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In  the  classical conf igura t ion  in te rac t ion  (CI) m e t h o d  [1] we wri te  the 
a p p r o x i m a t e  s t a te  fuct ion  of an N - b o d y  p rob lem as a l inear  combina t ion  of 
the  conf igurat ions  q~; 

= ~ ci q~~, (1) 
i 

The conf igurat ions  q~i are bui l t  up f rom one-par t ic le  funct ions  qi in sueh a way  
t h a t  the  s y m m e t r y  proper t ies  of  the  H a m i l t o n i a n  and the  s t a te  funct ion  are 
t aken  into account .  We de te rmine  ~ f rom the r equ i r emen t  

i,k 
with the  cons t ra in t  

(2) 

( T  I T ) =  ~ c* ck(~ilq~k) = 1 .  (3) 
i,k 

F r o m  requ i r emen t  (2) we get a s y s t e m  of l inear  homogeneous  equat ions and 
we de te rmine  the  a p p r o x i m a t e  energy  E b y  solving the  secular  equa t ion  of the  
sys tem.  

In  the  CI m e t h o d  some m a t h e m a t i c a l  difficulties have  to be overcome.  
One of these is connec ted  with  the  cons t ruc t ion  of the  s y m m e t r y - a d a p t e d  con- 
f igurat ions.  This cons t ruc t ion  is laborious ir the  n u m b e r  of  part icles  is _N > 2 
[2]. Other  compl ica t ions  are in t roduced  if  we use non-or thogona l  orbitals [3]. 
I n  this p a p e r  we propose  a m e t hod  where  these difficulties do not  arise. In  
the  proposed  m e t h o d  we have  to cons t ruc t  only  one s y m m e t r y - a d a p t e d  confi- 
gura t ion  and we can handle  the  non-or thogona l  orbitals easily. 

The ma in  fea tures  of  this m e t h o d  are as follows. 

* Dedicated to Prof. P. Go~BŸ s on his 60th birthday. 

Acta Physiea Academiae Scientiarum Hungaricae 27, 1969 



560 L. URBAN 

1. We choose a s ta te  funct ion ~ o  a s a  zeroth approximat ion  and deter-  
mine the  energy E 0 in this approximat ion  

E o -- (k~o]~~'l~o) 
(~o1~o) 

2. We define a der iva t ive  along the direct ion ~ of the  funct ional  E(T) 
in the  " p o i n t "  ~ o  and we determine the s ta te  ~ where the der iva t ive  is mini- 
m a l ~  

3. F rom the  s tates  ~rJ 0 and ~r/ we determine  the first  approx imat ion  
~1 and E 1 < E0, etc. 

Le t  us in t roduce  the  following nota t ions :  
c ~  is the Hami l ton ian  of  the  N-par t ic le  sys tem,  
A is a constant  of mot ion  i.e. [A, c~f] = 0, 
~01, ~2, �9 �9 �9 , ~0r is the  one-part icle basis, 

~1, ~2 . . . .  , ~s is the  N-par t ic le  basis cons t ruc ted  from the one-part iele  func- 
t ions and 

L~ is the  subspaee of the Hi lber t  space de termined  b y  N-par t ic le  
basis. 

We do not  require  the or thogonal i ty  of~i-s and ~bi-s, and we do no t  assume 
t h a t  ~i-s are s y m m e t r y - a d a p t e d .  Bu t  we rcquire  t h a t  ql-s and ~i-s have  to  
f o r m a  basis, i.e. t h e y  have  to  be l inear independent .  We can formula te  our  
p rob lem in the following way:  Find the min im u m  of  the  expec ta t ion  value  

with the  constraint* 

E(kU) - (~[  J27'] T--) (4) 

A ~  = 2 ~ ,  where TEL,~. 

As a zeroth approx imat ion  we cons t ruc t  a s ta te  funct ion  kY o with the  
propert ies  

(kr‰ = 1 ,  

A~o = ~~o, (5) 

~ o ( L . .  

The last  condi t ion can be wr i t t en  as 

~o ~- . ~  Col ~ i"  (6) 
i 

* We work  here w i t h  one cons t an t  of mot ion  b u t  the  general izat ion for  the  case of  more  
c o n s t a n t s  of  mot ion  is tr ivial .  
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The energy in this approximat ion is 

E o = (~o1~1~0). 

