservation of the axial baryon number is required by the high mass
of the 7’ [16]. 4 and A’ are not generally entire numbers. WiLsoN has pointed
out that the renormalized fields have not necessarily the same dimensions as
the unrenormalized ones; in fact, they do not generally satisfy the same cano-
nical commutation relations. This fact, which has been explicitly checked in
the Thirring model by WirLson [17] and by LowENsTEIN [18], can be consider-
ed as a renormalization effect of the dilatation charges 4 and A’.

The assumptions 4, A’ < 4 express the requirement that the breakings
of the internal and of the conformal symmetries occur together and assure that
they are due to a superrenormalizable piece of the Hamiltonian.

The condition 4 >> 1 is an immediate consequence of the semipositivity
of the spectral function in the Lehmann representation for {0 | T{u"‘(x)u“(O)} [0},
which requires this object being at least as singular as 1/x> when x, — 0.

An analogous reasoning gives 4' > 1.

The number of local fields with low dimensions, allowed in the model,
is the minimum consistent with a symmetry scheme based on a broken U(3) &
» U(3).

The existence of the fields w* (first proposed by GLasHOWw [19]) as ve-
aicles of symmetry breaking is required for instance to justify the large mean
mass of the p-multiplet and the masses of nucleons, as has been noted by

WiLson {6].
* See also [12].
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V. Computing equal time commutators

Let me now come to the technical problem of computing the equal time
commutators among the local operators of the model.

We have assumed that they are regular in the symmetry limit ¢
i.e. that the symmetry is smoothly broken, at least as far as the equal time
commutators are concerned, Particularly strong restrictions come from this
assumption, if taken in conjunction with the hypothesis of the existence of
a limited number of operators with low dimensions. All other conditions to be
imposed on the equal time commutators of the model come from the assumed
internal and space-time symmetries. Let me discuss this point in greater de-
tail, starting from Eq. (2). The eventual tensor preperties of 4 and B with
respect to transformations of some group (whether it is a symmetry group or
not) fix the tensor properties of the Schwinger terms with respect to transform-
ations of the same group.

Such tensor properties can be analyzed conveniently in terms of infini-
tesimal transformations. This in turn amounts to requiring the validity of the
Jacobi identity at different times:

[Q(r2), [4(Z, 1), B(O)]] = [[Q(t5), A(F, ;)] B(0)] + [4(&, 1,), [Q(t). B(0)]], (11

where Q(t,) is a generator of the group. If the symmetry is exact so that Q
does not depend on time, it is sufficient to take the limit:, — 0in Eq. (11) in or-
der to get an equal times Jacobi identity. But if the symmetry is broken and @
does depend on time, in order to get an equal times Jacobi identity it is not
sufficient to take in Eq. (11) the two limits ¢, — 0, t; — 0, when such limits
cannot be interchanged. Thus, in general, one must expect that the equal times
Jacobi identity, among two covariant local operators and a non-conserved
charge, is violated by terms which are proportional to the breaking parameters.

It may also occur that the equal times Jacobi identity is satisfied in the
skeleton theory, where the symmetry is exact, but not in the true theory, be-
cause in the latter one or both of the operators 4 and B loose their exact co-
variance. In this case too, corrections proportional to the breaking parameters

A’ eu_>0=

must be expected.

In any case, however, the violating terms are not completely arbitrary.
but can be determined apart from a few parameters by a spurion analysis.

So, practically, in our model we must impose the following set of con-
ditions:

A) Conditions which come from the discrete symmetries P, C and PCT
are almost obvious and will not be discussed.

B) Poincaré covariance. Considerable technical advantages are obtained
by introducing a positive time-like vector n,, which acts as a spurion of the
Lorentz group, and by substituting to the equal time commutators, the com-
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mutators 6(nx) [A(x), B(0)] calculated on the space-like hyperplane of equa-
tion n - x = 0. In this way one obtains formal covariance by sight.
S % (A, B; 0) becomes a function of n, and its n#-dependence can be easily
analyzed through differential methods. The validity of the equal times Jacobi
identities involving one generator of the inhomogeneous Lorentz group allows
to determine completely the Schwinger terms of the equal time commutator
between A(x) and B(0).

