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In the classical configuration interaction (CI) method [1] we write the
approximate state fuction of an N-body problem as a linear combination of
the configurations @;

¥=2¢9, (1)

The configurations @; are built up from one-particle functions ¢; in such a way
that the symmetry properties of the Hamiltonian and the state function are
taken into account. We determine ¥ from the requirement

(P|IHW) = 2 ¢t (@] H|®;) = min (2)
ik
with the constraint
(F|¥)= %62" (@i D) = 1. (3)

From requirement (2) we get a system of linear homogeneous equations and
we determine the approximate energy E by solving the secular equation of the
system.

In the CI method some mathematical difficulties have to be overcome.
One of these is connected with the construction of the symmetry-adapted con-
figurations. This construction is laborious if the number of particles is IV > 2
[2]. Other complications are introduced if we use non-orthogonal orbitals [3].
In this paper we propose a method where these difficulties do not arise. In
the proposed method we have to construct only one symmetry-adapted confi-
guration and we can handle the non-orthogonal orbitals easily.

The main features of this method are as follows.

* Dedicated to Prof. P. GomBAs on his 60th birthday.
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560 L. URBAN

1. We choose a state function ¥, as a zeroth approximation and deter-
mine the energy E, in this approximation

o _ (B
(% %)

2. We define a derivative along the direction ¥ of the functional E(¥)
in the “point” ¥, and we determine the state ¥ where the derivative is mini-
mal.

3. From the states ¥, and ¥ we determine the first approximation
¥, and E, < E,, etc.

Let us introduce the following notations:

& is the Hamiltonian of the N-particle system,

A is a constant of motion i.e. [4, F] =0,

@15 Pas - - « 5 @r is the one-particle basis,

D, Dy, ..., D,is the N-particle basis constructed from the one-particle func-
tions and ‘

Ly is the subspace of the Hilbert space determined by N-particle
basis.

We do not require the orthogonality of g;-s and @;-s, and we do not assume
that @;-s are symmetry-adapted. But we require that g¢;-s and ®;-s have to
form a basis, i.e. they have to be linear independent. We can formulate our
problem in the following way: Find the minimum of the expectation value

(@)

EY) =
& (¥1¥)

(4)
with the constraint*

A¥Y =¥, where Y¢L,.

As a zeroth approximation we construct a state function ¥, with the

properties
(Fo|¥o) =1,
AP, = 1%, (5)
Y€Lg .

The last condition can be written as
Fo=eu®;. (6)
i

* We work here with one constant of motion but the generalization for the case of more
constants of motion is trivial.
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The energy in this approximation is
E,= (!Po|9f|qlo) :

Let us define the derivative along the direction ¥ of the functional E(¥)
*n the “point” ¥, as [4]

E iy Bt ) — B(R) )
e ||

Using (4) we get from (7)

dE _ (¥|— EJ¥) + (B~ EJ¥)

8
¥ T2 ®)

We can show easily that (8) is really a derivative. If x is a positive infinitesimal
quantity we can write

(%, + o || + o)
(%) + o [F+a¥)
(P|F— Eo|B,) + (B|F— E|P)
1] ’

E(¥% + a¥) =
9)
=FE,+«

i.e. dE[dY¥ is a derivative.

Itcan beseen from Equ.(9) thatin the case dE/dY¥ <0, E(¥ (+«¥) decreas-
es when « increases. We use this fact to construct the first approximation.

Note that the derivative dE/d? does not depend on |[¥||; we can
choose ||¥|| = 1.

We write P€Lg as a linear combination of the basis elements

VY=o, (10)
i

Let us introduce the following notations

(‘pi@k) =M ks

11)
(¢i‘2f‘q)k) = %k . (
Using (8), (10) and (11) we get
dE S ok *
T = % {xi (i — Eg M ) cor + cop (Hi — Eg M 1) xi} . (12)
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We are looking for the minimum value of dE/d¥ with the condition
(PP) = S af Myx,=1. (13)
ik
The minimum is determined by the system of linear inhomogeneous equations
1
Z%ik Xy =— 2 (H — Eo M ) cops (14)
k # ok
where u is the Lagrange multiplier determined by (13), or in matrix form
MX =1 (H-E,M)c,. (15)
u
The solution of (15) is

x=lorH_E)e,
7
and from (13)

p=)ei HM*He, — E. (16)
We get the minimum value of (12) with the minus sign in (16)

dE
dy,mln

—=— 2Ve; HM'Hc, — Eq. (17)

It can easily be seen that
c; HM1lc, - EZ > 0,
where the equality is valid only if
HE,=E, ¥,

holds, i.e. ¥, is an eigenfunction of . If the equalityis valid we know the
exact eigenfunction of S¥. If that is not the case we determine the state

¢=12‘x,¢,,

which has the property that E(¥,  «¥) decreases when « increases from zero
to a5, where a, is the smallest positive root of the equation

(% +aP)=0. (18)
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Let -
¥ v
L= 0__*"0&__ , (19)
”lpo + o lF”
then
E, = (F|H¥) < E, (20)
iholds.

We take ¥, as the first approximation, and from it we determine the
second approximation in the same way, etc. In this way we get a set of energies

E,E,E,,...and

E,>E >E,> ... (21)
holds.
Now we examine the symmetry properties of the state functions ¥,
¥, ete.
Introducing the operator P projecting on the subspace Ly
P=2|0) MNP (22)
i,k
the state ¥ can be written as A
Y= (P¥—E,)Y,. (23)
Using the fact that A is a constant of motion and from Equ. (5)
A¥ =¥
if 24
' PA— AP =0 @4

is valid. If we choose the basis in such a way that
8
AP = 2y Py (25)
k=1

holds for every i, condition (24) is fulfilled and the symmetry remains in every
approximation.
Applications based on this method will be published in a subsequent

paper.

The author would like to thank Prof. P. GomBA4s for his kind interest in this work.
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