Let  us define the derivative along the direction ~ of the functional  E(~)  
-n the " p o i n t "  kU 0 as [4] 

dE _ lim E~(~~ -q- ~~)  -- E(~~ (7) 
d ~  ~-~o ~]l~[[ 

Using (4) we get from (7) 

dE _ (k~]~Ÿ '~-  Eol~)  q- ( ~ l , ~ - -  Eol ku) (8) 

We can show easily t h a t  (8) is really a derivative. I f ~  is a positive infinitesimal 
quan t i ty  we can write 

E(~o + 1 )  = (~o + ~~l~Ÿ + ~~') = 
(k~~ q- ~~~211 (9) 

(~r/l~=~-- Eol~)  + (~o l~ ' - -  Eol~)  
= E0q- ~ 

fisil 

i.e. d E / d ~  is a derivative. 
I t  can be seen from Equ.(9) t h a t  in the case d E / d ~  < 0, E (~0q-~~)  decrea~- 

es when ~ increases. We use this fact  to construct  the first  approximation.  
Note t h a t  the derivative d E / d ~  does not  depend on I I~ l l ;  w e  can 

choose ll~ll---- 1. 
We write ~EL~ a s a  linear combinat ion of the basis elements 

= ~ '  xt ~ l .  (10) 
i 

Let  us introduce the following notat ions 

(~il~k) = ~ Z k ,  (11) 

Using (8), (10) and (11) we get 

dE 
--  . ~  {X*(~gŸ237 --  Eo ~/~~k) Cok + Co* (~Ÿ -- Eo ~ffŸ xi}. (12) 

d ~  i,k 
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We ate looking for the minimum value of dE/dT with the condition 

(TIC) = ~ x* ~r xk = 1 (13) 
i ,k 

The minimum is determined by the system of linear inhomogeneous equations 

1 
~/~,~ xk - _Y (~ ,k  - Eo ~ t , ~ )  Co~, (14) 

k /~ k 

where # is the Lagrange muhiplier determined by (13), of in matrix forro 

1 
M X  = .  (H--  Eo M) %. (15) 

The solution of (15) is 

X = .  1 (M - 1 H - E o )  c o 
q 

and s (13) 
q = -r ][c~ H M  -11 ico  - -  E~o. (16) 

We get the mŸ value of (12) with the minus sign in (16) 

dE = - -  2 Vc~ H~1:1 Hco -- E~. (17) 
d~lmlrt 

I t  can easily be seen tha t  

c~ H M  -1 l l co  - -  E~ ~ O, 

where the equality is valid only if 

holds, i.e. ~o is an eigenfunction o f J Ÿ  ~'. I f  the equality is valid we know the 
exaet eigenfunction of ~~'. Ir  that  is not the case we determine the state 

= ~ x, ~ , ,  
l 

whieh has the property tha t  E(kU 0 ~- ~T) deereases when ~ increases from zero 
to ~0, where ~o is the smallest positive root of the equation 

d 
- - E ( ~  0 + ~~r 0 ~- 0 .  (18) 
d~ 
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Let  

then  

~ ~ =  ~ ~ 1 7 6  _ , (19) 
I1~o + So ~11 

E1 = (~ lJ t~ l~ )  < Eo (20) 
iholds. 

We take  ~x  as the first  approximat ion ,  and f rom ii  we determine the 
second approx imat ion  in the same way,  etc. In  this way  we get a set of energies 

Eo,  E l ,  E2 . . . .  and 

E 0 > E  I > E  2 >  . . .  (21) 

holds. 
Now we examine  the s y m m e t r y  propert ies  of the s ta te  funct ions T0,  

~~, etc. 
In t roduc ing  the operator  P project ing on the subspace Le  

P = ~ [~t) ~~�91 (22) 
i,k 

the  s ta te  ~f can be wri t ten  as 

: ( P ~ - -  E0) kr£ (23) 

Using the fact  t h a t / I  is a constant  of mot ion  and from Equ.  (5) 

A ~  : 2 ~  (24) 
if  P A  - -  A P  = 0 

is valid. I f  we choose the  basis in sueh a way  t h a t  

s 
Ar  = _,~' Clk r  (25) 

k~l 

holds for  eve ry  i, condit ion (24) is fulfilled and the s y m m e t r y  remains in every  
approximat ion.  

Applications based on this me thod  will be published in a subsequent  
paper.  

The author would like to thank Prof. P. GOMBXS for his kind interest in this work. 
Thanks ate also due to Dr. D. KtsDI for bis valuable help and advice. 
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