These conditions must clearly be satisfied by the ETC’s of any accept-
able theory, and in our model they turn out to be essential in checking or im-
posing consistency between our commutators and conservation or partial
conservation properties of the local operators involved.

C) D and K, covariance must be imposed only within the skeleton theory;
in the true theory they are violated by terms proportional to the symmetry
breaking parameters. The conditions which come from dilatation covariance
have already been discussed.

K, covariance gives rise to complicated relations among the Schwinger
terms of the equal time commutator between 4 and B. Their most striking
effects can be roughly resumed in the following statement: the local operator
8u,...9,,G(0) (j=1,2,...) contributes in the k-order Schwinger term of
[A(x), B(0)],, if C(0) contributes in the (k -4 j)-order Schwinger term of the
same commutator [2].

D) Further conditions must be obeyed by the equal time commutators
involving the (0u) components of the energy-momentum tensor. These condi-
tions come from the covariance of the operators of the skeleton theory with
respect to transformations of the conformal group and from the particular
form that has been postulated for the generators in terms of 0.

Restrictions of this kind concern Schwinger terms up to the second or-
der [2]. Those coming from dilatations and special conformal transformations
may be violated by terms proportional to the symmetry breaking parameters.

E) Covariance with respect to U(3) ® U(3) transformations implies
obviously that all the Schwinger terms in the equal time commutator between
A and B can get contributions only from operators which transform according
to a representation contained in the Kronecker product of the representations
according to which A and B transform. This statement must be taken in a strict
sense only within the skeleton theory: in the true theory it must be substituted
by the results of a spurion analysis.

In this way, by means of simple group theoretical considerations, we
have been able to compute in our model, in terms of a few numerical parame-
ters, all the equal time commutators among the local operators wA, u*, ]:‘L and
0,, and the equal time commutators between j- and 3,j7. The only exceptions
are the equal time commutators involving only space components of the energy-
momentum tensor.
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We have thus obtained a realization of GELL-MANN’s program of extend-
ing current algebra te include the energy-momentum tensor.

Some of the commutators we have calculated are reported, in truncated
form, in Tables I, IT, IIT and IV. In the following section I shall discuss only
some of their most striking aspects and important applications.

Table I
[B00(Es 0)s B0a(@)]7 = — B Ogq 8®N(x) -+ 2i6,; 8; 6)(x)
[000(%, 0), B (O)]7 = — 8y By @) (x) - (81 8; + Oy 3)) 6E)(x)
[Bo0(%, 0), Og(0)I7 = — 18, by 8@ (x) + (0o By -+ Ooy By) 6°)(x)
[00k(®: 0, Boi(O)]r = — By By 6N (x) + i(By By + Boye By) 6®)(x):
[00s(®: 0); On(0)]y = — i3y, 61y 6)(x) +

4 1 1
+ i {T On Om + 5= im Oric + 5 [0t Ok + Orm O —
1
— 04y 0nm — Oy 6] — Ténk Oml0ye —(4 — 47)? eBul —
— (4 — A)2eP uP) — prkdm KD e Gy,
+ KD 8y Opome 0 — Sy S () € uf - KD 6B wB)]} 8,60 )(x)

ke 1 ke ,m, ke
Pak Im 9 wk Pim + Pnk Plm )

I

o 1 2
e = 2 Onnr O+ Ot O — 5= 8 Oicr)

ED KD, KD and K are real numbers.

In the r.h.s. ’s all local operators are evaluated at x = 0.

Table 11
Ug(‘;:, 0), 000(0)]7‘ is# ]Z 6(3)(.%) -+ ij;‘_‘ 8, 6(3)(x)
(7%, 0), Bom(0) 17 = ij B,y 6®)(x)

[5G, 00, 6mn(0)r = — i07nn [ i A guja 1 4*;_“ ¢B §2BC wC] 8(x) +

I

i [T n+i§0m) — 2k, P i 00| 89)

Li%&: 0), 600(0)]7 = i[80 j% — 35 31 64)(x) + if By 6¥)(x)

- ¥ ipet . 1 oL 2 e 4 1 L
U3GO0, OumO)]r = [ Iy — 5| 348 — 5 v 0 J (I - 5 B8, 71 600e) -+

+i [(1 T %kl) -+ (__ —k ) =y — (% + k,) Gmkﬁa,J 89 (x)
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. 1 it -a o 1 s sor
175, 0), 0 (0) ] = i {(kl + _2—) Pun O (8575 — By o+ 3 Smn) (80 JB) + (aklo)} 6(8)(“) +

. 1 2
5 {35 @em B+ 1 B+ i 80) +0 s — 5 8 0) || 89
k, is a real number.
§*BC _ 3¢ V% 59 AR (3BA SC¥_ 5BV 5CoR
s is an integer > 0.

In the r.h.s. ’s all local operators are evaluated at x = 0.
Only truncated commutators are reported.

Table TII
[5G, 0), i8(0))7 = iC* j} 66)(x)

L3 0), FUO) I — i€ j} 80)(x)

f

(7, 0), /O]

— i {b, C*P" 8y ) + b, D*P ey il + EXFC aklmjg:.cy} 53)(x)
3G 0), ub(0)]y — i F*#7 u? 8(3)(x)

/3%, 0), uP(0)] = 0

Notations: a=(a, 4A):a=0,1,2,...8

It

A = 9 (vector or scalar) or o (axial or pseudoscalar).
g=(a, A:a=12,...,8
Summation over repeated indices is always understood.

Caﬂy Efabc wABC : Caﬁ}’fabc Q}ABC
fa"c structure constants of U(3)

f"'-’E structure constants of SU(3)

ABC _ /0 if the number of *““axial** indices of is odd

v T N1 if the number of ‘“axial‘‘ indices of is even

DBy — gabe @ABC ; DZE; _ dEE; EABC

are defined acecording to Gell-Mann’s proposal:

{la ; Z.b} — 2dabc ac

dabc

—ABC __ <0 if the number of “axial” indices of is even
v T N1 if the number of “axial” indices of is odd

B = ( l/-i— by by 67 64+ (V% b+ b‘J a7 (SAT 4B | gAot gBT) €Y
FeBy _ fEbc pABC SAT | Jobe SAR(BA 5P _ 5B gCofy
by by, by, by, are real numbers.

Only truncated commutators are reported.
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Table IV
UG 0808007 = {8 0,80 + e 0 +
+ G{;ﬁird 8’ ul + 6 (=8yCD 86wl + ——;—C‘;ﬁ—"—[(l +by)-
@ft = O JR) + Bl + Buik — by 88" i) —

by 2iy o 7 ESPC £0,C .
- _22—1)“’37 eklm(ao]fn - 8,,,]3' — 3 €am(3g J;'OI '~ amJ(o'C)}

8®)(x) — i{C*PY [0k + Oumjl + by il +
—z- > 2BC
+ by D*P &y ji + E § Exim J'ao'c)} 3 6@)(x)
[5G, 0), 34 j%(0)1r = iC**? 8, jk 86X(x) + i {b, C*P7 8y} + by D7 g iy +

+ E*PC g i C)0, 80)(2)

¢, and ¢, are real numbers.

G(’ﬂ—syd and GGF}CD are sets of real constants.

In the r.h.s. ’s all local operators are evaluated at x = 0.
Ounly truncated commutators are reported.

VL. Discussion of the equal time commutators

A) The equal time commutators [6,,, 0,,] (see Table I), at least for the
moment, are interesting only from a theoretical point of view. In connection
with them we have rederived as a particular case, SCEWINGER’s [23] theorem,
and checked previous model-independent results by BouLAWARE and DESER
[24].

B) The equal time commutators between the components of a SU(3)
current and those of the energy-momentum tensor are reported in Table II.
From the first three rows of the Table, one realizes that the U(3) ® U(3) singlet
part of 0, is a non-covariant operator which differs from 6,, only for the addi-
tion of spin 0 fields:

0&? = Gy.v_g‘l.l.v[‘c‘\a‘('“ux - <ua>0)+ EA(wA - <wA>0)] —( _gys-+gp0 ng) )
a4 A 12)
. [T e*(u*—(u*)o) + ? EA(WA_<wA>o)] . 12

As already noted, the most interesting commutators, because of their connect-
ion to experimentally measurable quantities, are the commutators among
currents and currents derivatives. They determine [25-32]:
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a) The divergent part of e.m. self masses and the leading divergences
of weak self masses;

b) The asymptotic behaviours of e.m. and weak amplitudes, and a num-
ber of electro- and neutrino-production sum rules, some of which I shall men-
tion. To this end I have recalled in Appendix A some standard netations and
results relevant to the problem of inelastic lepton scattering from unpolarized
targets.

¢) For the ETC’s []:]f] which are reported in Table III, we have found
an expression which is more general than the one provided by the quark model.
In the P — oo limit the ETC’s between two SU(3) ® SU(3) currents deter-
mine many sum rules, of which I wish to reecall the DasHEN-FuBINI-GELL-~
Ma~NN sum rule [33-35], the backward BJORKEN asymptotic sum rule [36]
and the Gross and LLEWELLYN-SMITH sum rule [30].

Recently Jackiw et al. [31] and CoRNWALL et al, {32] have proved that
the integral

[2 M do,
0

w

provided it converges, is proportional to the ¢g-number first order Schwinger
term in the ETC between j;™ and ji™. In our model we find no operator
Schwinger terms in this ETC, so the integral diverges or vanishes. In the
second case the semipositivity of F(w) implies that the integrand is zero.

D) The equal time commutators [}%,3,j0] are reported in Table IV. Their
forward matrix elements determine in the P — oo limit the asymptotic sum
rules related to electro- and neutrino-production, which are expressed in terms
of integrals over the functions F(w) and F(w) defined in Eqs (A.3) and (A.7).
Only terms which do not contain derivatives contribute to the integral over
d3x of these forward matrix elements. Therefore, as is seen from Table IV,
only the matrix elements of the energy momentum tensor contribute to the
sum rules. The other non-derivative terms are in fact matrix elements of
spin 0 fields, and vanish when P, — oo. So the asymptotic sum rules for electro-
and neutrino-production on nucleons can be expressed in terms of only the
two parameters ¢; and ¢,, which multiply the components of §,, appearing ‘in
the expression of the equal time commutator (see Table IV), and their r.h.s.’s
turn out to be proportional to the masses of the targets. Mack [37] has pointed
out that this result holds whichever is the target, owing to the universality
of the forward matrix elements of the energy-momentum tensor.

The CaLLAN-GROss sum rules [28], when evaluated in our model, give
1, 2]:

I, = J:dwa’,(m) = —2/3 ¢, {= 2/3 c,}*, (13a)

1, — I: dow Fiw) = 2/3(c; + ¢,) {= 0}*. (13b)
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The results marked with a star hold only if the sum rule of Jackrw et al. [31]
converges. The same convention will be used in the sequel too. Comparing with
the experimental data obtained at SLAC [38] for F)(w) we find:

{—e, = 0.544-0.06}* (14)

The neutrino production sum rules are similarly determined in terms of the
two parameters ¢, and ¢, [1, 2]:

fi= f :dww{F;(w) + F(w)} = —4e, {= 216+0.24),* (15a)
I = f doo{Fi(@) + Fo)} = —4(e + ¢) {=0}.* (15b)
I,= f : doo{Fyw) + Fiw)} = o, (15¢)

where the label #(3) refers to neutrino (anti-neutrino) processes.

Noting that when P, — co, the forward matrix elements of 6, coincide
with those of its singlet part 6), defined in Eq. (12), it is possible to calculate
the ratio of the total neutrino 4 antineutrino cross-sections into S = 1 and

S = 0 states [1, 2]:
O(dS=1) _ .0 , (16)
G40t (4S5 = 0)
where § is the Cabibbo angle.
BjorkEN has shown [36] that when E is much greater than M, but not
so large as to make the cut offs due to unitarity, or intermediate boson ex-
change, operative

5 GCME i (. 4 2 ..
o+ o8 > — L lJzz — '%—Jxx — _3* 'nyJ » (173)
GCME i {; 4 2 ..
qtot+atot—> = N Jxx+ szy] ’ {17b)
/4 4 3 3

where the definition of Eq. (A.9) has been used. In our model the r.h.s.’s of
Eqs. (17a and b) coincide and can be computed in terms of ¢, and c,. The result
is [2]

3¢c,—e; GEME

3 7 (18)

{:(o.7i0.1) _‘?_ME}
7

If one neglects S = 1 transitions, ¢"" = ¢*” is obtained as the result of a simple
isospin rotation and the experimental result [39]
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6> ME
o Ao, = —— (1024 0.3) (19)

can be compared with the starred result of Eq. (18). The agreement is not fan-
tastic, but within the experimental errors. I wish to recall, however, that the
assumption of convergence of the integral

-2
J do Fi(w)
0 @

is essential to the prediction of Eq. (18).

VII. Additional remarks and conclusion

At the recent Conference of Kiev [40] and at the beginning of this
Symposium¥[41] some new data from SLAC have been reported which
seem to be in disagreement with the universality of J, (defined in
Eq. (A.9) ) predicted by our model. In fact, the function yW35Ut"(¢, ¢?) has
been found sensibly different from »WJf™" (w, ¢%). So, before concluding, I
think some comments are in order about such a possible discrepancy. Various
possibilities exist:

1. One may be so optimistic as to hope that the function »W}*™"*"(e, »)
which for large values (1/16<C @ < 2) of w has been found < »W,P""(w, ),
at small values of @ becomes so large that the integrals Ijj*"" and If*" de-
fined in Eqgs. (13a, b) coincide.

2. One may prefer to modify the model, for instance, by admitting the
existence of a set of 16 operators 6;,, which carry spin 2 and dimensions —4,
and transform as tensors of a representation (8, 1) + (1, 8) of SU(3) ® SU(3).
Such operators can contribute in the equal time commutator [ jz,aejf] and their
contributions which depend on three new parameters, are competitive with
those of §,,.

If the sum rule of JACKIW et al. converges, one of the parameters can be
determined; besides, the ratio F/D for the coupling of 0}, to the nucleons can
be computed from independent data, so beside ¢; two new parameters enter
the asymptotic sum rules for electro- and neutrino-production on protons and
neutrons, and the available experimental data are sufficient only to determine
them. No testable prediction can be made in this case.

It must also be noted that in this way one gives up one of the most appeal-
ing features of the model, consisting in a sort of bootstrap which realizes in
the equal time commutators among the (minimum number of) operators which
are required to generate and to break the symmetries.
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3. In a recent paper [43] NAUENBERG has shown, through a phenomene-
logical fit, that the experimental data for the proton are not yet asymptotic
enough as to assure that vWf™" (e, ») really scales.

If credit is given to such an interpretation of experiments, the data for
the neutron too must be considered only sub-asymptotic, and one need not
modify the model to justify them. The situation is illustrated by the following
example. Suppose

Wy, v) = Fy(w) + (~M—] " Fyw). (20)

If 7 > 0 is sufficiently small and Fj(w) depends on isotopic spin, the contribu-
tion of the second term in the r.h.s. of Eq. (20) can account for the differences
between the neutron and proton data, but cannot be distinguished from the
contribution of an exactly scaling term.

In our model such contribution could be explained for instance by simply
assuming that the operators 6, exist, but with dimensions —(4 + 1), so they
would contribute in WiLsoN’s [44] expansion for [ji(x), 8,j5(0)], but not at
equal times. While waiting for more precise or more asymptotic experiments,
this position is perhaps the most appealing one to adopt from our peint of
view.

' In any case, whichever is the interpretation of the experimental data,
the philosophy which is behind the model keeps its validity.

To conclude I would stress that models of the kind proposed here, based
on WiLson’s ideas, appear to provide a more general frame than canonical
models, allowing inclusion of limiting cases of the canonical formalism. In this
sense, such models are related for instance to the discussion of possible limiting
cases of field algebra [45-48], where ambiguous products j, (x)j,(x) of operators,
taken at the same point, appear in the equal time commutators. Such ambi-
guities are here evaded essentially through the assumption of the existence of
a small number of low-dimension operators which, after fixing a broken sym-
metry scheme, for want of something better, have been selected according
to a principle of economy.

Appendix

In this Appendix some standard notations and ‘results relevant to the
problem of inelastic lepton scattering from unpolarized targets are recalled.
In the laboratory frame E and E’ are the energies of the incident and
scattered lepton, P, is the momentum of the target and M its mass, 6 is the
scattering angle of the lepton; 2 = —4EE’ - sin?0/2 andy =¢q - P = M(E —
- - E') are the squared momentum transfer and the energy transfer to the lep-
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tons, respectively. The structure functions for electroproduction are defined
from

1 (P-q9)q, (P-q)q, 9.9
—|P . - " ||{P-. 2ty __ I alinid
M2 ( # ¢ )[ Y q° }Wz(f’ ?) [g“” ¢ ] x (A1)
P 1y . . *
X W) = <2 j S v R, S O)]IP

The inelastic differential cross section in terms of W, and W, is

d 2 .
d.Q;E’ = i :i‘n‘ o [Wy(q%, v) cos? 8/242W (g% v) sin? 6/2];  (A.2)

Following BjorkEN [26] I shall also define:

0 = —¢v
E(w) = lim MW (¢%7), A.3a)
Fy(w) =1Lim y/M Wyg;), (A.3b)
Fyow) = Fy(w), (Ada)
Fw) = 2 _ B, (A.4b)

The structure functions for neutrino production are defined from

b (4=, ; : PP _.
—M—LJ 2: etq-x(Pl[]M(x),]j’(O)]|P> — ]Cl; W(qsv) — N

— i _
— 8, Wilg%v) — 73 e PP qsWalg%v) + . ..

and the cross section is:

’ 2 .
& d.;;E' - EE'G_{Wz(qz; v) cos?6/2 +
i X (A.6)
+ 2W (g% »)sin26/2 + E+E (%5 v) sin? 0/2]-
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For neutrino-production one defines:

1.
2.
3.
4
5
6
7

8.
9.
10.
11.

12.
13.
14.
15.
16.

17.
18.
19,

20.
21.
22.
23.
24,
25.
26.
21,
28.
29.
30.
31.

F (o) =1lim MW,(q?v). (A.7a)
o fixed

Fy(w) = lim »/M Wy(¢%»), (A.7b)
o fixed

Fy(w) = lim v/M Wy(g?; v), (A.7c)

o fixed

J,,= lim J‘dsx (B[, 0), JHO)] B, (A-8)

Py

: . d3x
J., = lim <Pz
0

<

[% T, 0), J.T(O)] Pz> . (A9)

i Py P
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HAPYHIEHHAS{l KAJIMBPOBOUHAST MHBAPHMAHTHOCTD ITPH HEVYIIPYI'OM
PACCES/IHUU JIENTOHOB HA HYKRJIOHAX

r. CAPTOPHU

Pesiome

C 1OMOLIbI0 H3YUueHHsST KOMMYTATOPOB TOKA BOJM3H CBETOBOI'0 KOHYCa PacCMaTpHBAETCSt

Hapyul€HHas KaﬂH6POBO‘lHaH HHBAPDHAHTHOCTb MPH HEYNPYyromM pacCesiHHH JIENTOHOB HA
HYKJIOHAaX. Hpeuno»(eﬂu MOJEJIH, OCHOBAHHLIE HA HAesiX BUJbCOHA, H 00eCneynBalouiue 60.]'16&
ofuiee onucaHue, 4yeM KaHOHHYECKHE MOJEJIH.
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